Sur le programme de Kac concernant les limites de champ moyen
Séminaire Équations aux dérivées partielles (Polytechnique) (2009-2010), Talk no. 33, 19 p.

Dans ces notes nous exposons quelques résultats mathématiques classiques et nouveaux concernant les “limites de champ moyen" en théorie cinétique des gaz établis dans [17, 16, 15, 10]. Rappelons qu’établir une “limite de champ moyen" consiste à obtenir un modèle sur la densité statistique de particules en partant d’une famille de modèles décrivant un système composé de N particules et en passant à la limite lorsque N tend vers l’infini.

@article{SEDP_2009-2010____A33_0,
     author = {Mischler, St\'ephane},
     title = {Sur le programme de Kac concernant les limites de champ moyen},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2009-2010},
     note = {talk:33},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2009-2010____A33_0}
}
Mischler, Stéphane. Sur le programme de Kac concernant les limites de champ moyen. Séminaire Équations aux dérivées partielles (Polytechnique) (2009-2010), Talk no. 33, 19 p. http://www.numdam.org/item/SEDP_2009-2010____A33_0/

[1] Arkeryd, L., Caprino, S., and Ianiro, N. The homogeneous Boltzmann hierarchy and statistical solutions to the homogeneous Boltzmann equation. J. Statist. Phys. 63, 1-2 (1991), 345–361. | MR 1115588

[2] Braun, W., and Hepp, K. The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Comm. Math. Phys. 56, 2 (1977), 101–113. | MR 475547 | Zbl 1155.81383

[3] Carlen, E. A., Carvalho, M. C., Le Roux, J., Loss, M., and Villani, C. Entropy and chaos in the Kac model. Kinet. Relat. Models 3, 1 (2010), 85–122. | MR 2580955 | Zbl 1186.76675

[4] Carlen, E. A., Carvalho, M. C., and Loss, M. Determination of the spectral gap for Kac’s master equation and related stochastic evolution. Acta Math. 191, 1 (2003), 1–54. | MR 2020418 | Zbl 1080.60091

[5] Carlen, E. A., Gabetta, E., and Toscani, G. Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Comm. Math. Phys. 199, 3 (1999), 521–546. | MR 1669689 | Zbl 0927.76088

[6] Dobrušin, R. L. Vlasov equations. Funktsional. Anal. i Prilozhen. 13, 2 (1979), 48–58, 96. | MR 541637 | Zbl 0422.35068

[7] Graham, C., and Méléard, S. Stochastic particle approximations for generalized Boltzmann models and convergence estimates. The Annals of Probability 25 (1997), 115–132. | MR 1428502 | Zbl 0873.60076

[8] Grünbaum, F. A. Propagation of chaos for the Boltzmann equation. Arch. Rational Mech. Anal. 42 (1971), 323–345. | MR 334788 | Zbl 0236.45011

[9] Hauray, M., and Jabin, P.-E. N-particles approximation of the Vlasov equations with singular potential. Arch. Ration. Mech. Anal. 183, 3 (2007), 489–524. | Zbl 1107.76066

[10] Hauray, M., Mischler, S., and Mouhot, C. Weak and strong notions of chaos. en préparation.

[11] Hewitt, E., and Savage, L. J. Symmetric measures on Cartesian products. Trans. Amer. Math. Soc. 80 (1955), 470–501. | Zbl 0066.29604

[12] Kac, M. Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III (Berkeley and Los Angeles, 1956), University of California Press, pp. 171–197. | Zbl 0072.42802

[13] McKean, H. P. Fluctuations in the kinetic theory of gases. Comm. Pure Appl. Math. 28, 4 (1975), 435–455.

[14] McKean, Jr., H. P. An exponential formula for solving Boltmann’s equation for a Maxwellian gas. J. Combinatorial Theory 2 (1967), 358–382. | Zbl 0152.46501

[15] Mischler, S. Introduction aux limites de champ moyen pour des systèmes de particules. cours en ligne C.E.L. http ://cel.archives-ouvertes.fr/cel-00576329/fr/.

[16] Mischler, S., and Mouhot. An inverse solution to kac’s program in mean-field theory. hal-00447988.

[17] Mischler, S., Mouhot, C., and Wennberg, B. A new approach to quantitative chaos propagation for drift, diffusion and jump processes. http ://hal.archives-ouvertes.fr/ccsd-00559132.

[18] Neunzert, H., and Wick, J. Theoretische und numerische Ergebnisse zur nichtlinearen Vlasov-Gleichung. In Numerische Lösung nichtlinearer partieller Differential- und Integrodifferentialgleichungen (Tagung, Math. Forschungsinst., Oberwolfach, 1971). Springer, Berlin, 1972, pp. 159–185. Lecture Notes in Math., Vol. 267. | Zbl 0243.65070

[19] Otto, F., and Villani, C. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 2 (2000), 361–400. | Zbl 0985.58019

[20] Peyre, R. Some ideas about quantitative convergence of collision models to their mean field limit. J. Stat. Phys. 136, 6 (2009), 1105–1130. | MR 2550398 | Zbl 1180.82151

[21] Sznitman, A.-S. Équations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebiete 66, 4 (1984), 559–592. | MR 753814 | Zbl 0553.60069

[22] Sznitman, A.-S. Topics in propagation of chaos. In École d’Été de Probabilités de Saint-Flour XIX—1989, vol. 1464 of Lecture Notes in Math. Springer, Berlin, 1991, pp. 165–251. | MR 1108185 | Zbl 0732.60114

[23] Tanaka, H. Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete 46, 1 (1978/79), 67–105. | MR 512334 | Zbl 0389.60079

[24] Villani, C. Fisher information estimates for Boltzmann’s collision operator. J. Math. Pures Appl. (9) 77, 8 (1998), 821–837. | MR 1646804 | Zbl 0918.60093

[25] Villani, C. Cercignani’s conjecture is sometimes true and always almost true. Comm. Math. Phys. 234, 3 (2003), 455–490. | MR 1964379 | Zbl 1041.82018

[26] Villani, C. Optimal transport, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. Old and new. | MR 2459454 | Zbl 1156.53003