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XIX-1

Polynômes de Bernstein-Sato à plusieurs variables

Claude Sabbah

1 Le polynôme de Bernstein

Je rappelle dans ce paragraphe quelques résulats concernant le polynôme de Bernstein-
Sato associé à un polynôme f : Cn -~ C ou à une fonction analytique f : X -~ C définie
sur une variété analytique complexe X, au voisinage d’un compact K de X.

1.1 Si s E C est tel que Re(s~ &#x3E; 0, on peut définir f 8 comme une fonction analytique si
l’on se place dans un domaine où arg(f) admet une détermination. Il existe un polynôme
non nul à une variable B(s) E C [s] et un opérateur différentiel P(x,8z,s) à coefficient
analytiques tels que l’on ait la relation

Ceci permet de définir /8 comme une "distribution méromorphe en s" . On appelle
polynôme de Bernstein-Sato de f le générateur b de l’idéal des polynômes B satisfaisant
une telle relation, dont le coefficient dominant est égal à 1. L’existence d’un tel polynôme
est prouvée par Bernstein (1~, Bjôrk [2].

1.2 Le polynôme de Bernstein intervient dans les problèmes suivants :

a soit p : C une fonction C°° à support compact contenu dans K. L’intégrale

el

est une fonction holomorphe de s pour {s E CRe(s &#x3E; 0}. Cette fonction se

prolonge en une fonction méromorphe sur C, dont les pôles sont des décalés entiers
des zéros de b ou de b (on verra plus loin que ce sont les mêmes), c’est à dire sont
de la forme a - n avec b(a~ = 0 et n E N. On voit ce résultat en considérant
l’expression et en appliquant une intégration par parties (voir [2]).

e on obtient ainsi une distribution T

qui vérifie l’équation [ f (2 T = 1

~ on peut aussi utiliser le polynôme de Bernstein pour obtenir une solution fondamen-
tale pour un opérateur à coefficients constants (voir [2, Chap. 7]).
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1.3 Les zéros du polynôme de Bernstein sont des rationnels strictement négatifs (~3~~.
Si f est à singularité isolée et si a est un zéro du polynôme de Bernstein de f au voisi-
nage de cette singularité, le nombre complexe exp est une racine de l’opérateur de
monodromie agissant sur la cohomologie de la fibre de Milnor F de f en cette singularité
xo (voir [9] pour des résultats plus généraux). Rappelons que l’on a

1.4 Si u est une distribution sur Cn, satisfaisant un système holonome d’équations aux
dérivées partielles à coefficients holomorphes, on a aussi une relation

Mais dans ce cas, les zéros de bu ne sont pas nécessairement rationnels ou négatifs.

2 Le cas de plusieurs fonctions

La méthode de la phase stationnaire a été en fait introduite par Kelvin pour étudier des
intégrales oscillantes à plusieurs paramètres :

Un problème général est aussi de calculer une intégrale de phase stationnaire avec une
phase dépendant de paramètres

Les mêmes problèmes se posent pour la transformation de Mellin :

1. prolongement méromorphe de la fonction de deux variables

2. étude de la fonction

Je renvoie à [5,4,12] pour l’utilisation de tels résultats. Je vais m’intéresser au premier
problème.

Soit (fi, ... , fit) des fonctions analytiques complexes sur C~‘. Soit aussi u une distri-
bution holonome sur en. Soit K un compact de Cn.

Théorème 2.1 Il existe pour tout k E (1, ... , ~~ des équations f onctionnelles du type
suivant

De plus, il existe un ensemble fini f, de formes linéaires sur à coefficients dans N,
premiers entre eux, telles que l’on ait

où est un nombre complexe.
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Remarques.

1. D’après ce théorème, une intégrale

définie pour Re(s) &#x3E; 0, &#x3E; 0, se prolonge en une fonction méromorphe sur C2
à pôles le long de droites de pentes rationnelles. Cette conséquence était connue
de Kashiwara et Kawai (voir [5]) : on peut l’obtenir simplement en utilisant la
résolution des singularités, et en démontrant l’assertion dans le cas où f et g sont
des monômes.

2. = 2, les formes linéaires jouent le rôle des pentes d’un polygône de Newton.

3. Comme n’est pas principal, il n’y a pas nécessairement de polynôme
minimal bk parmi les polynômes Bk qui satisfont une telle équation fonctionnelle.
De même, il n’y a pas a priori un ensemble l minimal.

On peut préciser cependant une méthode pour calculer un ensemble l lorsque la dis-
tribution u définit un module holonome régulier. Le résultat suivant est montré dans

[11].

Théorème 2.2 Supposons de plus que u satislasse un système holonome régulier. Alors
on peut trouver un ensemble l qui ne dépend que de la géométrie de la variétés caracté-
ristique du V x-module Vxu relativement à f i, ... , f,~.

Remarque. Les zéros ak,L,; de Bk dépendent en général du V-module lui même et pas
seulement de sa variété caractéristique. De plus, si u =1, les polynômes Bk donné par le
Théorème 2.2 sont tels que ces nombres complexes ak, L,; sont en fait rationnels.

Exemple. Considérons le cas de deux fonctions f et g définies sur un voisinage de l’origine
dans Cn. Supposons que l’on ait f (0) = 0, = 0 et que le lieu critique de l’application
~ f , g) au voisinage de 0 soit fini sur C2. Soit A son image dans C2, qui est un germe de
courbe plane. On peut alors choisir pour f l’ensemble composé des formes de coordonnées
sur Q2 et des formes Li (sl, S2) = m¡Sl +n¡s2 avec mi = = O}), ~~t’ ~t2 = 0)),
où Ai (pour i dans un ensemble fini d’indices) parcourt l’ensemble des branches locales
de A.

Note. Une démonstration un peu différente de ce résultat a aussi été donnée par F.
Loeser.

Remarque. Considérons le problème de la transformation de Mellin à paramètres. Plaçons-
nous dans le cas où g : Rn X R --&#x3E; R est une fonction analytique réelle, vue comme une
famille R. Soit p une fonction C°° à support compact et considérons l’intégrale
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Si on considère une résolution des singularités de l’application (g, À) : R"’ x R -~ R x R,
on voit que, au voisinage d’une valeur spéciale de À, par exemple À = 0, il existe un entier
q tel que, si on pose À’ = Àl/Q, on ait au voisinage de ~1= 0

où I est un ensemble fini d’indices, Afi un entier positif ou nul, une fonction mé-

romorphe de s à coefficients analytiques réels en a’. Remarquons les deux points suivants

~ On ne peut pas imposer a priori que les JV’,¡(s,À’) n’aient pas de pôles pour Re(s) &#x3E;
0.

e L’ensemble des rationnels se calcule à l’aide de la résolution des singularités
de l’application (g, a).

Il est probable que l’on peut trouver une telle décomposition avec des rationnels
ri = Milq ne dépendant que de l’application complexifiée de (g,À) et pas du choix d’une
résolution. Si par exemple cette application tombe sous le coup de l’exemple précédent,
cet ensemble de rationnels coïncide avec les pentes des formes linéaires qui ont été exhibées
(ceci est suggéré par la considération de la transformée de Mellin de ~~ en a), ainsi que
me l’a indiqué F. Loeser.

3 Quelques indications sur la preuve du théorème 2.1

On transforme le problème en un problème sur les 9-modules holonomes. Ce dernier est
traité à la manière de Kashiwara ([3]) : on considère un P-module holonome sur Cn x Ce
(à support dans le graphe de ( f l, ... , f,~)). On note tl, ... , te les coordonnées sur Ce

On définit sur P, anneau des opérateurs différentiels à coefficients holomorphe en
Xl, ... , en) tl, ... , tx, des filtrations kV.(D) (pour tout k E {1, ... , pour lesquelles tk
est de degré -1, 8tlc de degré 1, et les autres variables de degré 0. Chacune de ces filtrations
est indexée par Z. On obtient une filtration indexée par Z’ en posant

On considère alors l’anneau de Rees

où u = (ui,..., ux) sont des variables indépendantes et où on a posé ue = ui 1 · · u~~.

Remarque. Quand =1, l’anneau de Rees joue pour les 9-modules le rôle de l’anneau des
opérateurs 2-microdifférentiels (voir [6]) le long de la variété lagrangienne TYl (C" x C),
où on a posé Y, = {tl = 01. Pour K, quelconque, il joue le rôle d’une "2-microlocalisation
simultanée" le long des sous-variétés Tÿk (Cn X C") (avec k E {1, ... , K,} ).

Soit .M un 9-module holonome et !7.(M) une filtration indexée par Z". On dit que
U.(M) est bonne pour V.(P) si le module de Rees
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est un Rv{V)-module cohérent. Pour chaque forme linéaire L à coefficients dans N pre-
miers entre eux, on peut alors définir une filtration indexée par Z~

Si Lk est la forme de coordonnées Lk (U) = uk, on trouve ainsi une filtration bonne pour
la filtration introduite plus haut. Le théorème de Bernstein ou Bjork, adapté à la
manière de Kashiwara, nous dit que, pour L fixée, il existe un polynôme de Bernstein et
une relation, pour tout À E Z

avec E C.

Le point clé consiste maintenant à montrer qu’il existe un ensemble fini f- tel que la
filtration indexée par Z" définie pour u E Z" par

soit aussi une bonne filtration.

Ce résultat est démontré dans [10] en utilisant une variante du "théorème d’aplatis-
sement" d’Hironaka, variante prouvée de même dans [10] en collaboration avec F. Castro.

On obtient ainsi le théorème 2.1 sous la forme suivante

Il existe un ensemble fini l et des polynômes Bk comme dans l’énoncé’ du théorème
2.1 tels que, pour tout u E Ze on ait l’inclusion

Remarque. Le point clé précédent consistait en un résultat de finitude : finitude de
l’ensemble t. On peut prouver par les mêmes méthodes d’autres résultats de finitude.
Par exemple, on peut chercher à comparer une filtration avec la filtration F.(D)
par le degré des opérateurs différentiels. On retrouve ainsi, dans le cas des 9-modules, la
finitude des "indices critiques" d’un module holonome le long de la variété TYl (C’ x C)
introduits par Y. Laurent ([7,8]).
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