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We begin by recalling the classical Sobolev inequality and

the Yamabe problem on Riemannian manifolds.

The Sobolev inequality in IRm , , m &#x3E; 3 , , is

The change of variable by dilation 20132013 ~(6x) ~ 6 &#x3E; 0 , y shows that

the only exponent q for which the inequality can hold is l/q = 1/2 - 1/m . =

The best constant C in the Sobolev inequality can be calculated by

considering the variational problem

Extremal functions exist and satisfy the Euler-Lagrange equation

Indeed, the extremal p constant functions are translations and dilations

of the function (See 1 11 .

However, the problem has more symmetries than dilation and

translation. For instance, the Kelvin transform y(x) 
preserves both numerator and denominator in the infinum above. This is

a special case of a more general phenomenon of conformal invariance.

Stereographic projection is a conformal transformation of the sphere

Sm to . The corresponding extremal problem on the sphere is rotation

invariant and the Kelvin transform in mm corresponds to reflection a-
m

cross the equator of S .

Let (M,g) be a Riemannian manifold of dimension m &#x3E;_ 3 , y with

scalar curvature K and Laplace-Beltrami quator ð . . If K is the scalar

curvature associated with the metric 9 = g( ( C (M), &#x3E; 0) then
-’BJ

K is given by
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A key feature of this formula is that the exponent q = 2m/(m-2) is the

same as the exponent q in the Sobolev inequality.

The (Riemannian) Yamabe problem is to find a metric of constant scalar

curvature among all conformal multiples of a given metric. Thus the problem

is equivalent to solving

for &#x3E; 0 , constant. In the case of ]R ,K = 0 ,

so that this is the same as equation (1). (On the other hand, IRm and

S m are conformally equivalent, so solving equation (1) is the same as

solving (2) in the case of Sm)
Equation (2) is the Euler-Lagrange equation for the variational

problem

Here  y &#x3E; denotes the (dual) metric induced by g on 1-forms and dV 
g

the volume element for g .

The best result to date is due to T. Aubin [~1~

Theorem Let (M~g) be a compact, Riemannian manifold of dimension 3

(a) depends only on the conformal class of g

(b)  , (Sm , standard metric) = standard metric) 0
o

(c)  u. y then the infinimum in (3) is attained by a positive,
00

C solution to (2). Thus the Yamabe problem is solved.

(d) If m &#x3E; 6 , y  p unless M is everywhere local ly conformal ly2013201320132013201320132013 - ’ o
equivalent to e . .

When m  6 , much less is known about when 

In this article I would like to discuss an analogous theorem

in the setting of CR manifolds. I would also like to point out why it
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would be useful to solve explicitly the problem on the Heisenberg

group analogous to (1) and to announce a partial result in that

direction. I will be describing joint work with John M. Lee ; details

will appear elsewhere.

There is a fa r-reaching analogy between conformal and CR

geometry. To illustrate this as vivially as possible, we summarize in

a table the most important parallels. This will serve as an outline

of the discussion that follows.

Conformal Geometry

Riemannian manifold (M,g)

Euclidean space IRm

m . 
m-sphere Sm in 1Rm+1

Stereographic projection

Riemannian normal coordinates

Scalar curvature K

Laplace-Beltrami operator p

r
Sobolev spaces Lk
Sobolev embedding L2 C LqI

Conformal change ; ’ 
"

Conformal invariant 

Yamabe equation :

CR Geometry

Pseudohermitian manifold (N,O)

Heisenberg group IHn

2n+l sphere S in (E n+1

Cayley transform

Folland-Stein normal coordinates

Webster scalar curvature R

Sublaplacian Ab (Re o b on functions)
, 

r
Folland-Stein spaces Sk
Sobolev embedding Lp ,1

Change of pseudohermitian structure

CR invariant X(N, 0)

CR Yamabe equation :

The H eisenberg group mn is the Lie group whose underlying
manifold is aen x IR with coordinates (z,t) - whose group

law is given by
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We will also denote elements of IH n by x and y . For x = ( z ~ t) the

dilations 6x = preserve the group law : 6(xy) = (6x)(5y). The

vector fields Zi - i z. are left-invariant and homogeneous
J J J

of degree - 1 with respect to dilations. The Haar measure dp for

the group is just Euclidean measure.

Consider the Sobolev-type inequality

for real-valued functions u . The change of variable by dilation

(noting that dp(6x) = 5 du(x)) shows that the only possible exponent

p is given by 1/p = 1/2 - 1/(2n+2) . Denote

The Euler-Lagrange equation associated to the extremal problem for (tt) is

The analogue of stereographic projection is as follows. The

Heisenberg group is identified with the boundary of the Siegel upper

half space

(z 2 t) 1 ) (z,w) , w = . Moreover, the domain  is biholomorphic

to the unit ball in (E n+l by the Cayley transform :

where C C 
I 1 . When restricted to the boundary this trans-

formation gives what we will call a CR equivalence between S 2n+l and.

n
IH .

A CR structure on a manifold N of dimension 2n+l is given

by a complex n-dimensional sub-bundle T I ,O of the complexified tangent
2013 

bundle 0152TN of N , satisfying T1 0 - We will assume that the

CR structure is integrable, i.e. the Lie bracket ,

and that there is a global non-vanishing real 1-form 0 annihilating
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. The Levi form is a hermitian form on Ti ,0 given by
 z,w &#x3E; 

o 
= - idQ(ZyW) for Z , W t Ti ,0 . We will also assume strict

pseudoconvexity, i.e., that the Levi form is positive definite. A

hypersurface in of real codimension 1 has a natural integrable

CR structure given by the holomorphic vectors of tangent to the

hypersurface. In particular S2n+i c 0152 n+i has a natural CR structure.

n+i
Local biholomorphisms of preserve the CR structure.

A pseudohermitian structure on a CR manifold N is a choice

n

of the 1-form 8 . With this choice, N has a natural volume form 

(non zero because N is strictly pseudoconvex). Dual to the Levi form

is an inner product on real 1-forms uu ~ given locally by

in which form an orthonormal basis for with respect

to the Levi form. The sublaplacian 6 b is defined on functions by

The operator ~b is subelliptic. In fact, it is the real part of the

Kohn-Spencer Laplacian Q b on functions 

S. Webster has defined a scalar curvature R associated with

a pseudohermitian structure [141. Under a change of pseudohermitian
structure 0 = 0 with p = 2 + 2/n y R transforms as calculated in [7]

A key point here is that the value of p is the same as the only possible

exponent p in (5t") . We will comment on this at length in the proof of

Theorem 1(a) which contains (4) as a special case.

Hence the problem of finding a pseudohermitian structure with constant

scalar curvature on a CR manifold N is equivalent to solving the

equation

00

for u C C (N), u &#x3E; 0 and X constant. Equation (5) is the Euler-Lagrange
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equation for the variational problem

In the case of IHn we put span 
, 1 n

The real 1-form is orthogonal to T 1 ,0
and the vectors Z1~...~Zn form on orthonormal basis with respect to
the Levi form for 8 o . The operator 6 b associated to e 0 is £ and the
scalar curvature for 1Hn with pseudohermitian structure 0 is zero.

o

Finally 0 Aden is a multiple of the standard volume form. Thus the
o 0

problem of finding the best constant in (~~) is equivalent to the varia-

tional problem

Our main theorem is

Theorem 1 Let N be a compact, strictly pseudoconvex integrable CR

manifold of dimension 2n+l .

(a) W(N,O) depends only on the CR structure , not the choice of 1-form o .

(b) , standard structure) - ,( ) _ X0 . .
o 0

00

(c) If  X0 , , then the infimum in (6) is attained by a C ,

positive solution to (5). Thus the pseudohermitian structure Q =u Q
v

has cons tant scal ar curvature R = 

S.S. Chern and R. Hamilton, while studying contact structure

on CR manifolds, have independently obtained a result which is equiva-

lent to part (c) in the case n = 1 and 0 .

Notice that we do not have an analogue to part (d) of

Aubin’s theorem. The reason is that we do not yet have the complete

solution to the problem of identifying extremals in problem (51’ ) .

Here is a partial result.

00

Theorem 2 The extremals to problem (51’ ) exist, and are positive C solu-

tions to (i~~). Moreover, if we assume in addition that the solution depends
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only on z and t , then it must take the form clt+ilzl2 + a )  for some
c &#x3E; 0 and some such that Im a &#x3E; 0 .

We conjecture that these are all the solutions up to left translation

on the Heisenberg group.

Main ideas of the proofs

It follows immediately that ~.(M,g) - p(M£ in other words part (a) of

Aubin’s theorem is proved. Likewise on a CR manifold N the transformati.on

law

N
Shows that = À(N,6). This formula follows from transformation

laws for R and Q b computed by J.M. Lee in [7]. Indeed, the case u = t

is (4) .

We first recognized that there must be a transformation law

like (7) by approaching it from another point of view. This point of view

not only sheds light on the significance of the invariance, but also

allows us to see in advance that the critical exponent p of the Sobolev

inequality (~~) will match the exponent of the transformation law (8).

In [41, C. Fefferman constructed a circle bundle C over N and a

Lorentz metric g on C such that a change in pseudohermitian structure

on N corresponds to a conformal change in g . It turns out that

the projection of C onto N carries the (Laplace-Beltrami) wave operator

to A b and the scalar curvature of g to a multiple of R (See [7" for

proofs). Thus the transformation law (8) follows from the corresponding

law (7) on C , once we realize that with m = dim C = 2n + 2 . The cri-

tical exponents p and q are equal.

The remainder of the proof of theorem 1 depends fundamentally

on the work of Folland and Stein 
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Recall that are homogeneous of degree -1 and that

o is homogeneous of degree 2 with respect to the dilations of 
o

Folland and Stein normal coordinates can be described as follows :

Lemma 1 Let (N,8) be a pseudohermitian manifold. Every point of N has

an open neighborhood 0 with an orthonormal frame W1,...,Wn for T N
I n 

- I ,O
defined on (2 and a C mapping 1? : ¿ illn (x L 2) such that $ (x) =(0,0)

- x x

and

We can now prove Theorem 1 b) . Denote

One first shows that for any 6 &#x3E; 0 there is a compactly supported function

u (in fact such that /] (u) =1 andQ (u)  À + 6 . The
o Q ( 0

_ 

. o 0

function n U(b- X) satisfio (u) - , 
0 

(u) - 1 andfunction = 5 u6x&#x3E; satisfies/? (u6 = 3 (u) = 1 and
6 06Q0 0

0 (u ) 6 = a 0 (u)  À 0 + c . Moreover the support of u 6 tends to zero
o

as 6 0 . Lemma 1 shows that V s (y) - (y)) satisfies
Ô u x

as v6&#x3E; - °o U&#x3E; and 30(v ) ._. 1 as b- 0 which proves Theorem 1 b) . A

refinement of this argument with an explicit formula for the extremal

on 1H n should yield an analogue to part d) of Aubin’s theorem.

In order to prove Theorem 1 c) we will need to state several

regularity theorems of Folland and Stein.

We will keep the notations of Lemma 1 and let X . - Re W . ,

X. = Im W. j = l.....n . Denote 
a 
=X J J J rx = (a.,...,a ) ,X . = Im W . j - 1 ... n . X - X ... X J (a , ... a ) ,J+n 

Im 
J 

j 1,....,n . Denote X - 
a 
1 a k 

where a 
1 ’ 

k

1 a .  2n , y 2 (a) = k . The Folland-Stein Sobolev spaces are defined by
J

A natural distance function is defined by

P(X,Y) = where )(z,t)j I = (lzl4 + t2)1/4 . . For any non-integer

P &#x3E; 0 we let k be the integer such that k  p  k+l and denote Folland-
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Stein Lipschitz classes by

Finally, ordinary Lipschitz classes ! are defined by

With the help of a partition of unity we can, of course, define S (N) y

Lemma 2 For p &#x3E; 0 non-integer, k an integer

(In order to compare h and A P/2 we have identified with its image

under 6 
x 

for some fixed X 6 I).)

S( 
- 2(Lemma 3 Suppose that f- L 0) for some s &#x3E; n + 1 that u S1 0),

u 0 , and j u + fu = 0 in the weak sense on ’ y then u is bounded
- b -

above and below by positive constants on any compact subset .

(This Harnack inequality is analogous to the one used by Trudinger C12].
It is proved, as is Trudinger’s , by Moser’s technique.)

The basic approach to a variational problem is to take a

minimizing sequence and to find a convergent subsequence. The problem

is that the exponent p is exactly the exponent for which the inclusion

s2(N) Z Lp(N) , while true, is not compact. Aubin overcame this difficultyI

in the Riemannian case with the help of the observation that the best

constant in the Sobolev inequality is the same for all compact m-manifolds

in the following sense : if [1 0 - (Sm , , standend metric) then for any
o

M and any 6 &#x3E; 0
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Subsequently, Aubin’s approach has been considerably simplified and

extended to a large number of elliptic problems. (See Brezis-Nirenberg [2J, y
P.L. Lions (~8~ and the surveys ~3,9~ where many further references can

be found.)

This leads to the natural conjecture :

Conjecture. If À = ,8 ), then for any compact (2n+l)-dimensional
- 0 0

pseudohermitian manifold (N,e) and any 6 &#x3E; 0 there exists C = C(N26)

such that.

If true, this conjecture would lead to a much simpler proof of Theorem 1 c).

A partition of unity reduces the conjecture to a local question. Un-

fortunately, Folland-Stein normal coordinates are not analogous to

Riemannian normal coordinates in one important respect : the norm

J f  df,df &#x3E; 
e 

inherited from N is not comparable to the norm 
oo

of 1Hn even in very small neighborhoods of the origin.

Nevertheless, Theorem 1 c) can be proved by a method analogous

to a proof of Aubin’s theorem due to K. Uhlenbeck [13]. The point is
that the regularity estimates in Lemmas 2 and 3 are uniform in a family

of (non-comparable) CR structures uniform not only in the base point
x of in the coordinate charts ~ but also under dilation.

x

We now sketch the proof. Consider the variational problems

, , 

00 

For r  p one can show a positive, C extremal u r exists and

Case 1.  

duri , , i s bounded on N uni formly as r.2013p . In this
20132013201320132013 

rj e j 

case one can choose a subsequence convergent in S2(N) (and Ls(N) for any1
s  oo) norm. Thus the limit function satisfies the equation (5) and the
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1 . By repeated application of Lemmas 2 and 3 ? we

find that u &#x3E; 0 .

We will show that this contradicts the strict inequality

h  
, Q ) .

p o

Choose x C N such that
v

max  du , du &#x3E; = du (x ) ’ du (x ) &#x3E; 5 We will consider u in

N 
r r8 rrrrQ r

local coordinates given by § . . Thus u is identified with a function

ri
in a neighborhood of the origin in ill and x is identified with the

origin. Define h (z.t) ~6 2/(r-2) u choose f - f(r) such
r r

this change of variable yields an equation for h 
r 

of the form
r

where £ 
r 

tends toward I (the sublaplacian of as r ~p and

R r is the scalar curvature of (N,O) after suitable change of variable

depending on x and 6 . The crucial point is that the norm inequalities

associated to Lemmas 2 and 3 for the CR structure associated are
, r

uniform as r p . Because 520130 y the domain of definition of h 
r 

tends

to the entire space run as r ~ p . Moreover, ’  d h r (x) , d h r (x) &#x3E;  1

since the maximum value at the origin is 1 . It follows from the

uniform versions of Lemmas 2 and 3 that a subsequence of the sequence

h r converges uniformly in, say, A1 +£ on compact subsets of run to

a limit h satisfying ~h = Xp h  on all of IHn . One can check that

(h)  00 and,3 eo (h)  1 . It follows from integration by parts
o o

that h gives the bound 0 X , a contradiction.
o p

’ 

We conclude by describing the idea of the proof of Theorem 2 .

(For Riemannian case, see Obata [10J and Gidas, Ni~ Nirenberg 
Given a positive COO solution to £u = depending only on z ! and

t we define a collection of functions h, of Izl, t and u and its
J

first and second derivatives and prove a formula of form

2
h2 - div(something).
J
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We conclude by integration by parts that each h. = 0 . These additional
J

equations are enough to specify u .
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