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CATALAN’S CONJECTURE

[after Mihăilescu]

by Yuri F. BILU

To E.W.

1. INTRODUCTION

In 1844 Crelle’s journal published the following note [13].

Note
extraite d’une lettre adressée à l’éditeur par Mr. E. Catalan, Répétiteur à

l’école polytechnique de Paris.

Je vous prie, Monsieur, de vouloir bien énoncer, dans votre recueil, le

théorème suivant, que je crois vrai, bien que je n’aie pas encore réussi à

le démontrer complètement : d’autres seront peut-être plus heureux :

Deux nombres entiers consécutifs, autres que 8 et 9, ne peuvent être

des puissances exactes ; autrement dit : l’équation x
m

− y
n = 1, dans

laquelle les inconnues sont entières et positives, n’admet qu’une seule

solution.

Thus, we have the following conjecture.

Conjecture 1.1 (Catalan). — Equation xu − yv = 1 has no solutions in integers

x, y, u, v > 1 other than 32 − 23 = 1.

Now, 158 years after, the conjecture is completely proved. Let us briefly review the

most important events which lead to the solution of this celebrated problem. This is

not a comprehensive historical account of Catalan’s problem; the latter can be found

in Ribenboim’s book [34] and Mignotte’s survey [26].

Seven years after Catalan’s note appeared, Lebesgue [21] proved that equation

xm − y2 = 1 has no solutions in positive integers x, y, m with m > 1. In 1965 Ko

Chao [18] showed that equation x2 − yn = 1 has no solutions in positive integers x, y, n

with n > 1 other than 32 − 23 = 1. These two results reduce Catalan’s conjecture to

the following assertion.
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Conjecture 1.2. — Equation

(1) xp − yq = 1

has no solutions in non-zero integers x, y and odd primes p, q.

Notice that we no longer assume x and y positive. It is convenient, because now

the problem is symmetric: if (x, y, p, q) is a solution, then so is (−y,−x, q, p). This

will be repeatedly used in the sequel.

From now on Conjecture 1.2 will be referred to as Catalan’s conjecture and (1) as

Catalan’s equation.

Cassels [12] discovered important arithmetical properties of solutions of Catalan’s

equation. His results (see Proposition 2.1) are indispensable in most of the subsequent

works on Catalan’s equation.

In 1976 Tijdeman [37] made a breakthrough. Using Baker’s theory, he proved that

the exponents p and q are bounded by an explicit absolute constant. Together with

the classical result of Baker [6] this implies that |x| and |y| are bounded by an explicit

absolute constant as well, and Catalan’s problem is thereby decidable.

In a different direction, Inkeri [16, 17] and others obtained algebraic criteria of

solubility of (1) in terms of the exponents p and q. In the nineties, Mignotte and

Roy used Inkeri-type criteria, Tijdeman’s argument and electronic computations to

obtain tight lower and upper bounds for p and q. (Upper bounds were also obtained

by Blass et al. [10] and O’Neil [32].) By 2000, it was proved that p and q lie between

107 and 1018. See [29] for more precise results and a survey of this period.

In 1999 Preda Mihăilescu enters the scene. In his first paper [29] he drastically

refined Inkeri’s criterion. And quite recently, after several unsuccessful attempts, he

finally settled [30] Catalan’s conjecture:

Theorem 1.3 (Mihăilescu). — Conjecture 1.2 is true.

The present paper contains a reasonably self-contained proof of this result.

Plan of the paper. — In Section 2 we recall Cassels’ relations and derive their imme-

diate consequence, in particular, Hyyrö’s lower bounds for |x| and |y|. In Section 3 we

very briefly review algebraic criteria for Catalan’s equation in terms of p and q, and

prove Mihăilescu’s“double Wieferich”criterion. In Section 4 we use binary logarithmic

forms, Tijdeman’s argument, and computations by Mignotte and Roy to show that

p 6≡ 1 mod q. Section 5 contains general lemmas. In Section 6 Theorem 1.3 is reduced

to three more technical statements, which are proved in the three final section.
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1.1. Notation

In the sequel we assume, unless the contrary is indicated explicitly, that x, y are

non-zero integers and p, q are odd prime numbers satisfying

(2) xp − yq = 1.

As we had already noticed, (2) implies that (−y)q − (−x)p = 1, and all the statements

below remain true with x, y, p, q replaced by −y,−x, q, p.

We denote by ζ a primitive p-th root of unity and put

K = Q(ζ), G = Gal(K/Q).

The principal ideal (1 − ζ) will be denoted by p. Recall that it is a prime ideal of K

and that (p) = pp−1.

More specific notation will be introduced at the appropriate places.

2. CASSELS’ RELATIONS AND LOWER ESTIMATES FOR |x|
AND |y|

Cassels [12] proved that q|x and p|y. More precisely, he established the following

relations.

Proposition 2.1 (Cassels). — There exist a non-zero integer a and a positive inte-

ger v such that

x − 1 = pq−1aq , y = pav,(3)

xp − 1

x − 1
= pvq,(4)

and, symmetrically, there exist a non-zero integer b and a positive integer u such that

y + 1 = qp−1bp, x = qub,(5)

yq + 1

y + 1
= qup.(6)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2004



4 Y.F. BILU

The following consequence is crucial.

Corollary 2.2. — The number λ := (x − ζ)/(1 − ζ) is an algebraic integer. The

principal ideal (λ) is a q-th power of an ideal of the field K.

Proof. — Since p|(x−1) by (3), the prime ideal p = (1 − ζ) divides x − ζ , but p2 does

not. Hence λ is an algebraic integer, not divisible by p, and the same is true for its

conjugates λσ , where σ ∈ G. Identity (1 − ζσ)λσ − (1 − ζτ )λτ = ζτ − ζσ implies that

for distinct σ, τ ∈ G, the greatest common divisor of λσ and λτ divides (ζτ − ζσ) = p.

Hence the numbers λσ are pairwise co-prime.

Now rewrite (4) as
∏

σ∈G λσ = vq . Since the factors are pairwise co-prime, each

principal ideal (λσ) is a q-th power of an ideal.

Cassels’ relations imply various lower estimates for the variables x and y in terms

of p and q. For instance, (3) and (5) immediately yield

|x| > pq−1 − 1,(7)

|y| > qp−1 − 1,(8)

and this can be refined without much effort.

Hyyrö [15] obtained an estimate of a different kind: |x| > q(2p + 1)(2qp−1 + 1)

(and similarly for |y|). Since Hyyrö’s paper is not easily available, I prove below a

slightly weaker estimate, which is totally sufficient for our purposes. It is an easy

consequence of the following proposition.

Proposition 2.3. — If p does not divide q − 1 then qp−2
∣∣ (u − 1).

Proof. — Rewriting (6) as
(
(−y)q−1 − 1

)
+

(
(−y)q−2 − 1

)
+ · · · + (−y − 1) = q (up − 1) ,

we deduce that (y + 1) |(q (up − 1)) . Now (5) implies that up ≡ 1 mod qp−2. Since p

does not divide the order qp−3(q − 1) of the multiplicative group mod qp−2, this im-

plies that u ≡ 1 mod qp−2.

Corollary 2.4. — We have |x| > qp−1.

Proof. — If p|(q − 1) then p < q and the result follows from (7). If p does not di-

vide q − 1 then qp−2
∣∣ (u − 1), and, since u is positive, this implies u > qp−2 + 1. Since

x = qub, we have |x| > qu > qp−1 + q, better than wanted.

Remark 2.5. — This version of Hyyrö’s argument is due to Mignotte and Bugeaud.

It was kindly communicated to me by Yann Bugeaud. Using more advanced tools,

Mihăilescu [30, Appendix A] obtained a much sharper estimate |x| >
(
q2p−2/2

)4
.
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3. ALGEBRAIC CRITERIA

Using Cassels’ relations and some algebraic number theory, one may get various

algebraic criteria of solvability of Catalan’s equation with given exponents p and q.

The most famous criterion is due to Inkeri [16, 17]:

Theorem 3.1 (Inkeri). — With the notation of Subsection 1.1, put Kp = Q(
√−p)

if p ≡ 3 mod4 and Kp = K if p ≡ 1 mod 4. Then either pq−1 ≡ 1 mod q2 or q divides

the class number of the field Kp.

It will be explained in Subsection 4.4 how algebraic criteria of this kind, together

with electronic computations, allow one to obtain lower bounds for p and q.

Refinements of and supplements for Inkeri’s criterion were suggested by Mignotte

[25], Schwarz [35] and others; see [26] for a survey of these results. I would es-

pecially mention the paper by Bugeaud and Hanrot [11], which strongly influenced

Mihăilescu’s work.

Verification of Inkeri’s criterion for a given pair (p, q) requires computing certain

class numbers, which seriously affects its computational efficiency. Mihăilescu [29]

made a major step forward, showing that the class number condition can be omitted.

Theorem 3.2 (Mihăilescu). — For any solution of (x, y, p, q) of (2) we have q2|x
and

(9) pq−1 ≡ 1 mod q2.

Congruence (9) (called Wieferich’s relation) will be used in Section 4 to prove that

p 6≡ 1 mod q. Relation q2|x is crucial in the proof of Theorem 6.3.2.

By symmetry, one has qp−1 ≡ 1 mod p2. Pairs (p, q), satisfying this and (9) are

called double Wieferich pairs. Only six such pairs are currently known:

(2, 1093), (3, 1006003), (5, 1645333507), (83, 4871), (911, 318917), (2903, 18787).

I sketch the proof of Theorem 3.2, because it is very instructive and can serve as a

good model of the much more involved proof of Theorem 1.3. See [24,33] for different

proofs.

3.1. Proof of Theorem 3.2

For a ∈ {1, 2, . . . , p − 1} let σa be the element of G = Gal(K/Q) be defined by

ζ 7→ ζa. In the group ring Z[G] consider elements

Θc =

p−1∑

a=1

bac/pcσ−1
a (c = 1, 2, . . . , p − 1).

In particular, Θ1 = 0 and Θ2 = σ(p+1)/2 + · · · + σp−1. Ideal I = (Θ1, Θ2, . . . , Θp−1)

of Z[G] is called the Stickelberger ideal. Its main property is the Stickelberger theorem:
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any Θ ∈ I annihilates the class group of K. That is, for any ideal a of K and any

Θ ∈ I, the ideal aΘ is principal. See [39, Section 6.2] for the details.

Let ι = σp−1 be the complex conjugation. Mihăilescu proves the following assertion.

Proposition 3.1.1. — For any Θ ∈ (1 − ι)I, the element (x − ζ)Θ is a q-th power

in K.

Proof. — Write Θ = (1 − ι)Θ′, where Θ′ ∈ I . Put λ := (x − ζ)/(1 − ζ). By Corol-

lary 2.2 the principal ideal (λ) is a q-th power: (λ) = aq. By the Stickelberger the-

orem aΘ′

is a principal ideal, say, (α). It follows that
(
λΘ′

)
= (α)q , or λΘ′

= ηαq ,

where η is a unit of K. We obtain

(10) (x − ζ)Θ =

(
1 − ζ

1 − ζ

)Θ′

η

η

(α

α

)q

.

Since η is a unit, η/η is a root of unity(1) . The quotient (1 − ζ)/(1 − ζ) is a root of

unity as well. Thus, (x − ζ)Θ is a q-th power times a root of unity. Since any root of

unity in K is a q-th power, so is (x − ζ)Θ.

Proof of q2|x. — Since (1 − ζx)Θ is equal to (x − ζ)Θ times a root of unity, it is a q-th

power as well. On the other hand, q|x implies that (1 − ζx)Θ ≡ 1 mod q. Since q is

unramified in K, this implies that (1 − ζx)Θ ≡ 1 mod q2 (cf. Proposition 5.3.1 below).

However, if Θ =
∑

σ∈G nσσ, then a quick calculation shows that

(1 − ζx)Θ ≡ 1 − x
∑

σ∈G

nσζσ mod q2.

It follows that either q2|x or q|∑σ∈G nσζσ . In the latter case q|nσ for any σ ∈ G.

However, this is not true if, for instance,

Θ = (1 − ι)Θ2 = −σ−1
1 − · · · − σ−1

(p−1)/2 + σ−1
(p+1)/2 + · · · + σ−1

p−1.

Thus, q2|x. .

Proof of (9). — This is just an elementary exercise. Since q2|x, the first equality

in (3) implies that

(11) pq−1aq ≡ −1 mod q2.

Since pq−1 ≡ 1 mod q, we have aq ≡ −1 mod q, which implies aq ≡ −1 mod q2, which,

together with (11), implies (9).

(1)It is an algebraic integer, and for any σ ∈ G we have |(η/η)σ | = 1
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4. LOGARITHMIC FORMS, TIJDEMAN’S ARGUMENT AND THE

RELATION p 6≡ 1 mod q

As I mentioned in the introduction, Tijdeman [37] applied Baker’s theory of

logarithmic form to establish an effective upper bound for the solutions, reducing the

problem to a finite computation. In this section we use Tijdeman’s argument and

electronic computations due to Mignotte and Roy to prove the following important

theorem.

Theorem 4.1. — Let (x, y, p, q) be a solution of (2). Then p 6≡ 1 mod q.

The relation p 6≡ 1 mod q is indispensable for Mihăilescu’s proof. It is repeatedly

used in Section 6 and in the proof of Theorem 6.3.2. A reader ready to take Theo-

rem 4.1 for granted may skip the rest of this section.

When writing this section, I profited a lot from helpful explanations and suggestions

of Maurice Mignotte and Andrew Glass.

4.1. Logarithmic forms

In this subsection we recall Baker’s lower bound for logarithmic forms

Λ = b1 log α1 + · · · + bn log αn.

Here b1, . . . , bn are non-zero integers and α1, . . . , αn are usually algebraic numbers.

To avoid unnecessary technicalities, we shall assume that α1, . . . , αn are positive ra-

tional numbers, distinct from 1. This is totally sufficient for applications in Catalan’s

problem.

Define the height of a rational number α = µ/ν (where µ and ν are relatively prime

integers) by h(α) = log max{|µ|, |ν|}. Assume that Λ 6= 0. Then it is rather easy to

bound |Λ| from below. Indeed, eΛ − 1 is a non-zero rational number with denominator

bounded by e(h(α1)+···+h(αn))B , where

B = max{|b1|, . . . , |bn|}.
It follows that

(12) |Λ| � e−(h(α1)+···+h(αn))B ,

where here and below in this subsection the positive constants implied by O(·),
� and � are absolute and effective.

However, (12) is too weak for applications: one needs o(B) in the exponent. Such an

estimate was obtained by Gelfond [14] for n = 2 and by Baker [2–5] in the general case.

Baker’s inequality belongs to the top arithmetical results of the twentieth century.

The modern estimate [7, 22, 23, 38] is of the form

(13) |Λ| > e−c(n)h(α1)···h(αn) log B
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(provided Λ 6= 0.) See the recent volume [40] for the history of the subject and the

present state of art.

When one wants to be explicit, the numerical value of the constant c(n) becomes

vital. For growing n, the best result is due to Matveev [22, 23], who showed that one

may take c(n) = cn with an explicit absolute constant c.

However, in Catalan’s problem one uses (13) only with n = 2 and n = 3. Therefore

it is practical to have special bounds for these two cases, which are numerically sharper

than the general bound (13). Such bounds were obtained by Laurent, Mignotte and

Nesterenko [20] for binary forms and by Bennett et al. [8] for ternary forms. Here is a

simplified form of the Laurent-Mignotte-Nesterenko result (see Corollary 2 from [20,

Section 2]), to be used in Subsection 4.3 below.

Proposition 4.1.1. — Let α1, α2 be multiplicatively independent positive ratio-

nal numbers and b1, b2 positive integers. Let A1, A2 be real numbers satisfying

Ai > max{h(αi), 1} for i = 1, 2. Put B = b1/A2 + b2/A1 and Λ = b1 log α1 − b2 log α2.

Then

(14) log |Λ| > −24.34 (max {log B + 0.14, 21})2
A1A2.

This is asymptotically weaker than (13) when B grows (because log B is replaced

by (log B)2), but for small B inequality (14) is very sharp numerically.

I do not formulate the result of [8], because it is very involved and will not be used

here.

4.2. An informal introduction to Tijdeman’s argument

In this subsection we assume that p > q. In Catalan’s problem, the most obvious

logarithmic form to try is Λ = p log |x| − q log |y|. The upper estimate is obvious:

|Λ| 6 |x|−p. The lower estimate coming from (13) is |Λ| > e−O(p log |x| log |y|), and

comparing the two estimates does not yield any interesting consequence.

Tijdeman’s [37] brilliant idea was to use Λ = q log |y + 1| − p log |x|. Upper bound

is now slightly worse: Λ| � q|y|−1. For the lower bound, we use Cassels’ relations (6)

to obtain Λ = p log α − q log q, where α = (q|b|)q−1u−1 (recall that u > 0). It is easy to

show (see Subsection 4.3) that h(α) = log |u| + O(1) 6 (q/p) log |y| + O(1). Now (13)

implies that |Λ| > e−O((q/p) log |y| log q log p), which, compared with the lower estimate,

implies that

(15) p � q log q log p.

If (14) is used instead of (13), then one obtains the slightly weaker inequality

(16) p � q log q(log p)2.

Similarly, using

Λ = q log |y + 1| − p log |x − 1| = pq log β − q log q + p log p
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with β = bq/ap, one obtains the estimate

(17) q � (log p)2 log q.

Together with (15) this implies an effective upper bound for p, as wanted.

As I already mentioned in Subsection 4.1, Tijdeman’s argument does not require

the full strength of Baker’s inequality. One needs a lower bound for binary logarithmic

forms to obtain (15) and a lower bound for ternary logarithmic form to obtain (17).

Langevin [19] made Tijdeman’s work explicit by proving that p, q 6 10110. This

bound has been refined several times until O’Neil [32] (see also [10]) proved that

p 6 3.2 · 1017 and q 6 2.6 · 1012, and Mignotte [29] announced that p 6 7.8 · 1016 and

q 6 7.2 · 1011. Mignotte used the already mentioned bounds for binary and ternary

logarithmic forms from [20] and [8], respectively.

4.3. Explicit Tijdeman’s inequality

In this subsection we apply Proposition 4.1.1 to obtain an explicit analogue of (16).

Proposition 4.3.1. — For any solution of (2) we have

(18) p 6 24.34 q

(
max

{
log

p + 1

log q
+ 0.14, 21

})2

log q.

Inequality (18) will be used in Subsection 4.5. It is less sharp than the correspond-

ing results from [27] and [10], but easier to prove and sufficient for our purposes.

Proof of Proposition 4.3.1. — We may assume that

(19) p > 10000 q log q,

and, in particular, p > q, since otherwise (18) holds trivially.

As indicated in Subsection 4.2, we will compare upper and lower estimates for the

quantity

Λ = q log |y + 1| − p log |x| = p logα − q log q,

with α = (q|b|)q−1u−1, where b ∈ Z and u ∈ Z>0 are defined in Proposition 2.1.

The upper estimate is trivial. Rewriting Catalan’s equation (2) as

p log |x| = q log |y| + log(1 + y−q),

we obtain

(20) Λ = q log
(
1 + y−1

)
− log

(
1 + y−q

)
.

Since | log(1 + t)| 6 2|t| for |t| 6 1/2, this implies that

(21) |Λ| 6 2|y|−q + 2q|y|−1
6 3q|y|−1,

and |Λ| < 1 by (8). Equality (20) implies also that Λ 6= 0: the first term always

dominates over the second one.
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For the lower bound, let us estimate h(α). Since

log
(
(q|b|)q−1

)
= log u + (Λ + q log q)/p 6 log u + 1,

we have h(α) 6 log u + 1. Also, q and α are multiplicatively independent: other-

wise, Λ would have been a multiple of log q, contradicting the previously established

inequality 0 < |Λ| < 1.

Thus, we are in a position to use Proposition 4.1.1. We obtain

(22) log |Λ| > −24.34 (max {log B + 0.14, 21})2 (log u + 1) log q

with B = p/ log q + q/(log u + 1). Proposition 2.3 and (19) imply that

(23) u > qp−2
> e9000 q(log q)2 .

Hence B 6 (p + 1)/ log q . Substituting this into (22) and combining the resulting

inequality with (21), we obtain

(24)
log |y|
log u

6 24.34

(
max

{
log

p + 1

log q
+ 0.14, 21

})2

log q

(
1 +

1

log u

)
+

log(3q)

log u
.

Further, (6) implies that q|y|q−1 > qup, whence

(25) p 6 (q − 1)
log |y|
log u

6 24.34(q−1)

(
max

{
log

p + 1

log q
+ 0.14, 21

})2

log q

(
1 +

1

log u

)
+

(q − 1) log(3q)

log u
.

Using (19) and (23), one easily shows that the right-hand side of (25) does not exceed

the right-hand side of (18). The proposition is proved.

4.4. Lower bounds for p and q

One can bound exponents p and q from below, using algebraic criteria (see Sec-

tion 3) and electronic computations. This has been realized by Mignotte and Roy [27–

29]. To show that q > Q0, one has to verify an algebraic criterion (Inkeri’s or other),

for all pairs (p, q) satisfying q 6 Q0, p > q and (18). Actually, Mignotte and Roy used

sharper, than (18), inequalities.

With Inkeri-type criteria, Mignotte and Roy managed to prove that

(26) min{p, q} > 105,

using several months of computations. With Mihăilescu’s criterion (Theorem 3.2)

this required only a few hours of computations, and with one month of computations

they managed to prove that min{p, q} > 107. I am aware about the computations of

Grantham and Wheeler showing that min{p, q} > 3.2 · 108 but I have never seen this

result announced in print.

Inequality (26) will be used in Subsection 4.5.
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4.5. Proof of Theorem 4.1

First of all, we deduce from Proposition 4.3.1 the following consequence.

Proposition 4.5.1. — If q > 28000 then p 6 4 q2.

Proof. — Assume first that

log
p + 1

log q
+ 0.14 6 21.

Then (18) reads p 6 10734 q log q, and p > 4 q2 would imply q 6 2683.5 log q, which is

wrong for q > 28000.

Now assume that

log
p + 1

log q
+ 0.14 > 21.

Then (18) reads

p 6 24.34 q

(
log

p + 1

log q
+ 0.14

)2

log q.

Since 0.14− log log q 6 0.14− log log 28000 6 −2.18, this implies that

(27)
p

(log(p + 1) − 2.18)
2 6 24.34 q log q.

It is easy to show, calculating the derivative, that the left hand-side of (27), viewed

as a function in p, increases when p > 67. Hence, assuming that p > 4 q2, we may

replace in (27) p by 4 q2, which would result in the inequality

q 6 6.085
(
log

(
4 q2 + 1

)
− 2.18

)2
log q.

Since log
(
4 q2 + 1

)
− 2.27 6 log q2, we obtain the inequality q 6 24.34(log q)3, which

is contradictory for q > 28000.

Proof of Theorem 4.1. — Assume that p ≡ 1 mod q. Wieferich’s relation (9) implies

that p ≡ 1 mod q2. Since p is odd, it cannot be equal to q2 + 1 or 3q2 + 1. Also,

p 6= 2q2 + 1, because the latter number is divisible by 3. (This simple, but important

observation is due to Mignotte.) Thus, p > 4 q2 + 1. On the other hand (26) and

Proposition 4.5.1 imply that p 6 4 q2, a contradiction.

Remark 4.2. — Inequality (26) is the only result, used by Mihăilescu, that depends

on electronic computations. One can avoid using it, showing instead that

there exist no pairs (p, q) satisfying q < 28000,

1 + 4 q2
6 p 6 24.34 q

(
max

{
log

p + 1

log q
+ 0.14, 21

})2

log q,

p ≡ 1 mod q2 and qp−1 ≡ 1 mod p2.

The running time of the corresponding pari-script (written by Preda Mihăilescu at

my request) is about 1 minute on a modern computer.
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12 Y.F. BILU

Still, it would be very interesting to find a purely algebraic proof of p 6≡ 1 mod q, or,

at least, a proof independent of electronic computations. Recently Mihăilescu found

such a proof, see [9, 31].

5. GENERALITIES

In this section we recall some simple results about modules over commutative rings

and several other facts to be used in the proof. They are certainly well-known, but it

was easier for me to supply direct proofs than to look for suitable references.

All rings in this section are commutative and with unity. An ideal a of a ring R is

radical if R/a has no non-zero nilpotent elements.

5.1. Rings and modules

Let R be a ring and M an R-module. Given a subset S ⊆ M , we denote by annR(S)

the ideal of annihilators of S in R. When no confusion is possible, we omit the index

and write ann(S). In this subsection isomorphic means R-isomorphic. For instance,

a cyclic R-module M is (non-canonically) isomorphic to R/ann(M).

The following property of cyclic modules is immediate.

Proposition 5.1.1. — Let M be a cyclic R-module. Then any quotient of M is

cyclic. If R is a principal ideal ring, then any submodule of R is cyclic as well.

Proposition 5.1.2. — Let R be a ring and M a finitely generated R-module. Let b

be an ideal of R such that b + annR(M) is a radical ideal of R. Then annR/b(M/bM)

is the image of annR(M) in R/b.

Proof. — We have to prove that for any α ∈ R one has

αM ⊆ bM ⇐⇒ α ∈ b + annR(M).

Implication “⇐” is obvious, so we are left with “⇒”. Let ϕ be an endomorphism of M

such that ϕ(M) ⊆ bM . Then, according to [1, Proposition 2.4], there exist a posi-

tive integer n and β1, . . . , βn ∈ b such that ϕn + β1ϕ
n−1 + · · · + βn = 0. For ϕ equal

to multiplication by α this means that αn + β1α
n−1 + · · · + βn ∈ ann(M). Thus,

αn ∈ b + ann(M). Since the latter ideal is radical, we obtain α ∈ b + ann(M), which

proves “⇒”.

Proposition 5.1.3. — Let R be a direct product of finitely many fields: R =
∏

α∈A

Kα,

where each Kα is a field. Then we have the following.

(1) If B ⊆ A then the set I(B) := {(xα)α∈A : xα = 0 for α ∈ B} is an ideal of R,

and all ideals are of this form. In particular, any quotient of R is itself a direct product

of fields.
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(2) For any ideals I, I ′ E R one has II ′ = I ∩ I ′. Moreover, for any b ∈ II ′ there

exist a ∈ I and a′ ∈ I ′ such that b = aa′. In particular, I2 = I, and for any a ∈ I
there exist a1, a2 ∈ I such that a = a1a2.

(3) For any ideal I E R there is a uniquely defined ideal I⊥ E R such that

II⊥ = (0) and I + I⊥ = R.

(4) For any ideals I, I ′ E R one has

(28) (II ′)
⊥

= I⊥ + I ′⊥, (I + I ′)
⊥

= I⊥I ′⊥.

Also, II ′ = (0) if and only if I ′ ⊆ I⊥.

(5) Let M a cyclic R-module and M ′ is a submodule M . Then

ann(M ′) + ann(M/M ′) = R and ann(M ′)ann(M/M ′) = ann(M).

(6) Let M be an R-module. Then there exists a ∈ M such that ann(a) = ann(M).

In other words, M has a submodule isomorphic to R/ann(M). In particular, if R is

finite then |M | > |R/ann(M)|, with equality if and only if M is cyclic.

Proof. — Part 1 is obvious, and parts 2–5 are its immediate consequences.

In the sequel we write I(α) for I({α}). For β ∈ A denote by 1β the element

(xα)α∈A ∈ R such that xβ = 1 and xα = 0 for α 6= β. For any x ∈ R r I(β) there

exists y ∈ R such that yx = 1β.

After this preparation we are ready to prove part 6. Let B ⊆ A be such that

ann(M) = I(B). I claim that for any β ∈ B there exists bβ ∈ M such that

ann(bβ) ⊆ I(β). Indeed, assume that for any b ∈ M there exists x ∈ R r I(β)

such that xb = 0. Then, as follows from the previous paragraph, 1βb = 0 for any

b ∈ M , which is a contradiction because 1β /∈ ann(M).

Now put a =
∑

β∈B 1βbβ. If x = (xα)α∈A ∈ ann(a), then for any β ∈ B one has

0 = 1βxa = 1βxbβ . Hence 1βx ∈ I(β) by the choice of bβ, or, in other words, xβ = 0.

Thus, xβ = 0 for any β ∈ B. Hence x ∈ I(B), which proves part 6.

5.2. Group rings

Let A be a commutative ring and G a finite abelian group. Consider the group

ring A[G]. Define the weight of Θ =
∑

g∈G ngg ∈ A[G] by w(Θ) =
∑

g∈G ng ∈ A. The

weight function is additive and multiplicative, defining thereby a ring homomorphism

A[G]
w→ A. The kernel of this homomorphism is called the augmentation ideal of the

group ring A[G]. It is generated over A by the elements of the form σ − τ , where

σ, τ ∈ G.

The following proposition is true for any finite abelian groups, but we formulate it

only for cyclic groups, which is sufficient for our purposes.

Proposition 5.2.1. — Let G be a finite cyclic group of order n. Then we have the

following.
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14 Y.F. BILU

(1) Let K be a field of characteristic not dividing n. Then the group ring K[G] is

a direct product of finitely many fields.

(2) An ideal of the ring Z[G] containing a prime number not dividing n is a radical

ideal of Z[G].

Proof. — Part 1 follows by observing that K[G] = K[x]/(xn − 1). Since the charac-

teristic does not divide n, the polynomial xn − 1 is separable over K, which means

that K[x]/(xn − 1) is a direct product of several finite extensions of K.

To prove part 2, let a be an ideal of Z[G] containing a prime number q not dividing n.

Then Z[G]/a = Fq[G]/a′, where Fq is the field of q elements and a′ is the image of a

in Fq[G]. Part 1 implies that Fq [G] is a direct product of fields, and hence so is Fq[G]/a′

(see Proposition 5.1.3:1). Thus, Z[G]/a has no non-zero nilpotents, as wanted.

5.3. Miscellaneous

Proposition 5.3.1. — Let R be a ring and q a prime number such that the principal

ideal (q) is radical. (In particular, the assumption is satisfied if K is a number field, q

a prime number unramified in K and R = S−1OK , where S ⊂ OK consists of elements

co-prime with q.) Let α, β ∈ R satisfy αq ≡ βq mod q. Then αq ≡ βq mod q2.

Proof. — We have (α − β)q ≡ αq − βq ≡ 0 mod q. Since (q) is radical, this implies

α ≡ β mod q, which, in turn, yields αq ≡ βq mod q2.

Proposition 5.3.2. — Let R be an integral domain and K its quotient field. Let
∞∑

k=0

ak

k!
T k,

∞∑

k=0

bk

k!
T k ∈ K[[T ]]

be formal power series with the following properties:

ak, bk ∈ R, ak ≡ ak mod a, bk ≡ bk mod a (k = 0, 1, . . . )

for some a, b ∈ R and an ideal a E R. Then

( ∞∑

k=0

ak

k!
T k

)( ∞∑

k=0

bk

k!
T k

)
=

∞∑

k=0

ck

k!
T k

with ck ∈ R satisfying ck ≡ (a + b)k mod a.

Proof. — We have ck =
∑k

i=0

(
k
i

)
aibk−i ≡

∑k
i=0

(
k
i

)
aibk−i = (a + b)k, as wanted.

Proposition 5.3.3. — Let m be a non-negative integer and α a rational number with

denominator b. Then for a sufficiently large positive integer N one has bN
(

α
m

)
∈ Z.

Proof. — Write α = a/b. For any prime number p not dividing b we have

ordp

(
a(a − b) · · · (a − (m − 1)b)

)
> bm/pc+ bm/p2c + · · · = ordp(m!),

whence the result.
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6. OVERVIEW OF THE PROOF

In this section I give a general overview of the proof of Theorem 1.3 and show how

it reduces to three more technical statements.

6.1. Three steps

The structure of the proof of Theorem 1.3 resembles that of the proof of the state-

ment q2|x in Theorem 3.2. Recall that the latter argument consisted of three steps.

(1) Find “many” Θ ∈ Z[G] such that (x − ζ)Θ is a q-th power.

(2) Show that (x − ζ)Θ is a q-th power only if either q|Θ or q2|x.

(3) Show that not all Θ from step (1) are divisible by q.

The proof of Theorem 1.3 has steps (1) and (3), but step (2) has to be replaced by

the following much more difficult task:

(2*) Show that (x − ζ)Θ is a q-th power only if q|Θ.

Unfortunately, we are able to verify step (2*) only if Θ is even, that is, (1 + ι)|Θ,

where ι ∈ G is the complex conjugation. This creates several serious problems.

First of all, there are too few even elements in the Stickelberger ideal (see [39,

Example (a) after Theorem 6.10]). Hence we cannot use Stickelberger’s theorem

anymore, and have to find a substitute. Fortunately, such a substitute is available: it

is the famous theorem of Thaine [36], who gave a (partial) analogue of Stickelberger’s

theorem for real abelian fields.

Second, now we have Θ = (1 + ι)Θ′ rather than Θ = (1 − ι)Θ′. Hence in-

stead of
(
(1 − ζ)/(1 − ζ)

)Θ′

(η/η), as in (10), which is a root of unity, we have
(
(1 − ζ)(1 − ζ)

)Θ′

ηη, which is usually not a root of unity and a priori has no reasons

to be a q-th power.

In Subsection 6.3 we reduce Theorem 2 to three statements, corresponding to

steps (1), (2*) and (3) above. But before, we need some preparations. It will be more

convenient to work mod q. In the next subsection we introduce certain modules over

the ring Fq [G] which will play vital role in the sequel.

6.2. The ring R = Fq [G] and some R-modules

In this subsection p and q are distinct odd prime numbers satisfying

(29) p 6≡ 1 mod q.

As usual, ζ is a primitive p-th root of unity, K = Q(ζ) and G = Gal(K/Q).

Consider the group ring R = Fq[G]. Relation (29) and Proposition 5.2.1:1 imply

that R is a direct product of fields, and, in particular, Proposition 5.1.3 applies to

this ring. This will be repeatedly used in the sequel.
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16 Y.F. BILU

By Proposition 5.1.3, for any ideal I E R there is a uniquely defined I⊥ E R such

that I + I⊥ = R and II⊥ = 0. For instance, (1 + ι)⊥ = (1 − ι), where ι ∈ G is the

complex conjugation, and (N )⊥ is the augmentation ideal (see Subsection 5.2), where

N =
∑

σ∈G

σ ∈ R

is the “norm” element.

Proposition 6.2.1. — Let E be the group of units of K. Then E/Eq is a cyclic

R-module, and, in the notation of Subsection 5.1, we have

(30) ann (E/Eq) = (N , 1 − ι).

Proof. — Let Ω the group of roots of unity from K and put E = E/Ω. Since the

roots of unity in K are q-th powers, E/Eq is G-isomorphic to E/E
q
.

In every pair of complex conjugate elements of G pick a representative. Denote

by Ñ ′ the sum of chosen representatives in Z[G] and by N ′ its image in R = Fq[G], so

that N = N ′(1 + ι). Then the annihilator of the Z[G]-module E is (Ñ ′, 1 − ι). Propo-

sition 5.2.1:2 implies that (Ñ ′, 1 − ι, q) is a radical ideal of Z[G], and Proposition 5.1.2

implies that annFq[G]

(
E/E

q
)

= (N ′, 1− ι). Since

N ′ =
1

2
(N + (1 − ι)N ′) ∈ (N , 1 − ι),

we have (N ′, 1 − ι) = (N , 1 − ι), which proves (30).

Further, since 1 − ι belongs to the augmentation ideal (N )⊥, we have N ∩ (1− ι) =

N (1 − ι) = (0), which implies that

|(N , 1 − ι)| = |(N )| · |(1 − ι)| = q · q(p−1)/2 = q(p+1)/2.

We obtain |R/(N , 1 − ι)| = q(p−3)/2 =
∣∣E/E

q∣∣, and the R-module E/E
q

is cyclic by

Proposition 5.1.3:6.

Definition 6.1. — We say that β ∈ OK is q-primary if there exists γ ∈ OK such

that β ≡ γq mod q2.

Denote by C and Cq the groups of cyclotomic units and of q-primary cyclotomic

units of K, respectively. Recall C is, by definition, the group generated by −ζ and

units of the form (1 − ζk)/(1 − ζ). It is a full rank subgroup of E.

The R-modules E/CEq, C/Cq and Cq/(Cq ∩ Eq) and their annihilators play a

central role in Mihăilescu’s work. Since C/Cq
∼= CEq/CqE

q and Cq/(Cq ∩ Eq) ∼=
CqE

q/Eq, all three are cyclic R-modules by Proposition 5.1.1. Moreover, Proposi-

tion 5.1.3:5 and equality (30) imply the following.
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Proposition 6.2.2. — The three ideals

(31) I1 = ann (E/CEq) , I2 = ann (C/Cq) , I3 = ann (Cq/(Cq ∩ Eq)

are pairwise coprime and satisfy

(32) I1I2I3 = (N , 1 − ι).

6.3. The three main theorems

In this subsection we reduce Theorem 1.3 to three statements, corresponding to

steps (1), (2*) and (3) from Subsection 6.1. We use the notation of Subsection 6.2.

Remark 6.3.1. — In the sequel, for γ ∈ K∗ and Θ ∈ R we define γΘ as γΘ̃, where Θ̃

is a lifting of Θ to Z[G]. Of course, γΘ is well-defined only up to multiplication by

a q-th power. This, however, will never be confusing, since any statement involving

terms like γΘ will include the q-th power of an (unspecified) element of K∗.

In the first two theorems, x, y, p, q is a solution of the Catalan equation (2). In

particular, (29) is satisfied, as follows from Theorem 4.1.

Theorem 6.3.2. — For any Θ ∈ (N )⊥(1 + ι)I1I3 we have (x − ζ)Θ ∈ (K∗)
q
.

Theorem 6.3.3. — Assume that q > 7. If for Θ ∈ (N )⊥(1 + ι) we have (x − ζ)Θ ∈
(K∗)

q
, then Θ = 0.

The third theorem is a general fact, independent of Catalan’s condition; in fact,

even (29) is not required.

Theorem 6.3.4. — If p > q then Cq 6= C.

Proof of Theorem 1.3 (assuming Theorems 6.3.2, 6.3.3 and 6.3.4). — Let (x, y, p, q)

be a solution. Replacing it, if necessary, by (−y,−x, q, p), we may assume that p > q.

We may also assume that q > 7 by (26). Thus, the assumptions of Theorems 6.3.2–

6.3.4 are verified.

Theorems 6.3.2 and 6.3.3 imply that (1 + ι)(N )⊥I1I3 = (0), which, by Proposi-

tion 5.1.3:4 and (32), implies that

I1I3 ⊆
(
(1 + ι)(N )⊥

)⊥
= (1 + ι)⊥ + (N ) = (1 − ι) + (N ) = I1I2I3.

On the other hand I2 and I1I3 are co-prime by Proposition 6.2.2. Hence

1 ∈ I2 + I1I3 ⊆ I2 + I1I2I3 = I2,

that is, I2 = (1). Since I2 = ann(C/Cq), this means that C = Cq , contradicting The-

orem 6.3.4.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2004



18 Y.F. BILU

Theorems 6.3.2, 6.3.3 and 6.3.4 are proved in the next three sections. Theorem 6.3.2

is purely algebraic and relies on the already mentioned result of Thaine about cy-

clotomic fields. The proof of Theorem 6.3.3 is a beautiful Runge-type diophantine

argument, while that of Theorem 6.3.4 is short and elementary.

7. PROOF OF THEOREM 6.3.2

Thus, let (x, y, p, q) be a solution of Catalan’s equation (2). Theorem 4.1 implies

that p 6≡ 1 mod q. In particular, Proposition 5.1.3 applies to the group ring R = Fq[G],

to be repeatedly used in the sequel.

Let H be the class group of the number field K = Q(ζ) and H+ the “plus-part”

of H (it consists of the classes stable with respect to the complex conjugation). Recall

that Θ ∈ Z[G] is called even if it is divisible by 1 + ι. The following is a particular

case of [39, Theorem 15.2].

Theorem 7.1 (Thaine). — Let an even Θ ∈ Z[G] annihilate the q-part of the

group E/C. Then Θ annihilates the q-part of H+ as well.

(By the q-part we mean the q-Sylow subgroup.)

Remark 7.2. — Thaine’s result is more general. Let L be a real abelian field, and

denote by EL, CL, HL and GL, the groups of units, of cyclotomic units, the class

group and the Galois group of L, respectively. Let q be an odd prime number not

dividing [L : Q]. Then any Θ ∈ Z[GL], annihilating the q-part of the group EL/CL,

annihilates the q-part of HL as well. For q = 2 a slightly weaker statement holds.

In our case L = Q(ζ + ζ) and the condition “q does not divide [L : Q]” is ensured

by p 6≡ 1 mod q.

We shall use the following consequence of Theorem 7.1.

Proposition 7.3. — Any Θ ∈ (1 + ι)I1 has a lifting Θ̃ ∈ Z[G] annihilating the

q-part of H.

Proof. — Let qm be the order of the q-part of E/C. By Proposition 5.1.3:2, there

exist Θ1, . . . , Θm ∈ I1 such that Θ = (1 + ι)2Θ1 · · ·Θm. Pick liftings Θ̃1, . . . , Θ̃m for

Θ1, . . . , Θm, respectively, and put Θ̃′ = (1 + ι)Θ̃1 · · · Θ̃m and Θ̃ = (1 + ι)Θ̃′. Since

every Θi annihilates E/CEq , we have EΘ̃i ⊆ CEq , which implies EΘ̃′ ⊆ CEqm

. By

the definition of m this means that Θ̃′ annihilates the q-part of E/C. By Thaine’s

theorem, it annihilates the q-part of H+ as well. Since H1+ι ⊆ H+, the q-part of H

is annihilated by Θ̃ = (1 + ι)Θ̃′.

Proposition 7.4. — For any Θ ∈ (1 + ι)(N )⊥I1 we have (x − ζ)Θ ∈ E(K∗)q.
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Proof. — Put λ = (x − ζ)/(1 − ζ). By Corollary 2.2, there exists an ideal a of K such

that (λ) = aq. The class of the ideal a belongs to the q-part of the class group of K.

Since the statement of the proposition does not depend on the choice of the lifting Θ̃

used to define (cf. Remark 6.3.1) (x − ζ)Θ, we may select Θ̃ in the most suitable way.

Thus, let Θ̃ be a lifting which annihilates the q-part of the class group, which exists

by Proposition 7.3. Then aΘ̃ is a principal ideal. Thus, the principal ideal
(
λΘ

)
is a

q-th power of another principal ideal, that is, λΘ ∈ E(K∗)q .

On the other hand, since Θ belongs to the augmentation ideal (N )⊥, we have

(1 − ζ)Θ ∈ C(K∗)q ⊆ E(K∗)q . (Indeed, the augmentation ideal is generated by the

elements of the form σ − τ , where σ, τ ∈ G; and (1 − ζ)σ−τ is a cyclotomic unit.)

Thus, (x − ζ)Θ = λΘ(1 − ζ)Θ ∈ E(K∗)q , as wanted.

Next, we use Mihăilescu’s Theorem 3.2 to refine Proposition 7.4. Recall that Cq

stands for the group of q-primary cyclotomic units.

Proposition 7.5. — For any Θ ∈ (1 + ι)(N )⊥I1 we have (x − ζ)Θ ∈ Cq(K
∗)q.

Proof. — By Proposition 5.1.3:2 we have Θ = Θ1Θ2 with Θ1 ∈ (1 + ι)(N )⊥I1 and

Θ2 ∈ I1. Proposition 7.4 implies that (x − ζ)Θ1 ∈ E(K∗)q . Since Θ2 ∈ I1 =

ann(E/CEq), we have

(x − ζ)Θ = (x − ζ)Θ1Θ2 ∈ EΘ2(K∗)q ⊆ C(K∗)q .

Write (x − ζ)Θ = ηαq with η ∈ C and α ∈ K∗. Since q2|x by Theorem 3.2, we have

ηαq ≡ (−ζ)Θ mod q2. Since −ζ is a q-th power, η is q-primary, and the proposition

follows.

We are ready to prove Theorem 6.3.2. Let Θ ∈ (1 + ι)(N )⊥I1I3. By Propo-

sition 5.1.3:2 we have Θ = Θ1Θ2 with Θ1 ∈ (1 + ι)(N )⊥I1 and Θ2 ∈ I3 =

ann (Cq/(Cq ∩ Eq)). Now

(x − ζ)Θ = (x − ζ)Θ1Θ2 ∈ CΘ2
q (K∗)q ⊆ (K∗)q .

Theorem 6.3.2 is proved.

8. PROOF OF THEOREM 6.3.3

8.1. A reformulation

In the proof of Theorem 6.3.3 it is more practical to work in the ring Z[G] rather

than Fq [G]. Thus, we have to find a suitable lifting of Θ ∈ Fq[G] to Z[G]. Since

(x − ζ)Θ is a q-th power if and only if (x − ζ)−Θ is, we may choose between lifting Θ

or −Θ.
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Recall that an element Θ of Fq[G] or Z[G] is even if it is divisible by 1 + ι. Equiva-

lently, Θ =
∑

σ∈G nσσ is even if for any σ ∈ G we have nσ = nσ , where σ = ισ is the

complex conjugate of σ.

We say that Θ =
∑

σ∈G nσσ ∈ Z[G] is non-negative if nσ > 0 for any σ ∈ G. We

say that Θ ∈ Z[G] is positive if it is non-negative and distinct from 0.

Proposition 8.1.1. — Let Θ ∈ Fq [G]. Then either Θ or −Θ has a non-negative

lifting Θ̃ ∈ Z[G] such that w(Θ̃) 6 q(p − 1)/2. If Θ belongs to the augmentation ideal

of Fq [G] then q|w(Θ̃). If Θ is even then so is Θ̃.

Proof. — Let Θ̃1 be the smallest non-negative lifting of Θ. That is, Θ̃1 =
∑

σ∈G ñσσ

with ñσ ∈ {0, 1, . . . , q − 1}. Further, put Θ̃2 = q
∑

σ∈G σ − Θ̃1, so that Θ̃2 is a non-

negative lifting of −Θ. Obviously, both Θ̃1 and Θ̃2 are even if Θ is, and both the

weights w(Θ̃1) and w(Θ̃2) are divisible by q if Θ is belongs to the augmentation ideal.

Since w(Θ̃1) + w(Θ̃2) = q(p − 1), one of the weights w(Θ̃1) and w(Θ̃2) does not

exceed q(p − 1)/2. The proposition is proved.

By this proposition, Theorem 6.3.3 is equivalent to the following statement.

Theorem 6.3.3′ . — Let x, y, p, q be a solution of the Catalan equation with q > 7.

Let Θ be an even positive element of Z[G] satisfying q|w(Θ) and w(Θ) 6 q(p − 1)/2.

Assume that (x − ζ)Θ is a q-th power in K. Then q|Θ.

This theorem will be proved in Subsection 8.3, after some preparations in Subsec-

tion 8.2.

8.2. The power series (1 − ζT )
Θ/q

In this section we investigate the properties of a special power series introduced

by Mihăilescu. Everywhere below capital T stands for an independent variable, while

small letters t, z etc. denote complex numbers. For instance, (1 + T )r denotes the

binomial series
∑∞

k=0

(
r
k

)
T k, while, for |t| < 1, the expression (1 + t)r is the complex

number, equal to the sum of the binomial series at T = t. In particular, (1 + t)r is a

positive real number if r ∈ R and t ∈ (−1, 1).

Fix a Θ =
∑

σ∈G nσσ ∈ Z[G]. The series we are interested in is

(33) (1 − ζT )
Θ/q

=
∏

σ∈G

(1 − ζσT )
nσ/q

.

Its convergence radius is 1. Let us estimate its remainder term. Write

(34) (1 − ζT )Θ/q =
∞∑

k=0

αk(Θ)T k,

and denote by Sm(T ) =
∑m

k=0 αk(Θ)T k the m-th partial sum.
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Proposition 8.2.1. — Let Θ ∈ Z[G] be non-negative. Then for |z| < 1 one has

(35)
∣∣∣(1 − ζz)Θ/q − Sm(z)

∣∣∣ 6

(
w(Θ)/q + m

m + 1

)
(1 − |z|)−w(Θ)/q−m−1|z|m+1.

Proof. — A power series
∑∞

k=0 akT k with complex coefficients is dominated by the

series
∑∞

k=0 bkT k with non-negative real coefficients if |ak| 6 bk for k = 0, 1, . . .. The

relation of dominance is preserved by addition and multiplication of power series.

Let r > 0 be a positive real number, and χ a complex number satisfying

|χ| 6 1. Then the binomial series (1 + χT )r =
∑∞

k=0

(
r
k

)
χkT k is dominated by

(1 − T )−r =
∑∞

k=0(−1)k
(
−r
k

)
T k. Indeed, the coefficients of the latter series are

positive and
∣∣(r

k

)∣∣ 6
∣∣(−r

k

)∣∣.
It follows that (1 − ζT )Θ/q is dominated by (1 − T )−ν , where ν = w(Θ)/q. Denot-

ing by Sm(T ) the m-th partial sum of the series (1 − T )−ν , we obtain the following:
∣∣∣(1 − ζz)

Θ/q − Sm(z)
∣∣∣ 6

∣∣(1 − |z|)−ν − Sm(|z|)
∣∣

6 sup
06ξ6|z|

∣∣∣∣
(

dm+1(1 − T )−ν

dT m+1

∣∣∣∣
T=ξ

)∣∣∣∣
|z|m+1

(m + 1)!

=

(
ν + m

m + 1

)
(1 − |z|)−ν−m−1|z|m+1,

as wanted.

Next, we investigate the arithmetic of the coefficients of Mihăilescu’s series. Say

that α ∈ K is a q-integer if qNα ∈ Z[ζ] for a sufficiently large positive integer N .

Proposition 8.2.2. — The coefficients α0(Θ), α1(Θ), . . . of Mihăilescu’s series

(1 − ζT )
Θ/q

are q-integers. Write

(36) (1 − ζT )
Θ/q

=

∞∑

k=0

ak(Θ)

qkk!
T k,

(so that αk(Θ) = ak(Θ)/qkk!). Then

(37) ak(Θ) ∈ Z(ζ) and ak(Θ) ≡
(
−

∑

σ∈G

nσζσ
)k

mod q (k = 0, 1, . . . ).

Proof. — As follows from Proposition 5.3.3, for every n ∈ Z the coefficients of the

series (1 − ζT )n/q are q-integers. Hence so are the coefficients of (1 − ζT )Θ/q .

Further, (1 − ζqT )
n/q

=
∑∞

k=0(bk/k!)T k with

bk = n(n − q) · · · (n − (k − 1)q)(−ζ)k ≡ (−nζ)k mod q.

Now, applying Proposition 5.3.2 to the equality
∞∑

k=0

ak(Θ)

k!
T k =

∏

σ∈G

(1 − ζσqT )
nσ/q

,

we obtain (37).
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We arrived to the most delicate part of Mihăilescu’s argument. The G-action

extends to the ring of power series K[T ] by
(∑∞

k=0 akT k
)σ

=
∑∞

k=0 aσ
kT k, and we

have the “compatibility relation”

(38)
(
(1 − ζT )

Θ/q
)σ

= (1 − ζT )
σΘ/q

.

However, since the Galois action is not continuous in the complex topology, this rela-

tion does not, in general, extend to the values of power series, even if the convergence

is ensured. For instance, if t ∈ Q satisfies |t| < 1 then we need not have

(39)
(
(1 − ζt)

Θ/q
)σ

= (1 − ζt)
σΘ/q

.

In fact, the left-hand side is even not well-defined, because (1 − ζt)Θ/q need not belong

to the field K.

Nevertheless, under some additional assumptions (39) may hold.

Proposition 8.2.3. — Assume that Θ is even. Let t ∈ Q satisfy |t| < 1, and assume

that (1 − ζt)Θ/q ∈ K. Then (39) is true for any σ ∈ G.

Proof. — Since Θ is even, the series (1 − ζT )
Θ/q

has real coefficients. It follows that

α := (1 − ζt)
Θ/q ∈ R.

Thus, α belongs to the real cyclotomic field Q(ζ + ζ), which implies that ασ ∈ R for

any σ ∈ G.

Now fix σ ∈ G. Then σΘ is also even, which implies that β := (1 − ζt)
σΘ/q ∈ R as

well.

On the other hand, (ασ)
q

= (αq)
σ

=
(
(1 − ζt)

Θ
)σ

= (1 − ζt)
σΘ

. Hence ασ is equal

to the real q-th root of (1 − ζt)σΘ, which is β. The proposition is proved.

8.3. Proof of Theorem 6.3.3′

8.3.1. The number (1 − ζ/x)
Θ/q

. — By the assumption, (x − ζ)Θ has a q-th root in

the field K. Moreover, it has exactly one q-th root in K, because this field does not

contain q-th roots of unity (other than 1).

Since Θ is even, (x − ζ)Θ is a positive real number. It follows that the real q-th

root of (x − ζ)Θ belongs to K. This real root is equal to |x|w(Θ)/q (1 − ζ/x)
Θ/q

, where

(1 − ζ/x)
Θ/q

is defined as the sum of Mihăilescu series

(40) (1 − ζT )Θ/q =
∞∑

k=0

αk(Θ)T k

at T = 1/x.
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So far, everything was true for any even Θ. Now recall the assumption q|w(Θ),

that is, w(Θ) = mq with m ∈ 2Z. We have just proved that xm (1− ζ/x)
Θ/q ∈ K.

Hence (1 − ζ/x)
Θ/q ∈ K, and proposition 8.2.3 implies that

(41)
(
(1 − ζ/x)Θ/q

)σ

= (1 − ζ/x)σΘ/q (σ ∈ G).

8.3.2. The polynomial P (T ). — For k = 1, 2, . . . put E(k) = k + ordq(k!). Then

E(k + 1) > E(k) + 1,(42)

E(k) 6 kq/(q − 1).(43)

Since Θ is positive, we have m > 0. Consider the polynomial

(44) P (T ) = qE(m)
(
α0(Θ)T m + α1(Θ)T m−1 + · · · + αm(Θ)

)
,

where αk(Θ) are the coefficients of the Mihăilescu series (40). Proposition 8.2.2 implies

that qE(k)αk(Θ) ∈ Z[ζ]. It follows that P (T ) ∈ Z[ζ][T ], and (42) implies that

(45) P (T ) ∈ qE(m)αm(Θ) + qZ[ζ][T ].

Also, (38) implies that for σ ∈ G

(46) P σ(T ) = qE(m)
(
α0(σΘ)T m + α1(σΘ)T m−1 + · · · + αm(σΘ)

)
.

8.3.3. The number β and its conjugates. — Since Θ is non-negative, the number

(x − ζ)Θ is an algebraic integer. Therefore its q-th root xm (1 − ζ/x)
Θ/q

is an algebraic

integer as well. Hence so is

β := qE(m)xm (1 − ζ/x)
Θ/q − P (x).

Relations (41) and (46) imply that

(47) βσ = qE(m)xm
(

(1 − ζ/x)
σΘ/q −

m∑

k=0

αk(σΘ)x−k
)

(σ ∈ G).

Now estimate |βσ | using Proposition 8.2.1 (with σΘ instead of Θ). We obtain

(48) |βσ | 6 qE(m)

(
2m

m + 1

) (
1 − |x|−1

)−2m−1 |x|−1 = A|x|−1.

Now recall that |x| > qp−1 by Corollary 2.4, and, in particular, |x| > 49 because

q > 7. Using (43), estimating
(

2m
m+1

)
6 22m and using that |x| > 49, we obtain

A < qmq/(q−1)2.052m.

Further, the assumption w(Θ) 6 q(p − 1)/2 implies that m 6 (p − 1)/2, and we ob-

tain A <
(
2.05q7/12

)p−1
< qp−1 (we again use the assumption q > 7). Thus, A < |x|,

which implies that |βσ | < 1 for all σ ∈ G. Since β is an algebraic integer, this is only

possible if β = 0.
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8.3.4. Finishing the proof. — Thus,

P (x) = qE(m)xm (1 − ζ/x)Θ/q .

Since xm (1 − ζ/x)
Θ/q

is an algebraic integer, (45) implies that

qE(m)αm(Θ) ≡ 0 mod q.

By Proposition 8.2.2, this is possible only if q|
(∑

σ∈G nσζσ
)m

. Since q is unramified

in K, this implies that q|∑σ∈G nσζσ , that is, q|nσ for all σ ∈ G. Thus, q|Θ, and this

completes the proof of Theorem 6.3.3′.

9. PROOF OF THEOREM 6.3.4

To begin with, introduce the polynomial

(49) f(T ) = ((1 + T )q − 1 − T q) /q ∈ Z[T ].

It is a non-zero monic polynomial of degree q − 1.

Now assume that all cyclotomic units of K are q-primary. In particular, so is

1 + ζq = (1 − ζ2q)/(1 − ζq). Thus, there exists ν ∈ Z[ζ] such that 1 + ζq ≡ νq mod q2.

Then (1 + ζ)q ≡ 1 + ζq ≡ νq mod q. Proposition 5.3.1 implies that (1 + ζ)q ≡
νq mod q2.

Thus, (1 + ζ)q ≡ 1 + ζq mod q2. This can be rewritten as f(ζ) ≡ 0 mod q,

where f(T ) is the polynomial defined in (49).

Applying the Galois conjugation, we obtain f(ζσ) ≡ 0 mod q for any σ ∈ G. Let

now q be a prime ideal of K dividing q. Then we have p − 1 congruences

(50) f (ζσ) ≡ 0 mod q (σ ∈ G).

Since ζσ 6≡ ζτ mod q for distinct σ, τ ∈ G, congruences (50) imply that p − 1 6 deg f =

q − 1, which contradicts our assumption p > q. The theorem is proved.
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