Asymptotics for Bergman kernels for high powers of complex line bundles, based on joint works with B. Berndtsson and R. Berman
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2004-2005), Exposé no. 22, 8 p.

Nous discutons l’asymptotique des noyaux de Bergman pour des puissances élevées de fibrés de droites, d’après deux travaux récents avec B.Berndtsson et R. Berman.

Classification : 32L05,  35S30
Mots clés : complex, line, bundle
@article{SEDP_2004-2005____A22_0,
     author = {Sj\"ostrand, Johannes},
     title = {Asymptotics for {Bergman} kernels for high powers of complex line bundles, based on joint works with {B.~Berndtsson} and {R.~Berman}},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:22},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2004-2005},
     mrnumber = {2182066},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2004-2005____A22_0/}
}
TY  - JOUR
AU  - Sjöstrand, Johannes
TI  - Asymptotics for Bergman kernels for high powers of complex line bundles, based on joint works with B. Berndtsson and R. Berman
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:22
PY  - 2004-2005
DA  - 2004-2005///
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_2004-2005____A22_0/
UR  - https://www.ams.org/mathscinet-getitem?mr=2182066
LA  - en
ID  - SEDP_2004-2005____A22_0
ER  - 
Sjöstrand, Johannes. Asymptotics for Bergman kernels for high powers of complex line bundles, based on joint works with B. Berndtsson and R. Berman. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2004-2005), Exposé no. 22, 8 p. http://www.numdam.org/item/SEDP_2004-2005____A22_0/

[1] B. Berndtsson, R. Berman, J. Sjöstrand, In preparation.

[2] R. Berman, J. Sjöstrand, In preparation.

[3] R. Berman, Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248(2)(2004), 325–344. | MR 2088931 | Zbl 1066.32002

[4] J.M. Bismut, Demailly’s asymptotic Morse inequalities, a heat equation proof, J. Funct. Anal., 72(1987), 263–278. | Zbl 0649.58030

[5] P. Bleher, B. Shiffman, S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142(2)(2000), 351–395. | MR 1794066 | Zbl 0964.60096

[6] T. Bouche, Convergence de la métrique de Fubini Study d’un fibré linéaire positif, Ann. Inst. Fourier, 40(1)(1990), 117-130. | Numdam | Zbl 0685.32015

[7] L. Boutet de Monvel, V. Guillemin, The spectral theory of Toeplitz operators, Annals of Mathematics Studies, 99. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. | MR 620794 | Zbl 0469.47021

[8] L. Boutet de Monvel, J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Astérisque 34-35 (1976), 123–164. | Numdam | MR 590106 | Zbl 0344.32010

[9] D. Catlin, The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997), 1–23, Trends in Math. Birkhäuser, Boston, MA, 1999. | MR 1699887 | Zbl 0941.32002

[10] L. Charles, Berezin-Toeplitz operators, a semi-classical approach, CMP 239(2003),1–28. | MR 1997113 | Zbl 1059.47030

[11] X. Dai, K. Liu, X. Ma, On the asymptotic expansion of Bergman kernel, Preprint and CRAS 339(2004), 193–198. | MR 2078073 | Zbl 1057.58018

[12] M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc Lecture Notes Series 268, Cambridge Univ. Press 1999. | MR 1735654 | Zbl 0926.35002

[13] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26(1974), 1–65. | MR 350069 | Zbl 0289.32012

[14] L. Hörmander, An introduction to complex analysis in several variables, van Nostrand, (1966), 1967. | MR 203075 | Zbl 0138.06203

[15] Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Am. J. Math., 122(2)(2000), 235–273. | MR 1749048 | Zbl 0972.53042

[16] Z. Lu, G. Tian, The log term of Szegö kernel, Duke Math. J. 125(2)(2004), 351-387. | MR 2096677 | Zbl 1072.32014

[17] X. Ma, Marinescu, The spin c Dirac operator on high tensor powers of a line bundle, Math. Z. 240(3)(2002), 651–664. | MR 1924025 | Zbl 1027.58025

[18] A. Melin, J. Sjöstrand, Fourier integral operators with complex valued phase functions, Springer LNM, 459. | MR 431289 | Zbl 0306.42007

[19] A. Melin, J. Sjöstrand, Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, CPDE, 1(4)(1976), 313–400. | MR 455054 | Zbl 0364.35049

[20] A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space, Methods and Appl. of Anal. 9(2)(2002), 177–238. | MR 1957486 | Zbl 1082.35176

[21] A. Menikoff, J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators, Math. Ann. 235(1978), 55–85. | MR 481627 | Zbl 0375.35014

[22] A. Menikoff, J. Sjöstrand, The eigenvalues of hypoelliptic operators III, the non-semibounded case, J. d’Analyse Math. 35(1979), 123–150. | Zbl 0436.35065

[23] W. Ruan, Canonical coordintes and Bergman metrics, Comm. Anal. Geom., 6(1998), 589–631. | MR 1638878 | Zbl 0917.53026

[24] G. Tian, On a set of polarized Kähler metrics, J. Diff. Geom., 32(1990), 99–130. | MR 1064867 | Zbl 0706.53036

[25] R.O. Wells, Differential analysis on complex manifolds, Graduate texts in mathematics 65, Springer 1980 | MR 608414 | Zbl 0435.32004

[26] S. Zelditch, Szegö kernels and a theorem of Tian, IMRN 1998(6), 317–331. | MR 1616718 | Zbl 0922.58082