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1 Introduction

Nous allons décrire dans cet exposé des résultats obtenus en collaboration avec
Izabella Laba sur les sytèmes à .N-corps en présence d’un champ magnétique constant
en dimension d’espace 3. Un tel système est décrit par le hamiltonien suivant :

agissant sur l’espace L2(R3N). Ici qi et rni sont la charge et la masse de la particule
z et la matrice lC est égale à :

de telle sorte que lCx soit le potentiel vecteur du champ magnétique constant B =

~0, o, b). Le potentiel vil représente l’interaction entre les particules z et j .

Le problème auquel nous nous intéressons est celui de la théorie de la diffusion,
c’est à dire de la classification des comportements asymptotiques de e- itHB u, u E
L2~R3~), pour t tendant vers -4-oo.

II Le pseudomoment

Il est bien connu que les trajectoires d’une particule libre en présence d’un champ
magnétique sont très différentes de celles observées sans champ magnétique. Cette
différence se reflète aussi dans les propriétés des constantes du mouvement, c’est à
dire des observables qui commutent avec H B.

Soit Ho = 2m ~D - le hamiltonien d’une particule libre dans le champ
magnétique B. Ho commute avec le pseudomoment

qui est le générateur infinitésimal des translations magnétiques :

L’algèbre engendrée par ~1 est très simple mais différente de celle engendrée par le
moment D. En effet, on a :



XVI-2

Nous allons maintenant généraliser celà au cas du hamiltonien H décrit dans (1).
Pour ce faire, il est agréable de se placer dans un cadre un peu plus abstrait, celui
des hamiltoniens d’Agmon.

On considère donc un espace euclidien X, muni d’une application linéaire :
A : X - X’, antisymétrique :

De manière équivalente on peut considérer A comme une forme bilinéaire antisymé-
trique. On pose : 

-1

On fixe d’autre part la structure des potentiels, c’est à dire une famille finie 
de sous espaces vectoriels de X, fermée pour l’intersection, et contenant X. On munit
,A d’une structure de semi treillis en posant : a  b si X b C Xa . On a donc

On note Xamin le plus petit élément de ~Xa ~, égal à .X et Xamax le plus grand, égal
à n X~ .

a E A

Enfin on pose : 
--- -- 1

et pour chaque a e ~A, a ~ amax on fixe un potentiel

telle que 
1

Un hamiltonien d’Agmon magnétique est alors donné par :

Cet opérateur représente le hamiltonien complet décrivant N particules en interac-
tion. Pour chaque a e ,A, on définit :
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où

et

Remarquons que pour a = amax , = H.

Il reste maintenant à décrire le lien entre la forme bilinéaire A et la structure des

plans Xa - On pose Z = ker A et on suppose que si 7r z est la projection orthogonale
sur Z, 7ra la projection orthogonale sur Xa on a :

On pose aussi :

On remarque que Xa = Ya, xa = Z~ 0153 ya,

Comme le potentiel V~ ne dépend pas de l’hamiltonien Ha commute avec le

pseudomoment externe défini par :

On a:

ce qui montre que l’algèbre engendrée par Ii a est décrite par la restriction de A à
Xa x Xa, que l’on note par Aa,a.

A ce stade, il est peut être utile de décrire ces objets dans le cas de notre problème
de départ donné par HB.

L’espace euclidien X est égal à muni de la forme quadratique EN 
La forme bilinéaire A est donnée par :

L’ensemble d’indices A est donné par l’ensemble des partitions de {l? ’ ’ ’ lV~ avec sa
relation d’ordre naturelle.

Pour a e ,A, l’espace Xa est défini par :
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où on écrit (i j ~ E a si 1 et j appartiennent à un même élément de a et

p our a - IC1, ... Ckl-

L’espace Z est :

et : o o

où on ~y, z).

Soit a = ~C1, ~ ~ ~ , C~~ C A. On peut identifier de façon naturelle Xa à 
en introduisant le centre de masse de chaque amas Ci. Par cette identification la
matrice de Aa a s’écrit comme :

où :

On voit donc que les propriétés de dépendent des charges des amas de a.

Dans le cadre général on pose :

La forme bilinéaire Aaa restreinte à Yac est donc non dégénérée.

Si on note I1 â , I1 â les projections de IÉa sur Yn, Ye on peut donc trouver (voir
[GL1]) une application linéaire symplectique xa de

dans :
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qui envoie (x, fl) sur (l§, fl) avec :

En quantifiant Xa par une transformation unitaire Ua de L2(X) dans 
Yna X Yca X Yca), on a :

Si on pose Ha = on a :

On voit que H~, commute avec ce qui correspond au fait que Ha com-
mute avec Iia .

III Séparation du centre de masse et états de diffusion

Les transformations unitaires Ua peuvent être utilisées dans différents buts : tout
d’abord on peut s’intéresser au problème de la réalisation autoadjointe de H. Une
application facile de l’inégalité de Kato fournit le résultat suivant :

Théorème 1.

Supposons que pour tout a E A, Va soit borné avec borne relative 0. Alors
H est autoadjoint avec domaine :

On peut aussi utiliser Ua pour a = amax pour discuter le problème de la séparation
du centre de masse en présence d’un champ magnétique. Rappelons que si a = amax
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la matrice de A restreinte à est égale à où q = EN q, est la charge totale1

du système. On distingue donc deux cas :

séparer le mouvement du centre de masse revient
à fixer une valeur de Dyn et à considérer le hamiltonien :

agissant sur :

Si q fl 0, (0), et séparer le mouvement du centre de masse revient à fixer
un vecteur de et à considérer

agissant sur :

Il n’est pas commode pour la théorie de la diffusion de séparer le mouvement de
centre de masse. La raison en est que les différentes transformations Ua sont "in-

compatibles", au sens qu’il n’y a pas d’identification naturelle entre leurs espaces
images.

Il est plus simple de définir directement états liés et états de diffusion. Com-
mençons par le cas neutre où q = 0.

Définition 1

Supposons que q = 0. On définit l’espace des liés :

et l’espace des états de diffusion :
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Définition 2

Supposons que q ~ 0. On définit l’espace des états liés :

et l’espace des états de diffusion:

On peut donner des propriétés "à la Ruelle" des vecteurs de Hbd (voir [GL1] ). Si
q ~ 0 ces propriétés montrent qu’un état de ?-Cbd décrit un amas borné de particules
se déplaçant uniquement dans la direction du champ magnétique. Au contraire si
q = 0, un état de Hbd décrit encore un amas borné de particules, mais qui peut
maintenant se déplacer transversalement au champ magnétique.

IV Etats de diffusion, opérateurs d’onde et vitesse asymptotique

Le but de la théorie du scattering est bien sûr de décrire les évolutions des états
de Hscatt. Un premier résultat important est l’existence de la vitesse asymptotique
dans la direction du champ, qui fournit une première classification de Hscatt .

On suppose que les interactions va vérifient :

Alors on a le théorème suivant :

Théorème 2.

existe. Il existe une famille d’opérateurs qui commutent telle que (2) soit
égale à 

s’appelle la vitesse asymptotique le long de 

L’opérateur fournit (par sa décomposition spectrale), une première clas-
sification des états par leur comportement asymptotique. Dans le cas général cette
classification n’est pas assez fine, à cause de l’existence possible cramas neutres se
déplaça,nt transversalement au champ magnétique.
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Nous allons faire les hypothèses suivantes sur les charges q1, ~ ~ ~ , qN. Supposons
que qi = 0, i = 0, ... , N, et que :

En d’autres termes nous supposons qu’il n’existe pas de sous systèmes neutres de
particules.

Alors sous l’hypothèse (Hl), on a :

Théorème 3.

Notons que l’inclusion D est immédiate. L’inclusion C résulte d’une estimation
de commutateur positif avec l’opérateur conjugué

Il est maintenant assez standard de déduire des théorèmes 2 et 3 un résultat de

complétude asymptotique pour des interactions à courte portée, en suivant les argu-
ments de Graf [Gr] et Derezinski ~De~ .

Théorème 4. Supposons les hypothèses (Hl), (H2) avec Va - 0.

soit

i) Les opérateurs d’onde :

existent et leurs images sont orthogonale.

ii) le système est asymptotiquement complet :
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V Interactions à longue portée

Le cas des interactions à longue portée (typiquement pour
0  J-l  1) présente une difficulté additionnelle par rapport au cas à courte portée.

L’existence de l’observable (’Max et le théorème 3 ne suffisent pas à montrer

la complétude asymptotique des opérateurs d’onde (modifiés). On a besoin en plus
d’une estimation sur la taille des amas de particules qui peuvent se former.

Cette estimation se sépare naturellement en deux parties : on estime d’abord la
taille des amas dans la variable z. Si on suppose dans l’hypothèse (Hl) que

la taille dans la variable z des amas est pour tout 6 &#x3E; 2+ , d’après le ré-
sultat fondamental de [De]. On peut en effet adapter sans grandes modifications les
constructions de [De] dans la variable z, le champ magnétique n’agissant pas dans
cette direction.

Par contre il faut des arguments nouveaux pour estimer la taille des amas dans
la variable y. En fait il suffit d’estimer la taille totale du système. Pour cela on

introduit l’observable suivante :

-1

appelée le centre d’orbite. Sa version classique

est le centre du cercle (dans le plan orthogonal à B) que décrit une particule libre
dans le champ magnétique B.

L’utilité de C est que

et que Ay est borné par l’énergie H.

Une borne sur la taille de C fournit donc facilement une borne sur la taille de y.

Plus précisément, on définit pour .F e Cô (Y) :

et une propriété classique de la quantification de Weyl montre que
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Pour une fonction F bien choisie (sa construction fait intervenir la forme quadratique
= on montre le résultat suivant.

Proposition 1.

z~ la limite f orte :

existe pour tout a &#x3E; 1/2.

La proposition 1 montre que l’évolution d’un état est concentrée dans

ta,oé &#x3E; 1/2. L’identité (3) permet d’en déduire qu’elle est aussi concentrée
dans 1 y 1  &#x3E; 1/2. La preuve de la complétude asymptotique dans le cas des
interactions à longue portée suit alors par des arguments classiques. On introduit les
modificateurs de Dollard :

(On peut en effet remplacer les variables xa, Ya par 0 à cause des estimations précé-
dentes.)

Théorème 5.

Supposons que les hypothèses (Hl), (H2) soient satisfaites et que de phcs :

Alors les opérateurs d’onde modifiés

existent, et leurs images sont mutuellement orthogonales.
- le système est asymptotiquement complet :
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VI Autres résultats

Il reste de nombreux cas ouverts, en particulier s’il existe des amas neutres. Dans
[GL3], nous considérons le cas N = 3, en supposant qu’il existe une paire neutre.

On vérifie à l’aide des transformations ~ra qu’un amas neutre se déplace avec
une énergie cinétique de la forme, où E(kn) est une valeur propre d’un
hamiltonien Sous des hypothèses de régularité des fonctions nous

montrons dans [GL3], la complétude asymptotique pour des interactions à courte
portée et pour des interactions "coulombiennes", c’est à dire où

Un autre problème ouvert concerne le cas de la dimension 2.

On a vu dans les sections précédentes le rôle joué par la direction du champ
magnétique, comme direction "libre" dans la diffusion,.

Dans le cas de systèmes à N-corps en dimension 2, cette direction est évidemment
absente, ce qui change complètement la nature du problème.

Rappelons qu’en dimension 2, le hamiltonien décrivant N particules en interac-
tion est donné par :

sur L2(R 2N ) avec

Indiquons simplement un résultat qui se déduit facilement en utilisant les transfor-
mations unitaires de la section II et le théorème HVZ.

Théorème 6.

Supposons que le système n’a pas neutres :

Alors le spectre essentiel de H est un ensemble discret. Par conséquent :
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On voit donc que s’il n’existe pas d’amas neutres, il n’existe pas de théorie de la
diffusion en dimension 2.
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