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SOME REMARKS ON ORDERED FIELDS

by Masayoshi NAGATA

Séminaire P. DUBREIL
(Algèbre)
28e année, 1974/75, n° 26, 4 p. 26 mai 1975

Let K be a field. It is well known that one can give an order in K so that K

becomes an ordered field if, and only if , K is formally real, namely, - 1

cannot be the sum of the squares of any finite number of elements in K . It is

also well known that a formally real field is of characteristic zero, hence it

contains the rational number field Q .

The purpose of the present note is to give some remarks on the structure of an

order of an ordered field and they can be stated in two theorems :

THEOREM 1. - Let K be an ordered field. Set

V = K ; - n  x  n for some natural number n)

and

P = (x E K; - (l/n)  x  1/n for every natural number n) .

Then ~V , P) is a valuation ring (i. e., V is a valuation ring with maximal

ideal P ~ , and the residue class field V/P is naturally isomorphic to a sub-

field of the real number field R .

Conversely,

THEOREM 2. - Let (V, P) be a valuation ring of a f ield K . Assume that there

is an injection 03C6 of the field V/P into the real number field R . Then one can

make K an ordered field so that ~V , P) coincides with such a pair defined in

Theorem 1 with respect to the given order.

Thus orders for a field K corresponds to valuation rings of K having residue
class fields contained in R . But the correspondence is not one-one, as we shall
discuss at the end of the article.

Proof of Theorem 1. - Assume that x E K and x ~ V . Then either x or - x

is greater than any natural number n, which implies that - (l/n)  X 1  1/~n
and therefore x~1 E P . Thus we see that (v ~ P) is a valuation ring of K . For

each x in V, we set

Then inf Sx exists in the real number field R. Let 03C8 be the mapping of V

in R such that 03C8x = inf Then one sees easily the 03C8 is a homomorphism
whose kernel coincides with P o



Before proving Theorem 2, we need

LEMMA 3. - Let be a maximally complete valuation ring (1) of a field
L such that

(i) W/P’ is algebraically closed and .

(ii) the value group of the valuation is divisible. Then the field L is alge-

braically closed.

Proof follows immediately from the definition of maximal completeness and we omit

the det ail s

Q. E. D.

, 

COROLLARY 4. - Let ~V , P) be a maximally complete valuation ring of a field K

such that

(i) V/P is real closed, and

(ii) the value group of the valuation is divisible. Then K is real closed ( z ).

By the way, we note that the following is immediate from the definition of maxi-

mal completeness. 
’

LEMMA 5. - Let be a maximally complete valuation ring of a field
L such that . 

(i) is algebraically closed, and

(ii) the value group of the valuation is divisible. Then the field L is alge-

braically closed.

Proof of Theorem 2. - In order to prove the theorem, we may replace K with an

extension field. Therefore, first of all, we may assume that V is maximally com-

plete. Then V is henselian and contains Q , and therefore every maximal subfield
K* of V forms a complete set of representatives for V/P . Therefore, extending
residue class field, we may assume that V/P = R . On the other hand, if the value
group G is not divisible, for instance if there is a g in G for which h

such that ph = g does not exist ( p being a prime number) , then we may add g/h
to G by adjoining, p-th root of an element whose value is g. Repeating such a
process, we may assume that G is divisible. Then corollary 4 implies that K is

~ ~ ) It is well known that a field K is real closed if, and only if, (i) K it-
self is not algebraically closed, and (ii) the algebraic closure of K is of fini-
te degree over K , or if, and only if, K(- 1) is algebraically closed besides
the condition (i) above.

( ) For the notion of maximal completeness ( due tA KAPLANSKY), see for instance ;SCHILLING (0. FJ G.). - The theory of valuations. - New York, American mathematical
Society, 1950 (Mathematical Surveys, 4).



real closed. K* may be identified with R. Furthermore, setting

we know that K is the disjoint union of S , -S , (0) , and K has a unique
structure as an ordered field. Under the order, a > b if, and only if, a..b E S .

( 1 ) Assume that a E P n S and that a > 1/n for a natural number n . Then

a - (1/n) = b2 with b ~ K . This implies that - (1/n) ~ b2 modulo P , which is

impossible because V/P = R . Thus a E P n S implies that a  1/n for every na-

tural number n . Therefore a’ o P implies that - ( ~,~n)  at  ~~n for every

natural number n .

(2) Assume that be S , b ~ V . Then and therefore b > n for

every natural number n by virtue of (1) above.

(3) Assume now that c E S n V . Then there is a K* , such that c-c* E P .
By ( 1 ) above, we see that - (1/n)  c - c*  1~n for every natural number n ,

hence c* - (l/n)  c  c* + 

In view of these ( ~) ~ (3), we see easily that the valuation ring defined by the
order of K coincides with V.

Q. E. D.

Remarks on the correspondance. - Many different orders of field K may give the
same valuation ring (V, P) . Roughly speaking, there are two kind of reasons for
this.

One is by the injection (p of V/P in R . Namely let t be a homomorphism of
V . into R whose kernel is P . Then, if 03C8 can be changed, then we surely have a
different order in K .

Thus, from now on, we fix 03C8 also. Then, another cause comes from the structure
of the value group G of the valuation defined by V . Namely, let G’ be

~ 2g ~ geG) .
For each g E G , let c 

g 
be an element of K whose value is g ; here, if

g E G’ , we choose c g to be a square element. Let U be the unit group of V ,
If g E G , then C g must be a positive element, hence c g u (u E u) is positive
if and only if, ~u is positive. Thus

PROPOSITION 6 . - If G==G’ (i. e., if G is 2-divisible), then the pair
(V , t~ ) defines an o rde r of K uniquely. 

~..........,... 
N 

If G ~ then we surely have arbitrarity in adjoining square roots on our way
to extend the value group G to a 2-divisible group, and the arbitrarity allows
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us to alter positivity of certain elements.
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