Construction de solutions pour les équations de Korteweg-de Vries généralisées
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2006-2007), Exposé no. 3, 17 p.
@article{SEDP_2006-2007____A3_0,
     author = {C\^ote, Rapha\"el},
     title = {Construction de solutions pour les \'equations de {Korteweg-de} {Vries} g\'en\'eralis\'ees},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:3},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2006-2007},
     mrnumber = {2385190},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2006-2007____A3_0/}
}
TY  - JOUR
AU  - Côte, Raphaël
TI  - Construction de solutions pour les équations de Korteweg-de Vries généralisées
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:3
PY  - 2006-2007
DA  - 2006-2007///
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_2006-2007____A3_0/
UR  - https://www.ams.org/mathscinet-getitem?mr=2385190
LA  - fr
ID  - SEDP_2006-2007____A3_0
ER  - 
Côte, Raphaël. Construction de solutions pour les équations de Korteweg-de Vries généralisées. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2006-2007), Exposé no. 3, 17 p. http://www.numdam.org/item/SEDP_2006-2007____A3_0/

[1] Michael Christ and Michael I. Weinstein, Dispersion of small amplitudes solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal. 100 (1991), 87–109. | MR 1124294 | Zbl 0743.35067

[2] Raphaël Côte, Construction of solutions to the L 2 -critical KdV equation with a given asymptotic behaviour, Duke Math. J., to appear. | MR 2322685 | Zbl 1130.35112

[3] —, Construction of solutions to the subcritical gKdV equations with a given asymptotical behaviour, J. Funct. Anal. (2006), no. 241, 143–211. | MR 2264249 | Zbl 05083466

[4] —, Large data wave operator for the generalized Korteweg-de Vries equations, Differential Integral Equations 19 (2006), no. 2, 163–188. | MR 2194502

[5] Wiktor Eckhaus and Peter Schuur, The emergence of solutions of the Korteweg-de Vries equation form arbitrary initial conditions, Math. Methods Appl. Sci. 5 (1983), 97–116. | MR 690898 | Zbl 0518.35074

[6] Nakao Hayashi and Pavel I. Naumkin, Large time asymptotics of solutions to the generalized Korteweg-De Vries equation, J. Funct. Anal. 159 (1998), 110–136. | MR 1654178 | Zbl 0915.35093

[7] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and scattering result for the generalized Korteweg-De Vries equation via contraction principle, Comm. Pure Appl. Math. 46 (1993), 527–620. | MR 1211741 | Zbl 0808.35128

[8] —, On the concentration of blow up solutions for the generalized KdV equation critical in L 2 , Nonlinear wave equations (Providence, RI, 1998), Contemp. Math., vol. 263, Amer. Math. Soc., Providence, RI, 2000, pp. 131–156. | MR 1777639 | Zbl 0970.35125

[9] Yvan Martel, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math. 127 (2005), no. 5, 1103–1140. | MR 2170139 | Zbl 1090.35158

[10] Yvan Martel and Frank Merle, A Liouville theorem for the critical generalized Korteweg-de Vries equation, J. Math. Pures Appl. (9) 79 (2000), 339–425. | MR 1753061 | Zbl 0963.37058

[11] —, Asymptotic stability of solitons for subcritical generalized KdV equations., Arch. Ration. Mech. Anal. 157 (2001), no. 3, 219–254. | MR 1826966 | Zbl 0981.35073

[12] —, Blow up in finite time and dynamics of blow up solutions for the L 2 -critical generalized KdV equations, J. Amer. Math. Soc. 15 (2002), 617–664. | MR 1896235 | Zbl 0996.35064

[13] —, Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized kdv equation, Ann. of Math. (2) 1 (2002), 235–280. | MR 1888800 | Zbl 1005.35081

[14] Yvan Martel, Frank Merle, and Tai-Peng Tsai, Stability and asymptotic stability in the energy space of the sum of n solitons for subcritical gKdV equations, Comm. Math. Phys. 231 (2002), 347–373. | MR 1946336 | Zbl 1017.35098

[15] Frank Merle, Existence of blow-up solutions in the energy space for the critical generalized Korteweg-de Vries equation, J. Amer. Math. Soc. 14 (2001), 555–578. | MR 1824989 | Zbl 0970.35128

[16] Robert M. Miura, The Korteweg-de Vries equation : a survey of results, SIAM Rev. 18 (1976), 412–459. | MR 404890 | Zbl 0333.35021

[17] Gustavo Ponce and Luis Vega, Nonlinear small data scattering for the generalized Korteweg-de Vries equation, J. Funct. Anal. 90 (1990), 445–457. | MR 1052343 | Zbl 0771.35062

[18] Mohammed A. Rammaha, On the asymptotic behavior of solutions of generalized Korteweg-de Vries equation, J. Math. Anal. Appl. 140 (1989), no. 1, 228–240. | MR 997853 | Zbl 0686.35018

[19] Peter Cornelis Schuur, Asymptotic analysis of soliton problems, Lecture Notes in Mathematics, vol. 1232, Springer-Verlag, Berlin, 1986, An inverse scattering approach. | MR 874343 | Zbl 0643.35003

[20] Walter A. Strauss, Dispersion of low-energy waves for two conservative equations, Arch. Ration. Mech. Anal. 55 (1974), 86–92. | MR 352743 | Zbl 0289.35048