Comportement en temps grand pour les écoulements parfaits incompressibles dans un demi-plan
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2001-2002), Exposé no. 17, 8 p.
@article{SEDP_2001-2002____A17_0,
     author = {Iftimie, D. and Lopes Filho, M.C. and Nussenzveig Lopes, H.J.},
     title = {Comportement en temps grand pour les \'ecoulements parfaits incompressibles dans un demi-plan},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:17},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2001-2002},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2001-2002____A17_0/}
}
TY  - JOUR
AU  - Iftimie, D.
AU  - Lopes Filho, M.C.
AU  - Nussenzveig Lopes, H.J.
TI  - Comportement en temps grand pour les écoulements parfaits incompressibles dans un demi-plan
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:17
PY  - 2001-2002
DA  - 2001-2002///
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_2001-2002____A17_0/
LA  - en
ID  - SEDP_2001-2002____A17_0
ER  - 
Iftimie, D.; Lopes Filho, M.C.; Nussenzveig Lopes, H.J. Comportement en temps grand pour les écoulements parfaits incompressibles dans un demi-plan. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2001-2002), Exposé no. 17, 8 p. http://www.numdam.org/item/SEDP_2001-2002____A17_0/

[1] G. K. Batchelor, An introduction to fluid dynamics, Cambridge Univ. Press, Cambridge, 1967. | MR 1744638 | Zbl 0152.44402

[2] D. Benedetto, E. Caglioti and C. Marchioro, On the motion of a vortex ring with a sharply concentrated vorticity, Math. Methods Appl. Sci. 23 (2000), no. 2, 147–168. | MR 1738349 | Zbl 0956.35109

[3] G. Burton, Steady symmetric vortex pairs and rearrangements Proc. Roy. Soc. Edinburgh Sect. A 108(1988) 269–290. | MR 943803 | Zbl 0658.76016

[4] J.-M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc. 4 (1991), no. 3, 553–586. | MR 1102579 | Zbl 0780.35073

[5] J. Hounie, M. C. Lopes Filho and H. J. Nussenzveig Lopes, Bounds on the dispersion of vorticity in 2D incompressible, inviscid flows with a priori unbounded velocity, SIAM J. Math. Anal. 31 (1999), no. 1, 134–153 (electronic). | MR 1742302 | Zbl 0961.35119

[6] D. Iftimie, Évolution de tourbillon à support compact, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1999), Exp. No. IV, 1999. | Numdam

[7] D. Iftimie, T. C. Sideris and P. Gamblin, On the evolution of compactly supported planar vorticity, Comm. Partial Differential Equations 24 (1999), no. 9-10, 1709–1730. | MR 1708106 | Zbl 0937.35137

[8] D. Iftimie, M. C. Lopes Filho and H. J. Nussenzveig Lopes, Large time behavior for vortex evolution in the half-plane, preprint. | Zbl 1037.76009

[9] Jianfu Yang, Existence and asymptotic behavior in planar vortex theory, Math. Models Meth. in Appl. Sci. 1(1991), 461–475. | MR 1144183 | Zbl 0738.76009

[10] P. Lax, Integrals of nonlinear evolution equations and solitary waves, Comm. Pure Appl. Math. 21(1968), 467–490. | MR 235310 | Zbl 0162.41103

[11] M. C. Lopes Filho and H. J. Nussenzveig Lopes, An extension of Marchioro’s bound on the growth of a vortex patch to flows with L p vorticity, SIAM J. Math. Anal. 29 (1998), no. 3, 596–599. | Zbl 0912.35134

[12] M. C. Lopes Filho, H. J. Nussenzveig Lopes and Zhouping Xin, Existence of vortex sheets with reflection symmetry in two space dimensions, Arch. Ration. Mech. Anal. 158 (2001), no. 3, 235–257. | MR 1842346 | Zbl 1058.35176

[13] C. Marchioro, Bounds on the growth of the support of a vortex patch, Comm. Math. Phys. 164 (1994), no. 3, 507–524. | MR 1291243 | Zbl 0839.76010

[14] C. Marchioro, On the growth of the vorticity support for an incompressible non-viscous fluid in a two-dimensional exterior domain, Math. Methods Appl. Sci. 19 (1996), no. 1, 53–62. | MR 1365263 | Zbl 0845.35089

[15] C. Marchioro, On the inviscid limit for a fluid with a concentrated vorticity, Comm. Math. Phys. 196 (1998), no. 1, 53–65. | MR 1643505 | Zbl 0911.35086

[16] C. Marchioro, Large smoke rings with concentrated vorticity, J. Math. Phys. 40 (1999), no. 2, 869–883. | MR 1674263 | Zbl 0969.76014

[17] C. Maffei and C. Marchioro, A confinement result for axisymmetric fluids, Rend. Sem. Mat. Univ. Padova 105 (2001), 125–137. | Numdam | MR 1834985 | Zbl 02216885

[18] J. Norbury, Steady planar vortex pairs in an ideal fluid, Comm. Pure and Appl. Math. 28(1975), 679–700. | MR 399645 | Zbl 0338.76015

[19] Ph. Serfati, Borne en temps des caractéristiques de l’équation d’Euler 2D à tourbillon positif et localisation pour le modèle point-vortex, preprint, 1998.