Sur la modélisation de l’interaction entre polarons et cristaux quantiques
Séminaire Laurent Schwartz — EDP et applications (2012-2013), Exposé no. 7, 24 p.

Je résume dans ce texte des travaux récents, en collaboration avec Mathieu Lewin, sur la modélisation des (multi-)polarons. Il s’agit de décrire le système physique formé par l’interaction entre une ou plusieurs particules chargées et un cristal constitué d’un nombre infini de noyaux classiques et d’électrons quantiques. Nous définissons un nouveau modèle en couplant l’équation de Schrödinger pour les particules chargées avec un modèle de type Hartree-Fock réduit décrivant la réaction des électrons du cristal. Nous étudions l’existence d’états liés (minimiseurs de la fonctionnelle d’énergie) et démontrons que le modèle de Pekar pour le grand polaron peut se déduire du nôtre dans une limite macroscopique.

DOI : 10.5802/slsedp.36
Rougerie, Nicolas 1

1 Université Grenoble 1 et CNRS, LPMMC, UMR 5493 BP 166 38042 Grenoble, France
@article{SLSEDP_2012-2013____A7_0,
     author = {Rougerie, Nicolas},
     title = {Sur la mod\'elisation de l{\textquoteright}interaction entre polarons et cristaux quantiques},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:7},
     pages = {1--24},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2012-2013},
     doi = {10.5802/slsedp.36},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/slsedp.36/}
}
TY  - JOUR
AU  - Rougerie, Nicolas
TI  - Sur la modélisation de l’interaction entre polarons et cristaux quantiques
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:7
PY  - 2012-2013
SP  - 1
EP  - 24
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.36/
DO  - 10.5802/slsedp.36
LA  - fr
ID  - SLSEDP_2012-2013____A7_0
ER  - 
%0 Journal Article
%A Rougerie, Nicolas
%T Sur la modélisation de l’interaction entre polarons et cristaux quantiques
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:7
%D 2012-2013
%P 1-24
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.36/
%R 10.5802/slsedp.36
%G fr
%F SLSEDP_2012-2013____A7_0
Rougerie, Nicolas. Sur la modélisation de l’interaction entre polarons et cristaux quantiques. Séminaire Laurent Schwartz — EDP et applications (2012-2013), Exposé no. 7, 24 p. doi : 10.5802/slsedp.36. http://www.numdam.org/articles/10.5802/slsedp.36/

[1] A. Alexandrov and J. Devreese, Advances in Polaron Physics, Springer Series in Solid-State Sciences, Springer, 2009.

[2] V. Bach, J. M. Barbaroux, B. Helffer, and H. Siedentop, On the stability of the relativistic electron-positron field, Commun. Math. Phys., 201 (1999), pp. 445–460. | MR | Zbl

[3] C. Bardos, F. Golse, A. D. Gottlieb, and N. J. Mauser, Mean field dynamics of fermions and the time-dependent Hartree-Fock equation, J. Math. Pures. Appl., 82 (2003), pp. 665–683. | MR | Zbl

[4] S. Baroni and R. Resta, Ab initio calculation of the macroscopic dielectric constant in silicon, Phys. Rev. B, 33 (1986), pp. 7017–7021.

[5] N. Benedikter, M. Porta, and B. Schlein, Mean-field evolution of fermionic systems, ArXiv e-prints, (2013).

[6] É. Cancès, A. Deleurence, and M. Lewin, A new approach to the modelling of local defects in crystals : the reduced Hartree-Fock case, Commun. Math. Phys., 281 (2008), pp. 129–177. | MR | Zbl

[7] É. Cancès, Non-perturbative embedding of local defects in crystalline materials, J. Phys. : Condens. Matter, 20 (2008), p. 294213.

[8] E. Cancès and V. Ehrlacher, Local defects are always neutral in the Thomas-Fermi-von Weiszäcker theory of crystals, Arch. Rat. Mech. Ana., 202 (2011). | MR | Zbl

[9] É. Cancès and M. Lewin, The dielectric permittivity of crystals in the reduced Hartree-Fock approximation, Arch. Ration. Mech. Anal., 197 (2010), pp. 139–177. | MR | Zbl

[10] É. Cancès, M. Lewin, and G. Stoltz, The microscopic origin of the macroscopic dielectric permittivity of crystals : A mathematical viewpoint, in Numerical Analysis of Multiscale Computations, B. Engquist, O. Runborg, and Y. Tsai, eds., vol. 82 of Lecture Notes in Computational Science and Engineering, Springer, 2011, pp. 87–125. | Zbl

[11] E. Cancès and G. Stoltz, A mathematical formulation of the random phase approximation for crystals, Ann. I. H. Poincare C, 29 (2012). | Numdam | MR

[12] I. Catto, C. Le Bris, and P.-L. Lions, The mathematical theory of thermodynamic limits : Thomas-Fermi type models, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1998. | MR | Zbl

[13] I. Catto, On the thermodynamic limit for Hartree-Fock type models, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), pp. 687–760. | Numdam | MR | Zbl

[14] P. Chaix and D. Iracane, From quantum electrodynamics to mean field theory : I. The Bogoliubov-Dirac-Fock formalism, J. Phys. B, 22 (1989), pp. 3791–3814.

[15] P. Chaix, D. Iracane, and P.-L. Lions, From quantum electrodynamics to mean field theory : II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation, J. Phys. B, 22 (1989), pp. 3815–3828.

[16] M. D. Donsker and S. R. S. Varadhan, Asymptotics for the polaron, Comm. Pure Appl. Math., 36 (1983), pp. 505–528. | MR | Zbl

[17] C. Fefferman, The thermodynamic limit for a crystal, Commun. Math. Phys., 98 (1985), pp. 289–311. | MR | Zbl

[18] R. L. Frank, E. H. Lieb, and R. Seiringer, Binding of Polarons and Atoms at Threshold, Comm. Math. Phys., 75 (2012), pp. 405–424. | MR | Zbl

[19] R. L. Frank, E. H. Lieb, R. Seiringer, and L. E. Thomas, Bi-polaron and N-polaron binding energies, Phys. Rev. Lett., 104 (2010), p. 210402.

[20] R. L. Frank, E. H. Lieb, R. Seiringer, and L. E. Thomas, Stability and absence of binding for multi-polaron systems, Publ. Math. Inst. Hautes Études Sci., (2011), pp. 39–67. | Numdam | MR | Zbl

[21] H. Fröhlich, Theory of Electrical Breakdown in Ionic Crystals, Royal Society of London Proceedings Series A, 160 (1937), pp. 230–241. | Zbl

[22] H. Fröhlich, Interaction of electrons with lattice vibrations, Proc. R. Soc. Lond. A, 215 (1952), pp. pp. 291–298. | Zbl

[23] M. Griesemer and J. S. Møller, Bounds on the minimal energy of translation invariant n-polaron systems, Commun. Math. Phys., 297 (2010), pp. 283–297. | MR | Zbl

[24] C. Hainzl, M. Lewin, and É. Séré, Existence of a stable polarized vacuum in the Bogoliubov-Dirac-Fock approximation, Commun. Math. Phys., 257 (2005), pp. 515–562. | MR | Zbl

[25] C. Hainzl, Self-consistent solution for the polarized vacuum in a no-photon QED model, J. Phys. A, 38 (2005), pp. 4483–4499. | MR | Zbl

[26] C. Hainzl, Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics, Arch. Ration. Mech. Anal., 192 (2009), pp. 453–499. | MR | Zbl

[27] C. Hainzl, M. Lewin, É. Séré, and J. P. Solovej, A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics, Phys. Rev. A, 76 (2007), p. 052104.

[28] C. Hainzl, M. Lewin, and J. P. Solovej, The thermodynamic limit of quantum Coulomb systems. Part I. General theory, Advances in Math., 221 (2009), pp. 454–487. | MR | Zbl

[29] C. Hainzl, The thermodynamic limit of quantum Coulomb systems. Part II. Applications, Advances in Math., 221 (2009), pp. 488–546. | MR | Zbl

[30] W. Hunziker, On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta, 39 (1966), pp. 451–462. | MR | Zbl

[31] M. Lewin, Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., 260 (2011), pp. 3535–3595. | MR | Zbl

[32] M. Lewin, A nonlinear variational problem in relativistic quantum mechanics, Proceeding of the 6th European Congress of Mathematics, Krakow (Poland), (2012).

[33] M. Lewin and N. Rougerie, Derivation of Pekar’s Polarons from a Microscopic Model of Quantum Crystals, SIAM J. Math. Anal., (2011). | MR

[34] M. Lewin, On the binding of small polarons in a mean-field quantum crystal, ESAIM :COCV, (2012).

[35] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Applied Mathematics, 57 (1977), pp. 93–105. | MR | Zbl

[36] E. H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Reviews of Modern Physics, 53 (1981), pp. 603–641. | MR | Zbl

[37] E. H. Lieb, Variational principle for many-fermion systems, Phys. Rev. Lett., 46 (1981), pp. 457–459. | MR

[38] E. H. Lieb, Density functionals for Coulomb systems, Int. J. Quantum Chem., 24 (1983), pp. 243–277.

[39] E. H. Lieb and J. L. Lebowitz, The constitution of matter : Existence of thermodynamics for systems composed of electrons and nuclei, Advances in Math., 9 (1972), pp. 316–398. | MR | Zbl

[40] E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Commun. Math. Phys., 53 (1977), pp. 185–194. | MR

[41] E. H. Lieb, The Thomas-Fermi theory of atoms, molecules and solids, Advances in Math., 23 (1977), pp. 22–116. | MR | Zbl

[42] E. H. Lieb and L. E. Thomas, Exact ground state energy of the strong-coupling polaron, Comm. Math. Phys., 183 (1997), pp. 511–519. | MR | Zbl

[43] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–149. | Numdam | MR | Zbl

[44] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 223–283. | Numdam | MR | Zbl

[45] S. Pekar, Untersuchungen fiber die Elektronen Theorie der Kristalle, Berlin : Akademie-Verlag, 1954. | Zbl

[46] S. Pekar, Research in electron theory of crystals, Tech. Rep. AEC-tr-5575, United States Atomic Energy Commission, Washington, DC, 1963.

[47] S. Pekar and O. Tomasevich, Theory of F centers, Zh. Eksp. Teor. Fys., 21 (1951), pp. 1218–1222.

[48] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of operators, Academic Press, New York, 1978. | MR | Zbl

[49] I. M. Sigal, Geometric methods in the quantum many-body problem. Non existence of very negative ions, Commun. Math. Phys., 85 (1982), pp. 309–324. | MR | Zbl

[50] B. Simon, Geometric methods in multiparticle quantum systems, Comm. Math. Phys., 55 (1977), pp. 259–274. | MR | Zbl

[51] J. P. Solovej, Proof of the ionization conjecture in a reduced Hartree-Fock model., Invent. Math., 104 (1991), pp. 291–311. | MR | Zbl

[52] C. Van Winter, Theory of finite systems of particles. I. The Green function, Mat.-Fys. Skr. Danske Vid. Selsk., 2 (1964). | MR | Zbl

[53] G. M. Zhislin, On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions, Teoret. Mat. Fiz., 21 (1971), pp. 332–341. | Zbl

Cité par Sources :