@article{SEDP_1998-1999____A6_0, author = {Nicolas, Jean-Philippe}, title = {Champs de spin $\mathbf{3/2}$ et relativit\'e g\'en\'erale}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:6}, pages = {1--14}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1998-1999}, zbl = {1057.83518}, mrnumber = {1721324}, language = {fr}, url = {http://www.numdam.org/item/SEDP_1998-1999____A6_0/} }
TY - JOUR AU - Nicolas, Jean-Philippe TI - Champs de spin $\mathbf{3/2}$ et relativité générale JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:6 PY - 1998-1999 SP - 1 EP - 14 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/item/SEDP_1998-1999____A6_0/ LA - fr ID - SEDP_1998-1999____A6_0 ER -
%0 Journal Article %A Nicolas, Jean-Philippe %T Champs de spin $\mathbf{3/2}$ et relativité générale %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:6 %D 1998-1999 %P 1-14 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/item/SEDP_1998-1999____A6_0/ %G fr %F SEDP_1998-1999____A6_0
Nicolas, Jean-Philippe. Champs de spin $\mathbf{3/2}$ et relativité générale. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1998-1999), Talk no. 6, 14 p. http://www.numdam.org/item/SEDP_1998-1999____A6_0/
[1] H.A. Buchdahl, (1958) On the compatibility of relativistic wave equations for particles of higher spin in the presence of a gravitational field, Nuovo Cim. 10, pp. 96-103. | MR | Zbl
[2] F. Cagnac, Y. Choquet-Bruhat, N. Noutchegueme, (1987) Solutions of the Einstein equations with data at past infinity, 7th Italian conference on general relativity and gravitational physics (Rapallo, 1986), 35–54, World Sci. Publishing, Singapore. | MR
[3] Y. Choquet-Bruhat, (1985), Causalité des théories de supergravité, Société Mathématique de France, Astérisque, Hors Série, p. 79-93. | Numdam | MR | Zbl
[4] Y. Choquet-Bruhat, D. Christodoulou, (1981) Elliptic problems in spaces on manifolds which are euclidian at infinity, Acta Math., 146, pp. 129-150. | MR | Zbl
[5] Y. Choquet-Bruhat, D. Christodoulou, M. Francaviglia, (1979) On the wave equation in curved spacetime, Ann. Inst. henri Poincaré, 31, 4, p. 399-414. | Numdam | MR | Zbl
[6] D. Christodoulou, S. Klainerman, (1993) The global nonlinear stability of the Minkowski space, Princeton Mathematical series 41, Princeton University Press. | MR | Zbl
[7] P.T. Chruściel, (1993) On completeness of orbits of Killing vector fields, Classical Quantum Gravity 10, No.10, 2091-2101. | MR | Zbl
[8] P.A.M. Dirac, (1928) The quantum theory of the electron, Proc. Roy. Soc., Part I : A117, p. 610-624, Part II : A118, p. 351-361.
[9] P.A.M. Dirac, (1936) Relativistic wave equations, Proc. Roy. Soc. A155, pp. 447-449. | Zbl
[10] M. Fierz and W. Pauli, (1939) On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. A173, pp. 211-232. | MR | Zbl
[11] R.P. Geroch, (1968) Spinor structure of space-times in general relativity, Part I : J. Math. Phys. 9, Part II : J. Math. Phys. 11. | Zbl
[12] R.P. Geroch, (1970) The domain of dependence, J. Math. Phys., 11, pp. 437-439. | MR | Zbl
[13] T. Kato, (1970) Linear equations of “hyperbolic” type, Part I : J. Fac. Sc. Univ. Tokyo, 17, p. 241-258, Part II : J. Math. Soc. Japan, 25, p. 648-666. | Zbl
[14] T. Kato, (1975) The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58, p. 181-205. | MR | Zbl
[15] L.J. Mason, J.-P. Nicolas, Global results for the Rarita-Schwinger equations and Einstein vacuum equations, à paraître dans Proc. London Math. Soc. | Zbl
[16] L.J. Mason and R. Penrose, (1994) Spin fields and local twistors, Twistor Newsletter 37, p. 1-6.
[17] J.-P. Nicolas, (1997) Global exterior Cauchy problem for spin 3/2 zero rest-mass fields in the Schwarzchild space-time, Commun. in PDE, 22, 3&4, 465-502. | MR | Zbl
[18] T. Parker, C.H. Taubes, (1982) On Witten’s proof of the positive energy theorem, Comm. Math. Phys., 84, 223-238. | Zbl
[19] R. Penrose, (1965) Zero rest-mass fields including gravitation : asymptotic behavior, Proc. Roy. Soc. A284, pp. 159-203. | MR | Zbl
[20] R. Penrose, (1991) Twistors as spin charges, Gravitation and modern cosmology, Eds. A. Zichichi, N. de Sabbata and N. Sánchez, Plenum Press, New York, pp. 129-137. | MR
[21] R. Penrose, W. Rindler, (1984 & 1986) Spinors and space-time, Vol. I & II, Cambridge monographs on mathematical physics, Cambridge University Press. | Zbl
[22] W. Rarita and J. Schwinger, (1941) On a theory of particles with half-integer spin, Phys. Rev. 60, pp. 61. | Zbl
[23] A. Sen, (1982) Quantum Theory of Spin Field in Einstein Spaces, Internat. J. Theoretical Physics, 21, 1, 1-35. | MR
[24] E. Witten, (1981) A new proof of the positive energy theorem, Commun. Math. Physics 80, 381-402. | MR | Zbl