Existence d'ondes de raréfaction pour des écoulements isentropiques
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1986-1987), Exposé no. 16, 16 p.
@article{SEDP_1986-1987____A15_0,
     author = {Alinhac, Serge},
     title = {Existence d'ondes de rar\'efaction pour des \'ecoulements isentropiques},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:16},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1986-1987},
     zbl = {0645.35060},
     mrnumber = {920034},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_1986-1987____A15_0/}
}
Alinhac, S. Existence d'ondes de raréfaction pour des écoulements isentropiques. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1986-1987), Exposé no. 16, 16 p. http://www.numdam.org/item/SEDP_1986-1987____A15_0/

[0] S. Alinhac, Existence d'ondes de raréfaction pour des systèmes hyperboliques quasi-linéaires, article à paraître.

[1] S. Alinhac, Paracomposition et opérateurs paradifférentiels Comm. in PDE 11 (1), (1986), 87-121. | MR 814548 | Zbl 0596.47023

[2] J.M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires, Ann. Sci. Ecole Normale Sup., 4ème série, 14, 1981, 209-246. | Numdam | MR 631751 | Zbl 0495.35024

[3] Chen Shu-Xing, Existence of local solution to supersonic flow around three dimensional wing, preprint.

[4] R. Courant et K.O. Friedrichs, Supersonic flow and Shock waves Springer-Verlag, New-York, 1949. | MR 421279 | Zbl 0041.11302

[5] R.S. Hamilton, The inverse function theorem of Nash and Moser Bull. of the Amer. Math. Soc., 7 (1), 1982. | MR 656198 | Zbl 0499.58003

[6] L. Hörmander, The analysis of linear partial differential operators, Springer-Verlag (1986). | Zbl 0601.35001

[7] L. Hörmander, The boundary problems of physical geodesy, Arch. Rat. Mech. and Anal. 62 (1976), 1-52. | MR 602181 | Zbl 0331.35020

[8] S. Klainerman et A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math. 34 (1981), 481-524. | MR 615627 | Zbl 0476.76068

[9] P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure. Appl. Math. 10 (1957), 537-567. | MR 93653 | Zbl 0081.08803

[10] S. Lojasiewicz et E. Zehnder, An inverse function theorem in Fréchet spaces, J. Funct. Analysis 33 (1979), 165-174. | MR 546504 | Zbl 0431.46032

[11] A. Majda, "The stability of multi dimensional shock fronts" and "The existence of multi dimensional shock fronts", Memoirs of the Amer. Math. Soc. 275 et 281 (1983). | Zbl 0506.76075

[12] A. Majda, Compressible Fluid-Flow and Systems of Conservation Laws in several space variables, Applied Math. Sc., Springer-Verlag (1984). | MR 748308 | Zbl 0537.76001

[13] A. Majda and S. Osher, Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math. 28 (1975), 607-676. | MR 410107 | Zbl 0314.35061

[14] G. Metivier, Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace. A paraître Trans. Amer. Math. Soc. (1987). | Zbl 0619.35075

[15] G. Metivier, The Cauchy problem for semilinear hyperbolic systems with discontinuous data, à paraître Duke Math J. (1987). | MR 874678 | Zbl 0631.35056

[16] Y. Meyer, Remarques sur un théorème de J.M. Bony, Supplemento al rendiconti der circolo mat. di Palermo atti del seminario di analisi armonica, série II (1), (1981). | MR 639462 | Zbl 0473.35021

[17] A. Mokrane, Problèmes mixtes hyperboliques non-linéaires, Thèse de 3ème cycle, Rennes, 1987.

[18] J. Moser, A rapidly convergent iteration method and non linear differential equations, Ann. Scu. Norm. Sup. Pisa (3) 20, 1966, 265-315. | Numdam | MR 199523 | Zbl 0144.18202

[19] L. Nirenberg, On elliptic partial differential equations Ann. Scuola Norm. Sup. Pisa, 3, 13 (1959), 116-162. | Numdam | MR 109940 | Zbl 0088.07601

[20] J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. of the Amer. Math. Soc. 291 (1), 1985, 167-187. | MR 797053 | Zbl 0549.35099

[21] J. Rauch and M. Reed, Striated solutions to semilinear, two speed wave equations, Ind. Univ. Math. J 34 (1985), p.337-353. | MR 783919 | Zbl 0559.35053