Le principe du maximum et l'hypoellipticité globale
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1984-1985), Talk no. 1, 10 p.
@article{SEDP_1984-1985____A1_0,
     author = {Taira, K.},
     title = {Le principe du maximum et l'hypoellipticit\'e globale},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:1},
     pages = {1--10},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1984-1985},
     mrnumber = {819767},
     zbl = {0582.35023},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_1984-1985____A1_0/}
}
TY  - JOUR
AU  - Taira, K.
TI  - Le principe du maximum et l'hypoellipticité globale
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:1
PY  - 1984-1985
SP  - 1
EP  - 10
PB  - Ecole Polytechnique, Centre de Mathématiques
UR  - http://www.numdam.org/item/SEDP_1984-1985____A1_0/
LA  - fr
ID  - SEDP_1984-1985____A1_0
ER  - 
%0 Journal Article
%A Taira, K.
%T Le principe du maximum et l'hypoellipticité globale
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:1
%D 1984-1985
%P 1-10
%I Ecole Polytechnique, Centre de Mathématiques
%U http://www.numdam.org/item/SEDP_1984-1985____A1_0/
%G fr
%F SEDP_1984-1985____A1_0
Taira, K. Le principe du maximum et l'hypoellipticité globale. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1984-1985), Talk no. 1, 10 p. http://www.numdam.org/item/SEDP_1984-1985____A1_0/

[1] K. Amano: The global hypoellipticity of a class of degenerate elliptic-parabolic operators, à paraître. | Zbl

[2] J.M. Bony: Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), 277-304. | Numdam | MR | Zbl

[3] V.S. Fediĭ: On a criterion for hypoellipticity, Math. USSR Sb. 14 (1971), 15-45. | Zbl

[4] C. Fefferman and D.H. Phong: Subelliptic eigenvalue problems, Conference on Harmonic Analysis W. Beckner et al. ed. Wadsworth (1981), 590-606. | MR | Zbl

[5] D. Fujiwara and H. Omori: An example of a globally hypo-elliptic operator, Hokkaido Math. J. 12 (1983), 293-297. | MR | Zbl

[6] S. Greenfield and N. Wallach: Global hypoellipticity and Liouville numbers, Proc. Amer. Math. Soc. 31 (1972), 112-114. | MR | Zbl

[7] C.D. Hill: A sharp maximum principle for degenerate elliptic-parabolic equations, Indiana Univ. Math. J. 20 (1970), 213-229. | MR | Zbl

[8] L. Hörmander: Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. | MR | Zbl

[9] N. Ikeda and S. Watanabe: Stochastic differential equations and diffusion processes, Kodansha, Tokyo and North-Holland, Amsterdam-Oxford - New-York, 1981. | MR | Zbl

[10] O.A. Oleĭnik and E.V. Radkevič: Second order equations with nonnegative characteristic form, Amer. Math. Soc., Providence, Rhode Island and Plenum Press, New-York, 1973. | MR

[11] R.M. Redheffer: The sharp maximum principle for nonlinear inequalities, Indiana Univ. Math. J. 21 (1971), 227-248. | MR | Zbl

[12] D.W. Stroock and S.R.S. Varadhan: On the support of diffusion processes with applications to the strong maximum principle, Proc. of 6-th Berkeley Symp. of Prob. and Math. Stat. Vol.III (1972), 333-359. | MR | Zbl

[13] D.W. Stroock and S.R.S. Varadhan: On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math. 25 (1972), 651-713. | MR | Zbl

[14] K. Taira: Diffusion processes and partial differential equations, Academic Press, New-York, à paraître. | MR | Zbl