Une approche alternative de l’évolution adiabatique des résonances de forme 1D .
Séminaire Équations aux dérivées partielles (Polytechnique) (2009-2010), Talk no. 13, 9 p.
@article{SEDP_2009-2010____A13_0,
     author = {Nier, Francis},
     title = {Une approche alternative de l'\'evolution adiabatique des r\'esonances de forme 1D~.},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2009-2010},
     note = {talk:13},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2009-2010____A13_0}
}
Nier, Francis. Une approche alternative de l’évolution adiabatique des résonances de forme 1D .. Séminaire Équations aux dérivées partielles (Polytechnique) (2009-2010), Talk no. 13, 9 p. http://www.numdam.org/item/SEDP_2009-2010____A13_0/

[1] S. Albeverio et K. Pankrashkin. A remark on Krein’s resolvent formula and boundary conditions. J. Phys. A, 38(22) :4859–4864, 2005. | MR 2148628 | Zbl 1071.47003

[2] W.K. Abou Salem et J. Fröhlich. Adiabatic theorems for quantum resonances. Comm. Math. Phys., 273(3) :651–675, 2007. | MR 2318861 | Zbl 1153.81010

[3] J. Aguilar et J. M. Combes. A class of analytic perturbations for one-body Schrödinger Hamiltonians. Comm. Math. Phys., 22 :269–279, 1971. | MR 345551 | Zbl 0219.47011

[4] J. E. Avron, R. Seiler et L. G. Yaffe. Adiabatic theorems and applications to the quantum Hall effect. Comm. Math. Phys., 110(1) :33–49, 1987. | MR 885569 | Zbl 0626.58033

[5] E. Balslev et J. M. Combes. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions. Comm. Math. Phys., 22 :280–294, 1971. | MR 345552 | Zbl 0219.47005

[6] N. Ben Abdallah, P. Degond, and P.A. Markowich. On a one-dimensional Schrödinger-Poisson scattering model. Z. Angew. Math. Phys. | Zbl 0885.34067

[7] N. Ben Abdallah. On a multidimensional Schrödinger-Poisson scattering model for semiconductors. J. Math. Phys., 41(7) :4241–4261, 2000. | MR 1765586 | Zbl 0977.82052

[8] V. Bonnaillie-Noël, A. Faraj et F. Nier. Simulation of resonant tunneling heterostructures : numerical comparison of a complete Schrödinger-Poisson system and a reduced nonlinear model. J. Comput. Elec., 8(1) :11–18, 2009.

[9] V. Bonnaillie-Noël, F. Nier et Y. Patel. Computing the steady states for an asymptotic model of quantum transport in resonant heterostructures. J. Comput. Phys., 219(2) :644–670, 2006. | MR 2274952 | Zbl 1189.82129

[10] V. Bonnaillie-Noël, F. Nier et Y. Patel. Far from equilibrium steady states of 1D-Schrödinger-Poisson systems with quantum wells. I. Ann. Inst. H. Poincaré Anal. Non Linéaire, 25(5) :937–968, 2008. | Numdam | MR 2457818 | Zbl 1149.82349

[11] V. Bonnaillie-Noël, F. Nier et Y. Patel. Far from equilibrium steady states of 1D-Schrödinger-Poisson systems with quantum wells. II. J. Math. Soc. Japan, 61(1) :65–106, 2009. | MR 2272872 | Zbl 1157.82046

[BuLa] M. Büttiker, Y. Imry, R. Landauer et S. Pinhas. Generalized manychannel conductance formula with application to small rings. Phys. Rev. B 31 (1985) pp. 6207–6215.

[13] H. L. Cycon, R. G. Froese, W. Kirsch et B. Simon. Schrödinger operators with application to quantum mechanics and global geometry. Texts and Monographs in Physics. Springer-Verlag, Berlin, study edition, 1987. | MR 883643 | Zbl 0619.47005

[14] A. Faraj, A. Mantile et F. Nier. Adiabatic evolution of 1D shape resonances : an artificial interface conditions approach. Prépublication de l’IRMAR janvier 2010, hal-00448868. | MR 2782724

[15] B. Helffer et J. Sjöstrand. Résonances en limite semi-classique. Number 24-25 in Mém. Soc. Math. France (N.S.). 1986. | Numdam | MR 871788 | Zbl 0631.35075

[16] P. D. Hislop et I. M. Sigal. Semiclassical theory of shape resonances in quantum mechanics, volume 78(399) of Mem. Amer. Math. Soc. 1989. | MR 989524 | Zbl 0704.35115

[17] G. Jona-Lasinio, C. Presilla et J. Sjöstrand. On Schrödinger equations with concentrated nonlinearities. Ann. Physics, 240(1) :1–21, 1995. | MR 1329589 | Zbl 0820.34050

[18] A. Joye et C.E. Pfister. Exponential estimates in adiabatic quantum evolution. In XIIth International Congress of Mathematical Physics (ICMP ’97) (Brisbane), pages 309–315. Int. Press, Cambridge, MA, 1999. | MR 1697294

[19] A. Joye. General adiabatic evolution with a gap condition. Comm. Math. Phys., 275(1) :139–162, 2007. | MR 2335771 | Zbl 1176.47032

[20] T. Kato. Perturbation theory for linear operators. Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag (1976). | MR 407617 | Zbl 0342.47009

[21] M. Klein et J. Rama. Almost exponential decay of quantum resonance states and Paley-Wiener type estimates in Gevrey spaces. preprint, mp-arc 09-64, 2009. | MR 2671569 | Zbl 1208.81092

[22] M. Klein, J. Rama et R. Wüst. Time evolution of quantum resonance states. Asymptot. Anal., 51(1) :1–16, 2007. | MR 2294102 | Zbl 1216.81065

[Lan] R. Landauer. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Develop. 1 (1957) pp. 223–231. | MR 90369

[24] G. Nenciu. Linear adiabatic theory. Exponential estimates. Comm. Math. Phys., 152(3) :479–496, 1993. | MR 1213299 | Zbl 0768.34038

[25] G. Nenciu et G. Rasche. On the adiabatic theorem for nonselfadjoint Hamiltonians. J. Phys. A, 25(21) :5741–5751, 1992. | MR 1192026

[26] F. Nier. The dynamics of some quantum open systems with short-range nonlinearities. Nonlinearity, 11(4) :1127–1172, 1998. | MR 1632618 | Zbl 0909.34052

[27] F. Nier. Accurate WKB approximation for a 1D problem with low regularity. Serdica Math. J., 34(1) :113–126, 2008. | MR 2414416 | Zbl 1199.81023

[28] K. Pankrashkin. Resolvents of self-adjoint extensions with mixed boundary conditions. Rep. Math. Phys., 58(2) :207–221, 2006. | MR 2281536 | Zbl 1143.47017

[29] G. Perelman. Evolution of adiabatically perturbed resonant states. Asymptot. Anal., 22(3-4) :177–203, 2000. | MR 1753764 | Zbl 1075.81521

[30] C. Presilla et J. Sjöstrand. Transport properties in resonant tunneling heterostructures. J. Math. Phys., 37(10) :4816–4844, 1996. | MR 1411610 | Zbl 0868.35112

[31] B. Simon. Resonances and complex scaling : a rigorous overview. Int.J. Quantum Chem., 14(4) :529–542, 1978.

[32] B. Simon. The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett., 71A(2,3) :211–214, 1979.

[33] J. Sjöstrand. Projecteurs adiabatiques du point de vue pseudodifférentiel. C. R. Acad. Sci. Paris Sér. I Math., 317(2) :217–220, 1993. | MR 1231425 | Zbl 0783.35087

[34] J. Sjöstrand et M. Zworski. Complex scaling and the distribution of scattering poles. J. Amer. Math. Soc., 4(4) :729–769, 1991. | MR 1115789 | Zbl 0752.35046

[35] E. Skibsted. Truncated Gamow functions, α-decay and the exponential law. Comm. Math. Phys., 104(4) :591–604, 1986. | MR 841672 | Zbl 0594.58062

[36] E. Skibsted. Truncated Gamow functions and the exponential decay law. Ann. Inst. H. Poincaré Phys. Théor., 46(2) :131–153, 1987. | Numdam | MR 887144 | Zbl 0618.58029

[37] E. Skibsted. On the evolution of resonance states. J. Math. Anal. Appl., 141(1) :27–48, 1989. | MR 1004582 | Zbl 0688.47006

[38] A. Soffer et M. I. Weinstein. Time dependent resonance theory. Geom. Funct. Anal., 8(6) :1086–1128, 1998. | MR 1664792 | Zbl 0917.35023