La diffraction en métrique de Schwarzschild : complétude asymptotique et résonances
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1992-1993), Exposé no. 8, 13 p.
@article{SEDP_1992-1993____A8_0,
     author = {Bachelot, Alain},
     title = {La diffraction en m\'etrique de Schwarzschild : compl\'etude asymptotique et r\'esonances},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:8},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1992-1993},
     zbl = {0884.35157},
     mrnumber = {1240549},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_1992-1993____A8_0/}
}
Bachelot, A. La diffraction en métrique de Schwarzschild : complétude asymptotique et résonances. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1992-1993), Exposé no. 8, 13 p. http://www.numdam.org/item/SEDP_1992-1993____A8_0/

[1] A. Bachelot, Gravitational Scattering of Electromagnetic Field by Schwarzschild Black-Hole, Ann. Inst. Henri Poincaré Physique théorique, 54, 3, 1991, 261-320. | Numdam | MR 1122656 | Zbl 0743.53037

[2] A. Bachelot, Scattering of eletromagnetic field by De Sitter-Schwarzschild Black-Hole, in "Non linear hyperbolic equations and field theory" Research Notes in Math. 253, 1992, Pitman. | MR 1175199 | Zbl 0823.35162

[3] A. Bachelot, A. Motet-Bachelot, Les résonances d'un trou noir de Schwarzschild, à paraître aux Ann. Inst. Heinri Poincaré physique théorique. | Numdam | Zbl 0793.53094

[4] A.L. Besse. Einstein Manifolds, Sprinter Verlag 1987. | MR 867684 | Zbl 0613.53001

[5] R. Carmona, One-Dimentional Schrödinger Operators with Random or Deterministic Potentials: New Spectral Types, J. Func. Anal. 51, 1983, p.229-258. | MR 701057 | Zbl 0516.60069

[6] S. Chandrasekar, The mathematical theory of black-holes, Oxford University Press, New-York, 1983. | MR 700826 | Zbl 0511.53076

[7] Y. Choquet-Bruhat, D. Christodoulou. Existence of global solutions of the Yang-Mills Higgs and spinor field equations in 3+1 dimensions, Ann. Sci. Ecole Norm. Sup., 14, 1981, p. 481-506. | Numdam | MR 654209 | Zbl 0499.35076

[8] D. Christodoulou, S. Klainerman. The Global Nonlinear Stability of the Minkowski Space, preprint 1959.

[9] Th. Damour, Black-Hole eddy currents, Phys. Rev. D 18, 10, 1978, p. 3598, 3604.

[10] J. Dimock, Scattering for the wave equation on the Schwarzschild metric, Gen. Rel. Grav. 17, 4, 1985, p. 353-369. | MR 788801 | Zbl 0618.35088

[11] J. Dimock, B.S. Kay, Classical and Quantum scattering theory for linear scalar fields on the Schwarzschild metric I, Ann. Phys. 175, 1987, p. 366-426. | MR 887979 | Zbl 0628.53080

[13] H. Kitada, Scattering theory for Schrödinger operators with long range potentials IL., J. Math. Soc. Japan, 30, 4, 1978, p.603-632. | MR 634803 | Zbl 0388.35055

[14] J.P. Nicolas, Non linear Klein-Gordon Equation in Schwarzschild like metric, Fourth International Conference on Hyperbolic Problems, Taormina, 1992, Vieweg Eds. | Zbl 1043.83526

[15] R. Phillips, Scattering Theory for the Wave Equation with a Short Range Perturbation II, Indiana Univ. Math. J., 33, 6, 1984, p.831-846. | MR 763944 | Zbl 0526.35066

[16] W.T. Shu, Spin Field Equations and Yang-Mills Equation, Ph. D. Thesis, Princeton University, 1990.

[17] M. Zworski, Distribution of Poles for Scattering on the Real Line, J. Funct. Anal. 73, 1987, p. 277-296. | MR 899652 | Zbl 0662.34033