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I Introduction

Nous allons décrire dans cet exposé des résultats obtenus en collaboration avec
[zabella Laba sur les sytemes a N-corps en présence d’'un champ magnétique constant
en dimension d’espace 3. Un tel systeme est décrit par le hamiltonien suivant :

N
1
(1) Hp = Z %(D, — q,'K:SC,')z + Z I/,'j(;l?i — l‘j)
1

1<j

agissant sur Pespace L2(R3Y). Ici ¢; et m; sont la charge et la masse de la particule
1 et la matrice K est égale a :

de telle sorte que Kz soit le potentiel vecteur du champ magnétique constant B =
(0,0,b). Le potentiel v;; représente l'interaction entre les particules ¢ et j.

Le probléme auquel nous nous intéressons est celui de la théorie de la diffusion,
c’est & dire de la classification des comportements asymptotiques de e~ "By v €
L*(R3N), pour ¢ tendant vers oo.

IT Le pseudomoment

Il est bien connu que les trajectoires d’une particule libre en présence d’un champ
magnétique sont tres différentes de celles observées sans champ magnétique. Cette
différence se reflete aussi dans les propriétés des constantes du mouvement, c’est a
dire des observables qui commutent avec Hp.

Soit Hy = 7—(D — Kz)? le hamiltonien d’une particule libre dans le champ

magnétique B. Hy commute avec le pseudomoment
K:=D+Kz,
qui est le générateur infinitésimal des translations magnétiques :
ei(K’$,>u(x) = e(lcx’z,)u(w +2z').

L’algebre engendrée par K est tres simple mais différente de celle engendrée par le
moment D. En effet, on a :

(K,z'),i{(K,z")] = —-2(z',Kz") .
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Nous allons maintenant généraliser cela au cas du hamiltonien H décrit dans (1).
Pour ce faire, il est agréable de se placer dans un cadre un peu plus abstrait, celui
des hamiltoniens d’Agmon.

On considére donc un espace euclidien X, muni d’une application linéaire :
A: X — X', antisymétrique :

(z,Az') = —(a', Az),z,2' € X .

De manieére équivalente on peut considérer A comme une forme bilinéaire antisymé-
trique. On pose :

Hy = %(D _ Az)? .

On fixe d’autre part la structure des potentiels, c’est a dire une famille finie {X, },ea
de sous espaces vectoriels de X, fermée pour 'intersection, et contenant X. On munit
A d’une structure de semi treillis en posant : a < bsi Xy C X,;. On a donc

XaVb = Xa N Xb .
On note X,_,, le plus petit élément de {X,}, égal & X et X, . le plus grand, égal
é; QA Xa.

Enfin on pose :

X=X,
et pour chaque a € A, a # amax on fixe un potentiel
v X* >R

telle que ’ lilm ve(z®) = 0.

Un hamiltonien d’Agmon magnétique est alors donné par :

H = %(D — Az)? + Z ve(z*) = Ho + v(z) .
a€A

Cet opérateur représente le hamiltonien complet décrivant N particules en interac-
tion. Pour chaque a € A, on définit :

1
H, := §(D — Az)? + gvb(xb)

1 e
= 5(D - Az)® +V(z"),
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Vi) =) ('),

b<a
et

L(z) =) w(a") =V(z) - V(") .
bLa

Remarquons que pour a = Gpmax, Hy = H.

Il reste maintenant & décrire le lien entre la forme bilinéaire A et la structure des
plans X,. On pose Z = ker A et on suppose que si 7z est la projection orthogonale
sur Z, m, la projection orthogonale sur X, on a :

[7Ta,7rz] =0 3aeA .

On pose aussi :

Y =2+,
Z.=72NX,,Y,=YNX,,Z°=ZnX4Y*=YNnX*.
On remarque que Xy = Z, @ Y,, X* =2 Y°.

Comme le potentiel V* ne dépend pas de z,, I’hamiltonien H, commute avec le
pseudomoment externe K,, défini par :

K, :=(D+ Az), .

On a:
(2" K,),i(z", Ka)] = =2(z', Az"), 2, 2" € X,,

ce qui montre que 'algebre engendrée par K, est décrite par la restriction de A a
Xa X Xa, que 'on note par A, 4.

A ce stade, il est peut étre utile de décrire ces objets dans le cas de notre probléme
de départ donné par Hp.

L’espace euclidien X est égal & R*" muni de la forme quadratique Eiv 2m;x?.
La forme bilinéaire A est donnée par :

A(zy, - zn) = (@1Kz1,---gnKapn) -

L’ensemble d’indices A est donné par I’ensemble des partitions de {1,--- N} avec sa
relation d’ordre naturelle.

Pour a € A, ’espace X, est défini par :
Xe={reX|lzi=2; si (ij)€a},
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ou on écrit (ij) € a si ¢ et j appartiennent & un méme élément de a et

Xa:{x€X| Zmi:pi:o,}
1€C;

pour a = {Cy,---Ci}.
L’espace Z est :
J = {(.’L‘l,..-$N)|y,' :0,@ = 1’,N}

et :
Y = {(:I:l,-.-’;];N)lZ,‘:0’2':]_7...’]\]'}

ou on note z = (y, z).

Soit @ = {C},---,Cx} € A. On peut identifier de facon naturelle X, a R3*
en introduisant le centre de masse de chaque amas C;. Par cette identification la
matrice de A,, s’écrit comme :

qc, K 0

0 q9c K

QC,-:ZQ]'~

JEC;

On voit donc que les propriétés de K, dépendent des charges des amas de a.

Dans le cadre général on pose :

Y':={z €Y, | Awr =0},
Yac:zYa”J'.

La forme bilinéaire A,, restreinte a Y est donc non dégénérée.

Si on note K, K¢ les projections de K, sur Y,*, Y.¢ on peut donc trouver (voir
[GL1]) une application linéaire symplectique y, de

T*"X =T'X*Q@T*Z, @T*Y] @ T*Y;

dans :

T*X*Q@T*Z, QT*Y" Q T*YS @ T*Y¢
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qui envoie (z,£) sur (Z,€) avec :

ME(a + (A2)a) =: (55,72,

ME(Na + A®2® — Agaza) =: (5,78,
72 (Mo + (A2)a) =t 0},

T (Ya) =yl

Zg =: z; ,
Ca =: C,;

!
é-a _Aaa:Ba = ga :
2% =: wa'

En quantifiant x, par une transformation unitaire U, de L?(X) dans L*(X* ® Z, ®
YPoYiYF),ona:

Uy2®U; = z°,
U,DU? = D" — A%,
UaKaU; = (Dza,Dygaﬂany;‘)

Si on pose H, = U,H,U},ona:
T 1 2 ~c 1 a_ a\2 1 a aa a2 a/_.a
H, =D, + Ra(a, Dyg) + 5(Dyp — 245y%)" + 5(D* — A™2")" + V(%) .

On voit que H, commute avec Dyn, 75, Dye, ce qui correspond au fait que H, com-
mute avec I, .

III Séparation du centre de masse et états de diffusion

Les transformations unitaires U, peuvent étre utilisées dans différents buts : tout
d’abord on peut s’intéresser au probleme de la réalisation autoadjointe de H. Une
application facile de I'inégalité de Kato fournit le résultat suivant :

Théoréme 1.

Supposons que pour tout a € A, v® soit —A® borné avec borne relative 0. Alors
H est autoadjoint avec domaine :

D(H) = H3(X) :={u € L*(X) | (D — Az)*u € L*(X)} .

On peut aussi utiliser U, pour a = apax pour discuter le probleme de la séparation
du centre de masse en présence d’un champ magnétique. Rappelons que si ¢ = apax
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la matrice de A restreinte a X, . est égale a ¢k, ou ¢ = Zi\’ g; est la charge totale
du systéeme. On distingue donc deux cas :

Sig=0,onaY; ={0} etséparer le mouvement du centre de masse revient
a fixer une valeur de Dy» et a considérer le hamiltonien :
max

1 D2 — 2Aamax xamax

k Z(Ln 2
H( amax) 2 2@ max + 2( Qmax A max )

1
+§(Damax — Aamaxamaxzamax )2 _I_ Vamax (xamax).

agissant sur :

LA(X%mex x Z, ).

Sig#0, Y ax —A{O}, et séparer le mouvement du centre de masse revient a fixer
un vecteur de L*(Y,; ) et & considérer

Hama.x

Dzamax + Ramax(yamax) D~c )

yamax

N~

1
_|__2_(Dama.x _ Aamax;amaxxamax )2 + Vamax(xamax ),

agissant sur :

L3 (X0mx x Z, xYE ).

A max Amax

Il n’est pas commode pour la théorie de la diffusion de séparer le mouvement de
centre de masse. La raison en est que les différentes transformations U, sont “in-
compatibles”, au sens qu’il n’y a pas d’identification naturelle entre leurs espaces
images.

Il est plus simple de définir directement états liés et états de diffusion. Com-
mencons par le cas neutre ou ¢ = 0.

Définition 1

Supposons que ¢ = 0. On définit l’espace des états liés :

(&)
Hya = U?_ / Hyp(Ham (K2 ))dRD
Yn'

et l’espace des états de diffusion :

@
Hscatt = H(#j =U;

@ max

He Haps (k) KL, -

n!
2max
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Définition 2

Supposons que ¢ # 0. On définit l'espace des états liés :

Hpa :=U, (pr(ﬁamax ))7

A max

et l’espace des états de diffusion :

Hscatt = H(f}; =U; (Hc(ﬁamax)) :

A max

On peut donner des propriétés “a la Ruelle” des vecteurs de Hpq (voir [GL1]). Si
q # 0 ces propriétés montrent qu’un état de Hpq décrit un amas borné de particules
se déplagant uniquement dans la direction du champ magnétique. Au contraire si
g = 0, un état de Hpq décrit encore un amas borné de particules, mais qui peut
maintenant se déplacer transversalement au champ magnétique.

IV Etats de diffusion, opérateurs d’onde et vitesse asymptotique

Le but de la théorie du scattering est bien stir de décrire les évolutions des états
de Hscats- Un premier résultat important est I’existence de la vitesse asymptotique
dans la direction du champ, qui fournit une premiére classification de Hgcqyt-

On suppose que les interactions v® vérifient :
v(z?) = vg(e®) +vg(2?),
(H1) 1(1 =A%) g (2*) 1z >Ry || € L (dR),
(1 = A*) Vi (e*)1(jze>ry || € L'(dR) .

Alors on a le théoréeme suivant :

Théoréeme 2.

Pour tout f € Coo(Z%m>x), la limite forte :
(2) g — limt_>+ooeitHf(Z?max )e—itH

existe. Il eziste une famille (*™t d’opérateurs qui commutent telle que (2) soit
égale a f((*maxT),

C“;ax s’appelle la vitesse asymptotique le long de Z%m=x,

L’opérateur (*m=x* fournit (par sa décomposition spectrale), une premiére clas-
sification des états par leur comportement asymptotique. Dans le cas général cette
classification n’est pas assez fine, & cause de ’existence possible d’amas neutres se
déplagant transversalement au champ magnétique.
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Nous allons faire les hypothéses suivantes sur les charges ¢1,- -+, ¢ny. Supposons
que ¢; # 0,0 =0,---,N, et que :

(H2) Y gi=0=I={1--N}.
JEI
En d’autres termes nous supposons qu’il n’existe pas de sous systémes neutres de

particules.

Alors sous ’hypothese (H1), on a :

Théoreme 3.
1(0y(¢*™F) = Haq

Notons que 'inclusion D est immeédiate. L’'inclusion C résulte d’une estimation
de commutateur positif avec ’opérateur conjugué

1
A = S((z*7, Dzsmax ) + (Dzomux, 7)) (e f[GL1]) -

Il est maintenant assez standard de déduire des théoremes 2 et 3 un résultat de
complétude asymptotique pour des interactions a courte portée, en suivant les argu-
ments de Graf [Gr] et Derezinski [De].

Théoreéme 4. Supposons les hypothéses (H1), (H2) avec vy = 0.

Soit N
= U;1PP(H)U, .
i) Les opérateurs d’onde :
itHe—z'tHa -

Q+

T =slimy_4o0€

ezistent et leurs images sont orthogonales.

u) le systéme est asymptotiquement complet :

@ Im Q;I- = Hscatt -

a# amax
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V Interactions a longue portée

Le cas des interactions a longue portée (typiquement |v*(z®)| < C(z*)™* pour
0 < u < 1) présente une difficulté additionnelle par rapport au cas a courte portée.

L’existence de 'observable ( “hax et le théoreme 3 ne suffisent pas a montrer
la complétude asymptotique des opérateurs d’onde (modifiés). On a besoin en plus
d’une estimation sur la taille des amas de particules qui peuvent se former.

Cette estimation se sépare naturellement en deux parties : on estime d’abord la
taille des amas dans la variable z. Si on suppose dans I’hypothese (H1) que

|Vol(z®)| < C{z*) ™ " #u >0,

la taille dans la variable z des amas est 0(¢t~%) pour tout § > 5%;, d’apres le ré-

sultat fondamental de [De]. On peut en effet adapter sans grandes modifications les
constructions de [De] dans la variable z, le champ magnétique n’agissant pas dans
cette direction.

Par contre il faut des arguments nouveaux pour estimer la taille des amas dans
la variable y. En fait il suffit d’estimer la taille totale du systeme. Pour cela on
introduit ’observable suivante :

1 _
C:= 5(9 +A7'Dy),
appelée le centre d’orbite. Sa version classique

1 _
c:§(y+An1)’

est le centre du cercle (dans le plan orthogonal a B ) que décrit une particule libre
dans le champ magnétique B.

L’utilité de C' est que

1 _
(3) C—y=347'(D, - 4)),

et que Dy — A, est borné par ’énergie H.
Une borne sur la taille de C fournit donc facilement une borne sur la taille de y.

Plus précisément, on définit pour F € C§°(Y) :

F(©)=@0)" [ FapenOay .
et une propriété classique de la quantification de Weyl montre que
F(C) = F(c)“(y,Dy) -
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Pour une fonction F' bien choisie (sa construction fait intervenir la forme quadratique
q(y,9) = Ziv qiYi¥;), on montre le résultat suivant.
Proposition 1.

1) la limate forte :

t—too

s — lim eitHF(g—)e_itH =: F(C™")

existe pour tout a > 1/2.
i)s— lim F(S)=1.
KA

La proposition 1 montre que I’évolution d’un état e~ "y est concentrée dans

|C| < t* a > 1/2. L’identité (3) permet d’en déduire qu’elle est aussi concentrée
dans |y| < t*,a > 1/2. La preuve de la complétude asymptotique dans le cas des
interactions a longue portée suit alors par des arguments classiques. On introduit les
modificateurs de Dollard :

1 t
Sa(t, &) = 51&52 +/0 I, .0(0,0,3,)ds .

On peut en effet remplacer les variables l'a, a par 0 a cause des estimations précé-
dentes.)

Théoréme 5.

Supposons que les hypothéses (H1), (H2) soient satisfaites et que de plus :
[V2vg(2®)] < Cle®) ' #,u > V3 -1.
Alors les opérateurs d’onde modifiés
itHe—iSa(t,Dza)—itH“ﬂ_a

Ot =5 lim e
a,D t =+ o0

existent, et leurs images sont mutuellement orthogonales.

- le systéme est asymptotiquement complet :

@ Im Q:’D = Hscatt-

aF Amax
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VI Autres résultats

Il reste de nombreux cas ouverts, en particulier s’il existe des amas neutres. Dans
[GL3], nous considérons le cas N = 3, en supposant qu’il existe une paire neutre.

On vérifie a 'aide des transformations U, qu'un amas neutre se déplace avec
une énergie cinétique de la forme, E(Dyn) ot E(k;) est une valeur propre d’un
hamiltonien H?®(k]). Sous des hypotheéses de régularité des fonctions E(k}), nous
montrons dans [GL3], la complétude asymptotique pour des interactions & courte
portée et pour des interactions “coulombiennes”, c’est a dire ou

vij(2) = gigjv(e) ,1<i<j < N.

Un autre probléme ouvert concerne le cas de la dimension 2.

On a vu dans les sections précédentes le role joué par la direction du champ
magnétique, comme direction “libre” dans la diffusion.

Dans le cas de systémes a N-corps en dimension 2, cette direction est évidemment
absente, ce qui change compléetement la nature du probléme.

Rappelons qu’en dimension 2, le hamiltonien décrivant N particules en interac-
tion est donné par :

N
1
(5) =) 2— (Di — qiKzi)* + ) vij(zi — ),
I

1<J

1/0 b
K‘i(—b 0)'

Indiquons simplement un résultat qui se déduit facilement en utilisant les transfor-
mations unitaires de la section II et le théoréme HVZ.

sur L2(R2?Y) avec

Théoreme 6.

Supposons que le systéme n’a pas d’amas neutres :

Y @#0,VIC{l,---N}.

el
Alors le spectre essentiel de H est un ensemble discret. Par conséquent :

o.(H) =
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On voit donc que s’il n’existe pas d’amas neutres, il n’existe pas de théorie de la
diffusion en dimension 2.
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