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XIX-1

Polynomes de Bernstein-Sato a plusieurs variables

Claude Sabbah

1 Le polynome de Bernstein

Je rappelle dans ce paragraphe quelques résulats concernant le polynéme de Bernstein-
Sato associé a un polyndme f : C™ — C ou & une fonction analytique f : X — C définie
sur une variété analytique complexe X, au voisinage d’un compact K de X.

1.1 Si s € C est tel que Re(s) > 0, on peut définir f* comme une fonction analytique si
’on se place dans un domaine ol arg(f) admet une détermination. Il existe un polynéme
non nul & une variable B(s) € C[s| et un opérateur différentiel P(z,d,,s) & coefficients
analytiques tels que P’on ait la relation

B(s): f* = P(z,9;,s) - et

Ceci permet de définir f° comme une “distribution méromorphe en s”. On appelle
polynome de Bernstein-Sato de f le générateur b de I’idéal des polynémes B satisfaisant
une telle relation, dont le coefficient dominant est égal & 1. L’existence d’un tel polynéme
est prouvée par Bernstein [1], Bjork [2].

1.2 Le polynome de Bernstein intervient dans les problémes suivants :

e soit ¢ : C™® — C une fonction C*® a support compact contenu dans K. L’intégrale

I,(s) :/|f|2’<pd:c/\d§:

est une fonction holomorphe de s pour {s € C|Re(s) > 0}. Cette fonction se
prolonge en une fonction méromorphe sur C, dont les pdles sont des décalés entiers
des zéros de b ou de b (on verra plus loin que ce sont les mémes), c’est & dire sont
de la forme o — n avec b(a) = 0 et n € N. On voit ce résultat en considérant
Pexpression b(s)b(s)I(s) et en appliquant une intégration par parties (voir [2]).

e on obtient ainsi une distribution T
o Résgee_1y (o)
qui vérifie ’équation | f |2 T =1

e on peut aussi utiliser le polynéme de Bernstein pour obtenir une solution fondamen-
tale pour un opérateur & coefficients constants (voir [2, Chap. 7]).
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1.3  Les zéros du polyndme de Bernstein sont des rationnels strictement négatifs ([3]).
Si f est a singularité isolée et si « est un zéro du polynéme de Bernstein de f au voisi-
nage de cette singularité, le nombre complexe exp —2¢7wa est une racine de opérateur de
monodromie agissant sur la cohomologie de la fibre de Milnor F de f en cette singularité
zg (voir [9] pour des résultats plus généraux). Rappelons que I’on a

F={z€C"/|z-zo| <e<1et f(z) =t,|t| <}

1.4  Siu est une distribution sur C", satisfaisant un systéme holonome d’équations aux
dérivées partielles a coefficients holomorphes, on a aussi une relation

bu(s) - f'u = P,(z,0;,8) - f*u

Mais dans ce cas, les zéros de b, ne sont pas nécessairement rationnels ou négatifs.

2 Le cas de plusieurs fonctions

La méthode de la phase stationnaire a été en fait introduite par Kelvin pour étudier des
intégrales oscillantes a plusieurs parameétres :

I = [ ewiltf(e) + 7o) plz)ds

Un probléme général est aussi de calculer une intégrale de phase stationnaire avec une
phase dépendant de paramétres

J(t,A) = /R" expitfi(z) p(z)dz

Les mémes problémes se posent pour la transformation de Mellin :

1. prolongement méromorphe de la fonction de deux variables
I(s,0)= [ f'oele)dz
Rn

2. étude de la fonction

I(s,A) = /R" [ p(z)dz

Je renvoie a [5,4,12] pour l’utilisation de tels résultats. Je vais m’intéresser au premier
probléme.

Soit (f1,..., fx) des fonctions analytiques complexes sur C™. Soit aussi u une distri-
bution holonome sur C". Soit K un compact de C".

Théoréme 2.1 Il ezxiste pour tout k € {1,...,k} des équations fonctionnelles du type
suivant

1
Bi(s1y---58x) fite+ :"-u::Pk(a:,az,sl,...,s,c)-fl"---f;""' ceofieou

De plus, il existe un ensemble fint L de formes linéaires sur Q a coefficients dans N,
premiers entre euz, telles que l’on ait

Bk(sl, - ,s,c) = H H (L(S) + ak,L,i)
Lel i€l

ot a1 est un nombre compleze.
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Remarques.

1. D’aprés ce théoréme, une intégrale
lo,0)= [ 11110 pdands

définie pour Re(s) > 0, Re(c) > 0, se prolonge en une fonction méromorphe sur C?
a poles le long de droites de pentes rationnelles. Cette conséquence était connue
de Kashiwara et Kawai (voir [5]) : on peut ’obtenir simplement en utilisant la
résolution des singularités, et en démontrant ’assertion dans le cas ou f et g sont
des mondmes.

2. Si k = 2, les formes linéaires jouent le role des pentes d’un polygdéne de Newton.

3. Comme CJsy,...,s,] n’est pas principal, il n’y a pas nécessairement de polyndme
minimal b; parmi les polynémes Bj qui satisfont une telle équation fonctionnelle.
De méme, il n’y a pas a priori un ensemble £ minimal.

On peut préciser cependant une méthode pour calculer un ensemble £ lorsque la dis-
tribution u définit un module holonome régulier. Le résultat suivant est montré dans
[11].

Théoréme 2.2 Supposons de plus que u satisfasse un systéme holonome régulier. Alors
on peut trouver un ensemble L qui ne dépend que de la géométrie de la variété caracté-
ristique du D x-module Dxu relativement a f1,..., fx.

Remarque. Les zéros aj ¢ de By dépendent en général du D-module lui méme et pas
seulement de sa variété caractéristique. De plus, si u = 1, les polynémes By donné par le
Théoréme 2.2 sont tels que ces nombres complexes oy 1, ; sont en fait rationnels.

Exemple. Considérons le cas de deux fonctions f et g définies sur un voisinage de ’origine
dans C™. Supposons que l’on ait f(0) = 0, g(0) = 0 et que le lieu critique de P’application
(f,9) au voisinage de 0 soit fini sur C2. Soit A son image dans CZ%, qui est un germe de
courbe plane. On peut alors choisir pour £ ’ensemble composé des formes de coordonnées
sur Q? et des formes L;(s1, s2) = m;s1+n;sz avec m; = (A;-{t1 = 0}), n; = (A;+{t2 =0}),
ou A; (pour 1 dans un ensemble fini d’indices) parcourt I’ensemble des branches locales
de A.

Note. Une démonstration un peu différente de ce résultat a aussi été donnée par F.
Loeser.

Remarque. Considérons le probléme de la transformation de Mellin & paramétres. Plagons-
nous dans le cas ou1 g : R® X R — R est une fonction analytique réelle, vue comme une
famille g) : R™ — R. Soit ¢ une fonction C*® & support compact et considérons I’intégrale

L)) = [ g ple)ds
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Si on considére une résolution des singularités de I’application (g,A) :R" xR - R X R,
on voit que, au voisinage d’une valeur spéciale de A, par exemple A = 0, il existe un entier
q tel que, si on pose X' = A1/9, on ait au voisinage de A = 0

Ip(s, ) = Z A,1"{'."]'»0,5(3: ’\')
i€l
ou I est un ensemble fini d’indices, M; un entier positif ou nul, J,; une fonction mé-
romorphe de s a coefficients analytiques réels en A'. Remarquons les deux points suivants

e On ne peut pas imposer a priori que les J, ;(s,\') n’aient pas de poles pour Re(s) >
0.

e L’ensemble des rationnels M;/q se calcule & I’aide de la résolution des singularités
de I’application (g, ).

Il est probable que 'on peut trouver une telle décomposition avec des rationnels
r; = M;/q ne dépendant que de ’application complexifiée de (g,A) et pas du choix d’une
résolution. Si par exemple cette application tombe sous le coup de ’exemple précédent,
cet ensemble de rationnels coincide avec les pentes des formes linéaires qui ont été exhibées
(ceci est suggéré par la considération de la transformée de Mellin de I, en ), ainsi que
me I’a indiqué F. Loeser.

3 Quelques indications sur la preuve du théoréme 2.1

On transforme le probléme en un probléme sur les D-modules holonomes. Ce dernier est
traité a la maniére de Kashiwara ([3]) : on considére un D-module holonome sur C" x C*
(a support dans le graphe de (f1,..., fx)). On note ¢3,...,t. les coordonnées sur C*

On définit sur D, anneau des opérateurs différentiels a coefficients holomorphe en
T1,...,Tn, t1,...,lx, des filtrations ¥V.(D) (pour tout k € {1,...,«}) pour lesquelles t;
est de degré —1, 9, de degré 1, et les autres variables de degré 0. Chacune de ces filtrations
est indexée par Z. On obtient une filtration indexée par Z* en posant

Vor,0(D) = WVor (D)) ++ () Vo (D)

On considére alors ’anneau de Rees

Rv (D)= @ V,(D)- v
o€Z"

ol u = (uy,...,u,) sont des variables indépendantes et ol on a posé u = uf*- .- uZ~.

Remarque. Quand k = 1, I’anneau de Rees joue pour les D-modules le rdle de ’anneau des
opérateurs 2-microdifférentiels (voir [6]) le long de la variété lagrangienne Ty, (C™ x C),
ol on a posé Y; = {t; = 0}. Pour x quelconque, il joue le rdle d’'une “2-microlocalisation
simultanée” le long des sous-variétés Ty, (C™ x C*) (avec k € {1,...,x}).

Soit M un D-module holonome et U.(M) une filtration indexée par Z*. On dit que
U.(M) est bonne pour V.(D) si le module de Rees

Ru(M)= P U,(M)-v°

oEZ"
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est un Ry (D)-module cohérent. Pour chaque forme linéaire L a coefficients dans N pre-
miers entre eux, on peut alors définir une filtration indexée par Z*

Immy= > v.(M).
{o|L(c)<2}

Si Ly est la forme de coordonnées Li(o) = o}, on trouve ainsi une filtration bonne pour
la filtration *¥V.(D) introduite plus haut. Le théoréme de Bernstein ou Bjork, adapté a la
maniére de Kashiwara, nous dit que, pour L fixée, il existe un polynome de Bernstein et
une relation, pour tout A € Z

[IL(#8s,, - t68e) + A+ i) - FUA(M) € FUs-_1(M)
i€l
avec o, ; € C.

Le point clé consiste maintenant & montrer qu’il existe un ensemble fini £ tel que la
filtration indexée par Z* définie pour o € Z* par

Us(M) = [ “UL) (M)
Lel

soit aussi une bonne filtration.
Ce résultat est démontré dans [10] en utilisant une variante du “théoréme d’aplatis-
sement” d’Hironaka, variante prouvée de méme dans [10] en collaboration avec F. Castro.
On obtient ainsi le théoréme 2.1 sous la forme suivante

Il existe un ensemble fini L et des polynomes By comme dans I’énoncé du théoréme
2.1 tels que, pour tout o € Z* on ait l’inclusion

Bk(t]_ag“.. . ,t,;atn) . UU(M) cU —lk(‘M)
ot o—1g = (01,...,0, — 1,...,0%).

Remarque. Le point clé précédent consistait en un résultat de finitude : finitude de
I’ensemble £. On peut prouver par les mémes méthodes d’autres résultats de finitude.
Par exemple, on peut chercher & comparer une filtration V.(D) avec la filtration F.(D)
par le degré des opérateurs différentiels. On retrouve ainsi, dans le cas des D-modules, la
finitude des “indices critiques” d’un module holonome le long de la variété Ty (C™ x C)
introduits par Y. Laurent ([7,8]).
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