Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci
Séminaire Bourbaki : volume 2004/2005, exposés 938-951, Astérisque, no. 307 (2006), Exposé no. 947, p. 309-348
Nous présentons la preuve de la conjecture de Poincaré, concernant les variétés compactes simplement connexes de dimension 3, proposée par G. Perel’man. Elle repose sur l’étude de l’évolution de métriques riemanniennes sous le flot de la courbure de Ricci et sur les travaux antérieurs de R. Hamilton. Après une introduction aux techniques analytiques et géométriques développées par R. Hamilton, nous tentons de décrire la méthode de chirurgie métrique utilisée par G. Perel’man pour franchir les temps pour lesquels la courbure scalaire tend vers l’infini dans certaines parties de la variété. La preuve de la conjecture de Poincaré repose alors sur la preuve de l’extinction en temps fini du flot avec chirurgies, sous certaines hypothèses, que nous présentons dans la version élaborée par T. Colding et W. Minicozzi.
We present the proof of the Poincaré conjecture, on closed simply conneted three-manifolds, proposed by G. Perel'man. It relies on the study of riemannian metrics evoluting under the Ricci flow and on previous works by R. Hamilton. After and introduction to the analytical and geometrical techniques developped by R. Hamilton, we try to describe the technique of metric surgery used by G. Perel'man to go through the singular times for which the scalar curvature goes to infinity on certain parts of the manifold. the proof of the Poincaré conjecture then relies on the proof of the finite extinction time of the flow with surgeries, under certain assumptions, for which we present a version due to T. Colding and W. Minicozzi.
Classification:  57N10,  53C44,  58J35
Mots clés: variété de dimension 3, conjecture de Poincaré, flot de Ricci
@incollection{SB_2004-2005__47__309_0,
     author = {Besson, G\'erard},
     title = {Preuve de la conjecture de Poincar\'e en d\'eformant la m\'etrique par la courbure de Ricci},
     booktitle = {S\'eminaire Bourbaki : volume 2004/2005, expos\'es 938-951},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {307},
     year = {2006},
     note = {talk:947},
     pages = {309-348},
     zbl = {1181.53055},
     mrnumber = {2296423},
     language = {fr},
     url = {http://http://www.numdam.org/item/SB_2004-2005__47__309_0}
}
Besson, Gérard. Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci, dans Séminaire Bourbaki : volume 2004/2005, exposés 938-951, Astérisque, no. 307 (2006), Exposé no. 947, pp. 309-348. http://www.numdam.org/item/SB_2004-2005__47__309_0/

[1] M. Anderson - “Geometrization of three-manifolds via the Ricci flow”, Notices Amer. Math. Soc. 51 (2004), no. 2, p. 184-193. | MR 2026939 | Zbl 1161.53350

[2] L. Bessières - “Conjecture de Poincaré : la preuve de R. Hamilton et G. Perelman”, La gazette des mathématiciens 106 (2005). | MR 2191421 | Zbl 1129.53045

[3] J.-P. Bourguignon - “L'équation de la chaleur associée à la courbure de Ricci”, in Séminaire Bourbaki 1985-86, Exp. n 653, Astérisque 145-146, Société Mathématique de France, 1987, p. 45-61. | Numdam | MR 880025 | Zbl 0613.53018

[4] D. Burago, Y. Burago & S. Ivanov - A course in metric geometry, Graduate Studies in Mathematics, vol. 33, Amer. Math. Soc. Providence R.I., 2001. | MR 1835418 | Zbl 0981.51016

[5] J. Cheeger & D. Ebin - Comparison theorems in Riemannian geometry, North-Holland Publishing Co., Amsterdam-Oxford, 1975. | MR 458335 | Zbl 1142.53003

[6] J. Cheeger & M. Gromov - “Collapsing Riemannian manifolds while keeping their curvature bounded I”, J. Differential Geometry 23 (1986), p. 309-346. | MR 852159 | Zbl 0606.53028

[7] -, “Collapsing Riemannian manifolds while keeping their curvature bounded II”, J. Differential Geometry 32 (1990), p. 269-298. | MR 1064875 | Zbl 0727.53043

[8] B.-L. Chen & X.-P. Zhu - “Ricci flow with surgery on four-manifolds with positive isotropic curvature”, ArXiv : math.DG/0504478v1, april 2005. | MR 2258799 | Zbl 1103.53036

[9] X. Chen, P. Lu & G. Tian - “A note on uniformization of Riemann surface by Ricci flow”, ArXiv :math.DG/0505163, may, 10 2005. | MR 2231924 | Zbl 1113.53042

[10] B. Chow - “On the entropy estimate for the Ricci flow on compact 2-orbifolds”, J. Differential Geometry 33 (1991), p. 597-600. | MR 1094471 | Zbl 0734.53034

[11] -, “The Ricci flow on the 2-sphere”, J. Differential Geometry 33 (1991), p. 325-334. | MR 1094458 | Zbl 0734.53033

[12] B. Chow & S.-C. Chu - “A geometric interpretation of Hamilton's Harnack inequality for the Ricci flow”, ArXiv : math.DG/0211349, November, 22 2002. | MR 1362964 | Zbl 0856.53030

[13] B. Chow & D. Knopf - The Ricci flow : an introduction, Mathematical surveys and monographs, vol. 110, A.M.S., 2004. | MR 2061425 | Zbl 1086.53085

[14] B. Chow & P. Lu - “The time-dependent maximum principle for systems of parabolic equations subject to an avoidance set”, ArXiv : math.DG/0211209, november 2002, To appear in Pacific J. Math. | Zbl 1049.35101

[15] B. Chow & L.-F. Wu - “The Ricci flow on compact 2-orbifolds with curvature negative somewhere”, Comm. on Pure and Appl. Math. 44 (1991), p. 275-286. | MR 1090433 | Zbl 0745.58047

[16] T. Colding & W. Minicozzi - “Estimates for the extinction time for the Ricci flow on certain three-manifolds and a question of Perelman”, J. Amer. Math. Soc. 18 (2005), no. 3, p. 561-569. | MR 2138137 | Zbl 1083.53058

[17] D. Deturck - “Deforming metrics in the direction of their Ricci tensors”, J. Differential Geometry 18 (1983), p. 157-162. | MR 697987 | Zbl 0517.53044

[18] Y. Ding - “Notes on Perelman's second paper”, http://www.math.uci.edu/~yding/perelman.pdf.

[19] M. Gage & R. Hamilton - “The heat equation shrinking convex plane curves”, J. Differential Geometry 23 (1986), p. 69-96. | MR 840401 | Zbl 0621.53001

[20] S. Gallot, D. Hulin & J. Lafontaine - Riemannian geometry, Universitext, Springer-Verlag, 2004. | MR 2088027 | Zbl 0636.53001

[21] M. Grayson - “The heat equation shrinks embedded plane curves to round points”, J. Differential Geometry 26 (1987), p. 285-314. | MR 906392 | Zbl 0667.53001

[22] -, “Shortening embedded curves”, Ann. of Math. 129 (1989), p. 71-111. | MR 979601 | Zbl 0686.53036

[23] R. Greene - “A genealogy of noncompact manifolds of nonnegative curvature : history and logic”, in Comparison geometry, M.S.R.I. publications, vol. 30, M.S.R.I., 1997, p. 99-134. | MR 1452869 | Zbl 0884.53029

[24] R. Hamilton - “Three-manifolds with positive Ricci curvature”, J. Differential Geometry 17 (1982), p. 255-306. | MR 664497 | Zbl 0504.53034

[25] -, “Four-manifolds with positive curvature operator”, J. Differential Geometry 24 (1986), p. 153-179. | MR 862046 | Zbl 0628.53042

[26] -, “The Ricci flow on surfaces”, in Mathematics and general relativity (Santa Cruz 1986), Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, p. 237-262. | MR 954419 | Zbl 0663.53031

[27] -, “The Harnack estimate for the Ricci flow”, J. Differential Geometry 37 (1993), no. 1, p. 225-243. | MR 1198607 | Zbl 0804.53023

[28] -, “A compactness property for solutions of the Ricci flow”, Amer. J. Math. 117 (1995), no. 3, p. 545-572. | MR 1333936 | Zbl 0840.53029

[29] -, “The formation of singularities in the Ricci flow”, in Surveys in differential geometry, vol. II, International Press, Cambridge MA, 1995, p. 7-136. | MR 1375255

[30] -, “Four-manifolds with positive isotropic curvature”, Comm. Anal. Geom. 1 (1997), p. 1-92. | MR 1456308 | Zbl 0892.53018

[31] -, “Non-singular solutions of the Ricci flow on three-manifolds”, Comm. Anal. Geom. 7 (1999), no. 4, p. 625-729. | MR 1714939 | Zbl 0939.53024

[32] A. Hatcher - “Notes on basic 3-manifold topology”, http://www.math.cornell.edu/~hatcher, 1997.

[33] G. Huisken - “Ricci deformation of the metric on a Riemannian manifold”, J. Differential Geometry 21 (1984), no. 1, p. 47-62. | MR 806701 | Zbl 0606.53026

[34] T. Ivey - “Ricci solitons on compact three-manifolds”, Diff. Geom. Appl. (1993), p. 301-307. | MR 1249376 | Zbl 0788.53034

[35] J. Jost - Two-dimensionnal geometric variational problems, J. Wiley-Intersciences, Chichester N.Y., 1991. | MR 1100926 | Zbl 0729.49001

[36] B. Kleiner & J. Lott - “Notes on Perelman's papers”, http://www.math.lsa.umich.edu/research/Ricci flow/ perelman.html, december 30 2004. | Zbl 1204.53033

[37] O. Ladysenskaja, V. Solonnikov & N. Uralceva - Linear and quasilnear equations of parabolic type, Transl. Amer. Math. Soc., vol. 23, Amer. Math. Soc., 1968. | MR 241822 | Zbl 0174.15403

[38] P. Li & S. T. Yau - “On the parabolic kernel of the Schrödinger operator”, Acta Math. 156 (1986), no. 3-4, p. 153-201. | MR 834612 | Zbl 0611.58045

[39] S. Maillot - “Flot de Ricci et géométrisation des variétés de dimension 3.”, Notes informelles, juin 2004.

[40] C. Margerin - “Pointwise pinched manifolds are space forms”, in Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, RI, 1986, p. 307-328. | MR 840282 | Zbl 0587.53042

[41] M. Micallef & J. Moore - “Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes”, Ann. of Math. 127 (1988), p. 199-227. | MR 924677 | Zbl 0661.53027

[42] J. Milnor - “Towards the Poincaré conjecture and the classification of 3-manifolds”, Notices Amer. Math. Soc. 50 (2003), p. 1226-1233. | MR 2009455 | Zbl 1168.57303

[43] J. Morgan - “Recent progress on the Poincaré conjecture”, Bull. Amer. Math. Soc. 42 (2005), no. 1, p. 57-78. | MR 2115067 | Zbl 1100.57016

[44] G. Perelman - “The entropy formula for the Ricci flow and its geometric applications”, ArXiv : math.DG/0211159, november 2002. | Zbl 1130.53001

[45] -, “Finite extinction time for the solutions to the Ricci flow on certain three-manifolds”, ArXiv : math.DG/0307245, july 2003. | Zbl 1130.53003

[46] -, “Ricci flow with surgery on three-manifolds”, ArXiv : math.DG/0303109, march 2003.

[47] V. Poenaru - “Poincaré et l'hypersphère” 41 (2003), p. 52-57.

[48] H. Poincaré - “Cinquième complément à l'analysis situs”, Rend. Circ. Mat. Palermo 18 (1904), p. 45-110. | JFM 35.0504.13

[49] M. Protter & H. Weinberger - Maximum principles in differential equations, Mathematical surveys and monographs, vol. 110, A.M.S., 2004. | Zbl 0153.13602

[50] P. Scott - “The geometries of 3-manifolds”, Bull. London Math. Soc. 15 (1983), p. 401-487. | MR 705527 | Zbl 0561.57001

[51] N. Sesum, G. Tian & X. Wang - “Notes on Perelman's paper on the entropy formula for the Ricci flow and its applications”, Notes, september 24 2003.

[52] W.-X. Shi - “Deforming the metric on complete Riemannian manifolds”, J. Differential Geometry 30 (1989), no. 1, p. 223-301. | MR 1001277 | Zbl 0676.53044

[53] -, “Ricci deformation of the metric on complete noncompact Riemannian manifolds”, J. Differential Geometry 30 (1989), no. 2, p. 303-394. | MR 1010165 | Zbl 0686.53037

[54] T. Shioya & T. Yamaguchi - “Collapsing three-manifolds under a lower curvature bound”, J. Differential Geometry 56 (2000), p. 1-66. | MR 1863020 | Zbl 1036.53028

[55] -, “Volume collapsed three-manifolds with a lower curvature bound”, ArXiv : math.DG/0304472, April, 15 2003.

[56] W. P. Thurston - The geometry and topology of 3-manifolds, Lecture Notes, Princeton University, 1979.

[57] -, “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Amer. Math. Soc. 6 (1982), no. 3, p. 357-381. | MR 648524 | Zbl 0496.57005

[58] P. Topping - “Lectures on the Ricci flow”, Communication privée, 9 mai 2005. | MR 2265040 | Zbl 1105.58013

[59] L.-F. Wu - “The Ricci flow on 2-orbifolds with curvature”, J. Differential Geometry 33 (1991), p. 575-596. | MR 1094470 | Zbl 0735.53030

[60] -, “The Ricci flow on 2-orbifolds with positive curvature”, J. Differential Geometry 33 (1991), p. 575-596. | MR 1094470 | Zbl 0735.53030

[61] R. Ye - “Notes on the reduced volume and asymptotic Ricci solitons of κ-solutions”, http://www.math.ucsb.edu/~yer/ricciflow.html, december 20.