Periodic solutions of some problems of 3-body type
Séminaire Équations aux dérivées partielles (Polytechnique) (1988-1989), Talk no. 21, 11 p.
@article{SEDP_1988-1989____A22_0,
     author = {Bahri, Abbes and Rabinowitz, Paul-H.},
     title = {Periodic solutions of some problems of $3$-body type},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1988-1989},
     note = {talk:21},
     zbl = {0704.58041},
     mrnumber = {1032297},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1988-1989____A22_0}
}
Bahri, A.; Rabinowitz, P. H. Periodic solutions of some problems of $3$-body type. Séminaire Équations aux dérivées partielles (Polytechnique) (1988-1989), Talk no. 21, 11 p. http://www.numdam.org/item/SEDP_1988-1989____A22_0/

[1] Poincaré, H., Les méthods nouvelles de la mécanique céleste, Lib. Albert Blanchard, Paris, 1987.

[2] Bahri, A. and P.H. Rabinowitz. Periodic solutions of Hamiltonian systems of 3-body type, in progress. | Numdam | Zbl 0745.34034

[3] Greco, C., Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Analysis, T.M.A., 12, (1988), 259-270. | MR 928560 | Zbl 0648.34048

[4] Bahri, A. and P.H. Rabinowitz, A minimax method for a class of Hamiltonian systems with singular potentials, J. Functional Anal., 82, (1989), 412-428. | MR 987301 | Zbl 0681.70018

[6] Hirsch, M.W., Differential Topology, Springer-Verlag 1975. | MR 1336822 | Zbl 0356.57001

[7] Bahri, A., Critical points at infinity in some variational problems, to appear, Pitman Research Notes in Mathematics. | MR 1019828 | Zbl 0676.58021

[8] Sullivan, D. and M. Vigué-Poirrier, The homology theory of the closed geodesic problem, J. Diff. Geom. 11, (1976), 633-644. | MR 455028 | Zbl 0361.53058