Alentours de la limite incompressible
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2004-2005), Exposé no. 23, 16 p.

Le résultat principal de cet exposé énonce que le problème de Cauchy pour les équations adimensionnées d’un fluide général est bien posé sur un intervalle de temps indépendant des nombres de Mach, Reynolds et Péclet.

@article{SEDP_2004-2005____A23_0,
     author = {Alazard, Thomas},
     title = {Alentours de la limite incompressible},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:23},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2004-2005},
     mrnumber = {2182067},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2004-2005____A23_0/}
}
TY  - JOUR
AU  - Alazard, Thomas
TI  - Alentours de la limite incompressible
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:23
PY  - 2004-2005
DA  - 2004-2005///
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_2004-2005____A23_0/
UR  - https://www.ams.org/mathscinet-getitem?mr=2182067
LA  - fr
ID  - SEDP_2004-2005____A23_0
ER  - 
Alazard, Thomas. Alentours de la limite incompressible. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2004-2005), Exposé no. 23, 16 p. http://www.numdam.org/item/SEDP_2004-2005____A23_0/

[1] T. Alazard, Incompressible limit of the nonisentropic Euler equations with solid wall boundary conditions, Adv. in Differential Equations 10, 19–44 (2005). | MR 2106119 | Zbl 1101.35050

[2] T. Alazard, Low Mach number limit of the full Navier–Stokes equations, Arch. Ration. Mech. Anal, accepté. | MR 2211706 | Zbl 1108.76061

[3] T. Alazard, Low Mach number limit of the full Navier–Stokes equations II, en cours.

[4] S. Benzoni-Gavage, R. Danchin & S. Descombes, Well-posedness of one-dimensional Korteweg models, prépublication. | Zbl 05142023

[5] D. Bresch & B. Desjardins, Existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. | Zbl 05134243

[6] D. Bresch, B. Desjardins & D. Gerard–Varet, Rotating Fluids in a cylinder, Disc. Cont. Dyn. Sys.- Series A 1, 47–82 (2004). | MR 2073946 | Zbl 02113147

[7] D. Bresch, B. Desjardins, E. Grenier & C.-K. Lin, Low Mach number limit of viscous polytropic flows : formal asymptotics in the periodic case, Stud. Appl. Math. 109, 125–149 (2002). | MR 1917042 | Zbl 01844341

[8] D. Bresch, D. Gerard-Varet & E. Grenier, Derivation of the planetary geostrophic equations, prépublication. | Zbl 1104.76081

[9] C. Cheverry, Propagation of oscillations in real vanishing viscosity limit, Comm. Math. Phys., 247, 655–695 (2004). | MR 2062647 | Zbl 1079.35060

[10] R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions, Amer. J. Math. 124, 1153–1219 (2002). | MR 1939784 | Zbl 1048.35075

[11] R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Sci. École Norm. Sup. 35, 27–75 (2002). | Numdam | MR 1886005 | Zbl 1048.35054

[12] R. Danchin, Global existence in critical spaces for flows of compressible viscous and heat-conductive gases, Arch. Ration. Mech. Anal., 160, 1–39 (2001). | MR 1864120 | Zbl 1018.76037

[13] R. Danchin, Low Mach number limit for viscous compressible flows, M2AN Math. Model. Numer. Anal. specail issue ol. 39 No. 3 (May-June 2005). | Numdam | MR 2157145 | Zbl 1080.35067

[14] B. Desjardins & E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455, 2271–2279 (1999). | MR 1702718 | Zbl 0934.76080

[15] B. Desjardins, E. Grenier, P.-L. Lions & N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl. 78, 461–471 (1999). | MR 1697038 | Zbl 0992.35067

[16] A. Dutrifoy & T. Hmidi, The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data, Comm. Pure Appl. Math., 57 1159–1177 (2004). | MR 2059677 | Zbl 1059.35095

[17] I. Gallagher, A remark on smooth solutions of the weakly compressible periodic Navier–Stokes equations, J. Math. Kyoto Univ., 40 525–540 (2000). | MR 1794519 | Zbl 0997.35050

[18] I. Gallagher, Résultats récents sur la limite incompressible, Séminaire Bourbaki 2003–2004, num. 926. | Numdam | MR 2167201 | Zbl 02213913

[19] I. Gallagher & L. Saint-Raymond, On pressureless gases driven by a strong inhomogeneous magnetic field, SIAM Journal for Mathematical Analysis, accepté. | Zbl 02206069

[20] E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl. 76, 477–498 (1997). | MR 1465607 | Zbl 0885.35090

[21] H. Isozaki, Singular limits for the compressible Euler equation in an exterior domain, J. Reine Angew. Math. 381, 1–36 (1987). | MR 918838 | Zbl 0618.76073

[22] H. Isozaki, Wave operators and the incompressible limit of the compressible Euler equation Comm. Math. Phys., 110, 519–524 (1987). | MR 891951 | Zbl 0627.76081

[23] S. Kawashima & Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J. 40 449–464 (1988). | MR 957056 | Zbl 0699.35171

[24] S. Klainerman & A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math. 34, 481–524 (1981). | MR 615627 | Zbl 0476.76068

[25] S. Klainerman & A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math. 35, 629–651 (1982). | MR 668409 | Zbl 0478.76091

[26] P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1, Incompressible models, Oxford Science Publications (1996). | MR 1422251 | Zbl 0866.76002

[27] P.-L. Lions & N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. (9) 77, 585–627 (1998). | MR 1628173 | Zbl 0909.35101

[28] P.-L. Lions & N. Masmoudi, Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris Sér. I Math. 329, 387–392 (1999). | MR 1710123 | Zbl 0937.35132

[29] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences 53, Springer-Verlag (1984). | MR 748308 | Zbl 0537.76001

[30] M. Majdoub & M. Paicu, Uniform local existence for inhomogenous rotating fluid equations, prépublication.

[31] G. Métivier & S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal. 158, 61–90 (2001). | MR 1834114 | Zbl 0974.76072

[32] G. Métivier & S. Schochet, Limite incompressible des équations d’Euler non isentropiques, Séminaire : Équations aux Dérivées Partielles 2000–2001. | Numdam | Zbl 1061.76074

[33] G. Métivier & S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations, J. Differential Equations 187, 106–183 (2003). | MR 1946548 | Zbl 1029.34035

[34] S. Schochet, The compressible Euler equations in a bounded domain : existence of solutions and the incompressible limit, Comm. Math. Phys. 104, 49–75 (1986). | MR 834481 | Zbl 0612.76082

[35] S. Schochet, Fast singular limits of hyperbolic PDE’s, J. Differential Equations 114, 476–512 (1994). | Zbl 0838.35071

[36] S. Schochet, The mathematical theory of low Mach numbers flows, M2AN Math. Model. Numer. Anal. specail issue ol. 39 No. 3 (May-June 2005). | Numdam | MR 2157144 | Zbl 1094.35094

[37] P. Secchi, On slightly compressible ideal flow in the half-plane, Arch. Ration. Mech. Anal., 161, 231–255 (2002). | MR 1894592 | Zbl 1026.76040