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13-01

COMPARAISON DE LA BAR-CONSTRUCTION

A LA CONSTRUCTION W ET AUX COMPLEXES K(03C0 , n) .

J. C. MOORE,(Exposé de J. C. MOORE, 14.2.1955)

Séminaire H. CARTAN, E.NoS., 1954/55. e

ERRATUM à_!’Exposé 3.- -hu paragraphe 4 , la démonstration du théorème

2 (de l’Exposé 2) est incomplète : page 3-07, lignes 4-5 , pour pouvoir

appliquer le théorème A , il faudrait avoir vérifié que l’isomorphisme

transforme l’opérateur d de dans

u x; n 2014~ (-1)~ u ~ (dn) , avec q = deg(u) . Or ceci n’est pas toujours

vrai ; par exemple, c’est faux si M est acyclique et H (A) ~ / .

Toutefois, si l’augmentation de A définit un isomorphisme ~:’ " ’’B~

~P~ est compatible avec d (Voir proposition 1 , ci-dessous, paragraphe

1).

La démonstration de l 1 Exposé 3 ~ ainsi modifiée, ne prouve donc le

théorème 2 de l’Exposé 2 que dans le cas où ~H~(A’) ~ A .

Cependant le théorème est vrai sans restriction. En effet, grâce à la

remarque qui suit l’énoncé du théorème 2 (Exposé 2 , page 2-09) ~ on est

ramené à le prouver dans le cas où M est la bar-construction J~(A) ~

et M’ est la bar-construction (h (A’) ~ l’homomorphisme A -~A’ définis-

sant un isomorphisme H(A)~H(A’) . Or on sait que, dans ce cas, et à

condition do supposer A/A et A’//B libres, H(~(A))-~H(~~(A’)) est

un isomorphisme (cf. Eilenberg-MacLane, Ann. of Math. 58, 1953, p. 55-106 ;

voir p. 84, th. 13.1~ dont la démonstration vaut même si A et A’ ne

sont pas anticommutatives).


