Le principe du maximum et l'hypoellipticité globale
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1984-1985), Exposé no. 1, 10 p.
@article{SEDP_1984-1985____A1_0,
     author = {Taira, K.},
     title = {Le principe du maximum et l'hypoellipticit\'e globale},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:1},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1984-1985},
     zbl = {0582.35023},
     mrnumber = {819767},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_1984-1985____A1_0/}
}
TY  - JOUR
AU  - Taira, K.
TI  - Le principe du maximum et l'hypoellipticité globale
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:1
PY  - 1984-1985
DA  - 1984-1985///
PB  - Ecole Polytechnique, Centre de Mathématiques
UR  - http://www.numdam.org/item/SEDP_1984-1985____A1_0/
UR  - https://zbmath.org/?q=an%3A0582.35023
UR  - https://www.ams.org/mathscinet-getitem?mr=819767
LA  - fr
ID  - SEDP_1984-1985____A1_0
ER  - 
Taira, K. Le principe du maximum et l'hypoellipticité globale. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1984-1985), Exposé no. 1, 10 p. http://www.numdam.org/item/SEDP_1984-1985____A1_0/

[1] K. Amano: The global hypoellipticity of a class of degenerate elliptic-parabolic operators, à paraître. | Zbl 0574.35019

[2] J.M. Bony: Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), 277-304. | Numdam | MR 262881 | Zbl 0176.09703

[3] V.S. Fediĭ: On a criterion for hypoellipticity, Math. USSR Sb. 14 (1971), 15-45. | Zbl 0247.35023

[4] C. Fefferman and D.H. Phong: Subelliptic eigenvalue problems, Conference on Harmonic Analysis W. Beckner et al. ed. Wadsworth (1981), 590-606. | MR 730094 | Zbl 0503.35071

[5] D. Fujiwara and H. Omori: An example of a globally hypo-elliptic operator, Hokkaido Math. J. 12 (1983), 293-297. | MR 719969 | Zbl 0548.35020

[6] S. Greenfield and N. Wallach: Global hypoellipticity and Liouville numbers, Proc. Amer. Math. Soc. 31 (1972), 112-114. | MR 296508 | Zbl 0229.35023

[7] C.D. Hill: A sharp maximum principle for degenerate elliptic-parabolic equations, Indiana Univ. Math. J. 20 (1970), 213-229. | MR 287175 | Zbl 0205.10402

[8] L. Hörmander: Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. | MR 222474 | Zbl 0156.10701

[9] N. Ikeda and S. Watanabe: Stochastic differential equations and diffusion processes, Kodansha, Tokyo and North-Holland, Amsterdam-Oxford - New-York, 1981. | MR 637061 | Zbl 0495.60005

[10] O.A. Oleĭnik and E.V. Radkevič: Second order equations with nonnegative characteristic form, Amer. Math. Soc., Providence, Rhode Island and Plenum Press, New-York, 1973. | MR 457908

[11] R.M. Redheffer: The sharp maximum principle for nonlinear inequalities, Indiana Univ. Math. J. 21 (1971), 227-248. | MR 422864 | Zbl 0235.35007

[12] D.W. Stroock and S.R.S. Varadhan: On the support of diffusion processes with applications to the strong maximum principle, Proc. of 6-th Berkeley Symp. of Prob. and Math. Stat. Vol.III (1972), 333-359. | MR 400425 | Zbl 0255.60056

[13] D.W. Stroock and S.R.S. Varadhan: On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math. 25 (1972), 651-713. | MR 387812 | Zbl 0344.35041

[14] K. Taira: Diffusion processes and partial differential equations, Academic Press, New-York, à paraître. | MR 954835 | Zbl 0652.35003