Decay of a linear scalar field on Schwarzschild space-time
Séminaire Équations aux dérivées partielles (Polytechnique) (2005-2006), Talk no. 11, 13 p.
@article{SEDP_2005-2006____A11_0,
     author = {Rodnianski, Igor},
     title = {Decay of a linear scalar field on Schwarzschild space-time},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2005-2006},
     note = {talk:11},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2005-2006____A11_0}
}
Rodnianski, Igor. Decay of a linear scalar field on Schwarzschild space-time. Séminaire Équations aux dérivées partielles (Polytechnique) (2005-2006), Talk no. 11, 13 p. http://www.numdam.org/item/SEDP_2005-2006____A11_0/

[1] P. Blue and J. Sterbenz Uniform decay of local energy and the semi-linear wave equation on Schwarzchild space, preprint | MR 2259204

[2] D. Christodoulou The instability of naked singularities in the gravitational collapse of a scalar field, Ann. Math. 140 (1999), 183–217 | MR 1680551 | Zbl 01278978

[3] D. Christodoulou and S. Klainerman The global nonlinear stability of the Minkowski space Princeton University Press, 1993 | MR 1316662 | Zbl 0827.53055

[4] M. Dafermos The interior of charged black holes and the problem of uniqueness in general relativity Comm. Pure Appl. Math. 58 (2005), 0445–0504 | MR 2119866 | Zbl 1071.83037

[5] M. Dafermos and I. Rodnianski A proof of Price’s law for the collapse of a self-gravitating scalar field Invent. Math. 162 (2005), 381–457 | Zbl 1088.83008

[6] M. Dafermos and I. Rodnianski The red-shift effect and radiation decay on black hole spacetimes, submitted

[7] J. Dimock Scattering for the wave equation on the Schwarzschild Metric, Gen. Rel. Grav. 17 (1985), 353–369 | MR 788801 | Zbl 0618.35088

[8] C. Gundlach, R. H. Price, and J. Pullin Late-time behavior of stellar collapse and explosions. I. Linearized perturbations Phys. Rev. D 49 (1994), 883–889

[9] B. Kay and R. Wald Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation 2-sphere Classical Quantum Gravity 4 (1987), no. 4, 893–898 | MR 895907 | Zbl 0647.53065

[10] H. Lindblad and I. Rodnianski The global stability of the Minkowski space-time in harmonic gauge, to appear in Ann. Math.

[11] S. Klainerman Uniform decay estimates and the Lorentz invariance of the classical wave equations Comm. Pure Appl. Math. 38 (1985), 321-332 | MR 784477 | Zbl 0635.35059

[12] M. Machedon and J. Stalker Decay of solutions to the wave equation on a spherically symmetric background, preprint

[13] C. Morawetz Notes on the decay and scattering for some hyperbolic problems CBMS-NSF Regional Conference Series in Applied Mathematics 19, 1975 | MR 492919 | Zbl 0303.35002

[14] E. Poisson and W. Israel Inner-horizon instability and mass inflation in black holes, Phys. Rev. Lett. 63 (1989), 1663–1666 | MR 1018317

[15] R. Price Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations Phys. Rev. D (3) 5 (1972), 2419-2438 | MR 376103

[16] F. Finster, N. Kamran, J. Smoller, S. T. Yau Decay of solutions of the wave equation in Kerr geometry, preprint | MR 2215614

[17] A. Sá Barreto and M. Zworski Distribution of resonances for spherical black holes, Math. Res. Lett. 4 (1997), 103–121 | MR 1432814 | Zbl 0883.35120

[18] F. Twainy The Time Decay of Solutions to the Scalar Wave Equation in Schwarzschild Background, Thesis, University of California, San Diego, 1989