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MINIMAL INJECTIVE RESOLUTIONS

by Robert M. FOSSUM

Seminaire P. DUBREIL

(Algèbre)
28e annee, 1974/75, n° 16, 5 p. 7 avril 1975

0. Introduction.

, 
The many results about commutative noetherian rings which have a non -zero module

of finite type with finite injective dimension seem to indicate that the minimal

injective resolution of a module of finite type should contain a great amount of

information about the module. See for example PESKINE and SZIRO’s paper [5]. In

this report, I will outline a proof of a result due principally to FOXBY and

GRIFFITH (and proved independently by P. ROBERTS using differents methods) which
states :

If A is a noetherian local ring with maximal ideal n and if M is an A-

module of f inite type, then M) ~ 0 f or all j in the range

This can be interpreted as a rigidity result. It also gives information about the

minimal injective resolution of M . For if

is a minimal injective resolution of l~I , then the result states that the injective

envelope of the residue class field is a direct summand of 1~ for those integers

j in the range depth M ( j ~ id M . An interesting aspect of the proof is that

is uses HOCHSTER’s result establishing the existence of a maximal Cohen-Macaulay
module (not necessarily of finite type) for a local ring of characteristic p (see
HOCHSTER C4~~, while the result itself is independent of characteristic.

Complete details can be found in a paper by FOSSUM, FOXBY, GRIFFITH and REITEN

[2J.

1. Preliminary results.

Let A be a commutative noetherian local ring with maximal ideal m and residue

class field k = Let M be an A-module of finite type. It is standard that

and

So the question is : what happens to M) for j in the interval bet-

ween depth. M and idA M ?



BASS reported two results 

PROPOSITION 1. - If idA M  co , then id~ M = depth~ A .

PROPOSITION 2. - If id M = co , then 0 for all j with jdim A.

Much later FOXBY [3] extended the range in which 0 for very

special modules.

PROPOSITION 3. - If depth A~ depth 14 , then 0 for those j

with

depth M $: j ~ id N .

A diagram explains these results. The intervals with solid lines indicate the

range of j where 0 .

2. Main theorem.

The main theorem, which is stated in the local case in the introduction, follows :

THEOREM 1. - Let A be a noetherian ring and M an A-module of finite type.
Let

0 2014> M --> 1~ 2014> 1~ 2014> ...

be a minimal injective resolution of M . If j is an integer, if p ~ spec A ,

and if depthA Mp  j $ idA M , then the injective envelope of A/p is a direct

summand of Ij . P h P 

It is clear that we may assume that A is local and even complete, if necessary.

Furthermore we can assume that depth M  depth A by FOXBY’s result.

Reduction. - Let f , ... , f set of elements that regular

M-sequence and a regular A-sequence. Let  denote the ideal generated by these

elements. Since



it may be assumed that depth M = 0 .

3. The main lemma.

The principal lemma that connects the maximal Cohen-IIacaulay modules with the

problem under consideration follows. Let E(k) denote the injective envelope of k

as an A-module. The functor, that to M associates E(k)) is denoted by

M .

LEMMA 1 * - Suppose N is an A-module (not necessarily of finite type), suppose
... , is a regular N-sequence such that the annihilator

... , 

is proper and m-primary. If M is an A-module of finite type with depth M = 0 ,
then

for all i and j with ~ $ i ~ j .

Proof. - The proof goes by induction on j . Suppose j = 0 . Since

k) ~ ~ k , E(k)) ,

it is sufficient to show that k ~ ~ . But it is assumed that

is ~primary and therefore ... , ... , x )N. Hence
N/mN  0 . The assumption depth M = 0 is equivalent to the assumption that k is

isomorphic to a submodule of M . Therefore 0 implies 

The induction step uses the isomorphisms

and the exact sequences

to show that ... , x )N, 0 and therefore

LEMMA 2. - If ExtjA(k , M) =0 , then M)=:0 for all A-modules T

with 

Proofs - By induction on length, it is clear that M) = 0 for all A-

modules T of finite length. Otherwise write T = lim T where each T has fi-

nite length. Then



4. Proof of the theorem.

We assume, which we may, that A is a complete local ring and that depth M = 0 .

Suppose j is an integer in the range 0  j  dim A . Let d = dim A .

Suppose p is the characteristic of the residue class field. Let R = A/pA ..
We now quote a result due to HOCHSTER [4]. 

’

THEOREM 2. - If R is an equi-characteristic local ring of dimension t , then

there is an R-module T (not necessarily of finite type) such that if 
is a system of parameters of R, then ... , T and these elements

form a regular T-sequence. Such a T is called a maximal Cohen-Macaulay module.

Apply this theorem to the ring R above. If dim R = d - 1 , pick elements

... , x. in A that form a system of parameters in R and if dim R = dim A ,

pick ... , x. in A forming a system of parameters in R. Let T be a

maximal Cohen-Macaulay module for R. Set N = T/x d T (where x d = 0 in case

dim R = - 1 + dim A ). Then x , ... , x. is a regular N-sequence and

Ann N/(x , ... , is m-primary. Apply lemma 1 to get

... , M) ~ 0 for 0 ~ r~ d - 1 .

Apply lemma 2 to get Ext (k , N) ~ 0 for 1 . This proves the

theorem.

COROLLARY 1. - If j is an integer with j > depth M , then M) = 0
ify and only if’ id M  j .

COROLLARY 2. - If 0 -> M -> 1~ 2014> 1~ -> ... is an injective resolution of
M , then E(k) is a direct summand of 1~ if, and only if, depth M ~ j ~ id M .

Remark 1. - It does not follow, nor as examples show is it even true , that the

local cohomology modules 0 .

Remark 2. - If M is a nonzero module of finite type and finite injective dimen-
then id M = depth A . If depth A ~ depth M , then A is Cohen-Macaulay. If

depth M  depth A , then it is clear from the last paragraph of the proof that
dim A - depth A ~ 1 . In particular, if dim A = then the proof shows
that A is Cohen-Macaulay. But this also is easily obtained from [5’]
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