The stochastic optimal control uses the differential equation of Bellman and its solution - the Bellman function. Recently the Bellman function proved to be an efficient tool for solving some (sometimes old) problems in harmonic analysis.
@article{SEDP_2001-2002____A19_0, author = {Volberg, Alexander}, title = {Bellman approach to some problems in harmonic analysis}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:19}, pages = {1--14}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2001-2002}, language = {en}, url = {http://www.numdam.org/item/SEDP_2001-2002____A19_0/} }
TY - JOUR AU - Volberg, Alexander TI - Bellman approach to some problems in harmonic analysis JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:19 PY - 2001-2002 SP - 1 EP - 14 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_2001-2002____A19_0/ LA - en ID - SEDP_2001-2002____A19_0 ER -
%0 Journal Article %A Volberg, Alexander %T Bellman approach to some problems in harmonic analysis %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:19 %D 2001-2002 %P 1-14 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_2001-2002____A19_0/ %G en %F SEDP_2001-2002____A19_0
Volberg, Alexander. Bellman approach to some problems in harmonic analysis. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2001-2002), Talk no. 19, 14 p. http://www.numdam.org/item/SEDP_2001-2002____A19_0/
[1] St. Buckley, Summation conditions on weights, Mich. Math. J. 40 (1993), 153-170. | MR | Zbl
[2] R. Fefferman, C. Kenig, J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Annals of Math, 134 (1991), 65-124. | MR | Zbl
[3] D.L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Annals of Prob. 12 (1984), 647-702. | MR | Zbl
[4] F. Nazarov, A. Volberg, Heating of the Ahlfors-Beurling operator and estimates of its norms, Preprint. | Zbl
[5] St. Petermichl, A. Volberg, Heating of the Ahlfors-Beurling operator : weakly quasiregular maps on the plane are quasiregular, To appear in Duke Math J. | MR | Zbl
[6] F. Nazarov, S. Treil, A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. of the Amer. Math. Soc., 12 (1999), N4, 909-928. | MR | Zbl
[7] F. Nazarov, S. Treil, The hunt for the Bellman function : applications to estimates of singular integral operators and to other classical problems in harmonic analysis, St Petersburg Math. J., 8 (1997), N5, 32-162. | MR | Zbl
[8] F. Nazarov, S. Treil, A. Volberg, Bellman function in stochastic control and harmonic analysis, in “systems, Approximation, singular Integral operators, and related topics”, ed. A. Borichev, N. Nikolski, OPERATOR THEORY : Advances and applications, v.129, 2001, 393-424, Birkhäuser Verlag. | Zbl
[9] F. Nazarov, A. Volberg, The Bellman function and the imbeddings of the model space , to appear in J. d’Analyse Math.
[10] S. Petermichl, J. Wittwer, A sharp weighted estimates on the norm of Hilbert transform via invariant characteristic of the weight, To appear in Mich. Math. J. | MR