Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2007-2008), Exposé no. 17, 5 p.
@article{SEDP_2007-2008____A17_0,
     author = {Nakanishi, Kenji and Takaoka, Hideo and Tsutsumi, Yoshio},
     title = {Unique local existence of solution in low regularity space of the {Cauchy} problem for the {mKdV} equation with periodic boundary condition},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:17},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2007-2008},
     mrnumber = {2532952},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2007-2008____A17_0/}
}
TY  - JOUR
AU  - Nakanishi, Kenji
AU  - Takaoka, Hideo
AU  - Tsutsumi, Yoshio
TI  - Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:17
PY  - 2007-2008
DA  - 2007-2008///
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_2007-2008____A17_0/
UR  - https://www.ams.org/mathscinet-getitem?mr=2532952
LA  - en
ID  - SEDP_2007-2008____A17_0
ER  - 
Nakanishi, Kenji; Takaoka, Hideo; Tsutsumi, Yoshio. Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2007-2008), Exposé no. 17, 5 p. http://www.numdam.org/item/SEDP_2007-2008____A17_0/

[1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, II, Geom. Funct. Anal. 3 (1993), 107–156, 209–262. | MR 1215780 | Zbl 0787.35098

[2] —, Periodic Korteweg de Vries equation with measures as initial data, Sel. Math., New Ser. 3 (1997), 115–159. | MR 1466164 | Zbl 0891.35138

[3] M. Christ, J. Colliander, and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), 1235–1293. | MR 2018661 | Zbl 1048.35101

[4] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Sharp global well-posedness of KdV and modified KdV on the and 𝕋, J. Amer. Math. Soc 16 (2003), 705–749. | MR 1969209 | Zbl 1025.35025

[5] A. Grünrock, An improved local wellposedness result for the modified KdV-equation, Int. Math. Res. Not. 61 (2004), 3287–3308. | MR 2096258 | Zbl 1072.35161

[6] T. Kappeler and P. Topalov, Global well-posedness of mKdV in L 2 (𝕋,), Comm. Partial Differential Equations 30 (2005), 435–449. | MR 2131061 | Zbl 1080.35119

[7] —, Global well-posedness of KdV in H -1 (𝕋,), Duke Math. J. 135 (2006), 327–360. | Zbl 1106.35081

[8] C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), 573–603. | MR 1329387 | Zbl 0848.35114

[9] —, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), 617–633. | MR 1813239 | Zbl 1034.35145

[10] S. Klainerman and M. Machedon, Space time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221–1268. | MR 1231427 | Zbl 0803.35095

[11] H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not. 30 (2005), 1833–1847. | MR 2172940

[12] H. Takaoka and Y. Tsutsumi, Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition, Internat. Math. Res. Notices 56 (2004), 3009–3040. | MR 2097834

[13] T. Tao, Global well-posedness of the Benjamin-Ono equation in H 1 (), J. Hyperbolic Differ. Equ. 1 (2004), 27–49. | MR 2052470 | Zbl 1055.35104