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INTRODUCTION

This is a report on algebraic geometry in characteristic p. Let A/S be a family
of abelian varieties over a base scheme of characteristic p. For any prime number
R 7~ p the family of Tate modules Tt(As) (8 ranging over the geometric points of S)
defines a local system of Zt-modules on S. The replacement for R = p of the Tate
module Tt(As) is the Dieudonné module M(As) which is an F-crystal. However, in
contrast to the R-adic case, the Dieudonné module is not locally constant as 8 varies
over the base. This leads to the Newton stratification of S into locally closed subsets
where the isomorphism classes of the rational Dieudonné modules M(As) ®~~ Qp are
constant. Recently de Jong and Oort proved some general qualitative facts on this
stratification. These were applied by Oort to the universal family of abelian varieties
over the Siegel moduli space. We formulate this result in imprecise terms as follows.

THEOREM 0.1. - The Newton stratification of the moduli space of principally polar-
ized abelian varieties of a fixed dimension g in characteristic p has the strong strat-
ification property (the closure of a stratum is a union of strata). Furthermore, the
jumps in this stratification all occur in codimension one.

The main tools in the proof of this theorem are the purity theorem on families of
F-isocrystals and deformation theory of p-divisible groups. The latter is based on the
theory of displays for formal p-divisible groups, which has recently been completed
by Zink.

The layout of the report is as follows. In section 1 we introduce the notion of an
F-isocrystal over a base scheme S and of the corresponding Newton stratification.
Section 2 is devoted to the general theorems on Newton stratifications, and section 3
to the particular case of the Siegel moduli space. In section 4 we give the main
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theorem of display theory. In the final section 5 we comment on other moduli spaces
of abelian varieties.

I thank Th. Zink for his help with this report; the presentation in section 2 is

largely based on his explanations. I also thank G. Laumon, F. Oort and T. Wedhorn
for useful comments.

The subject matter of this report has deep historical roots, with contributions by
many mathematicians. I apologize in advance for any oversights and misrepresenta-
tions, which are not intentional but rather due to my ignorance.

1. F-CRYSTALS

DEFINITION 1.1. - Let k be a perfect field of characteristic p, with ring of Witt
vectors W(k). Let L be the fraction field of W (k) and denote by a the Frobenius
automorphisms on k, W(k) and L.

a) A (non-degenerate ) F-crystal over Spec k is a free W(k) -module M of finite rank
with a a-linear endomorphism F : M -~ M such that M/F(M) has finite length.

b) An F-isocrystal over Spec k is a finite-dimensional L-vector space N with a
a-linear bijective endomorphism F : N --~ N.

Recall that W (k) is the unique complete discrete valuation ring with residue field k
and with p as uniformizer. An F-crystal (M, F) defines an F-isocrystal via (N, F) :==
(M, F) ~y~,(~) L. Conversely, given an F-isocrystal (N, F), the corresponding set of
F-crystals is the set of W(k)-lattices M in N such that F(M) C M (such lattices
need not exist).

The F-isocrystals over Spec form a category in the obvious way which is abelian

Qp-linear and noetherian and artinian. If k’ is a perfect field extension of k, then an
F-crystal over Spec k defines an F-crystal over Spec k’ via base extension ~W(~)W (l~’).
THEOREM 1.2 (Dieudonne). - Let k be algebraically closed. Then the category of
F-isocrystals is semi-simple. The simple objects are parametrized by the set of rational
numbers. To À E Q corresponds the simple object Ea defined as follows. If a = r/s,
with s, r E Z, s > 0, (r, s) == 1~ then

Furthermore

End(E03BB) = Da,
where Da is the division algebra with center Qp and invariant equal to the image of
À in Q/Z. D



We may parametrize the F-isocrystals of rank n over the algebraically closed field k

by their Newton polygons, or preferably but equivalently, by their Newton vectors.

COROLLARY 1.3. - Let k be algebraically closed. Then there is an injection (the
Newton map)

(isomorphism classes of F-isocrystals of rank n~ - (~~’)+, (N, v(N, F).

Here (~n)+ _ ~(vl, ... , vn) E Qn, vl > ~ ~ ~ > vn~. The Newton map sends (N, F)
to v(N, F) E (Qn)+, where À E Q occurs in v(N, F) with multiplicity equal to the
dimension of the isotypical component of type À. The image of the Newton map may
be described as follows. Write v E (Qn)+ as

Then v lies in the image if and only if v satisfies the integrality condition

The components of the Newton vector v(N, F) (i.e. the types of the isotypical
components occurring in (N, F)) are called the slopes of the F-isocrystal.

Let (N, F) be an F-isocrystal over a perfect field k. Then the Newton vector of
the F-isocrystal (N, F) ®w(~) W(k) over Spec k is independent of the algebraically
closed field k containing k. We may therefore speak of the Newton vector of (N, F).

Let X be a p-divisible group over a perfect field k of characteristic p. Then one
may associate to X its (contravariant) Dieudonné module (M(X ), F), which is an
F-crystal over Spec k, compare [D]. In this way one obtains

a) an anti-equivalence of the category of p-divisible groups over Spec k and the full
subcategory of the category of F-crystals over Spec consisting of those F-crystals
(M, F) such that pM c FM,

b) an anti-equivalence of the category of p-divisible groups over Spec k up to isogeny
and the full subcategory of all F-isocrystals over Spec k such that all slopes lie between
0 and 1.

Let S be a scheme of characteristic p. An F-crystal over S is a crystal £ of finite
locally free OScris-modules, with a morphism F : ~(03C3) ~ ~ such that the kernel and
cokernel of F are annihiliated by a power of p. Here OSCriS denotes the structure sheaf
on the big crystalline site of S over Zp. We often write £ for the F-crystal (~, F) .
This notion makes precise the intuitive concept of a family of F-crystals parametrized
by the (perfect closures of the residue fields of) points of S. The F-crystals over S
form a Zp-linear category. A morphism of F-crystals f : ~ -~ ~’ is an isogeny if there
exists locally on S a morphism g : ~’ -~ ~ such that g f = pn and f g = pn for some n.
The category of F-isocrystals over S is obtained by formally inverting isogenies of
F-crystals.



Example l.l~. - Let X be a p-divisible group over S. Then crystalline Dieudonné
theory [Me] associates to X an F-crystal over S. More precisely, the Lie algebra of
the universal extension of X is a crystal, and its dual is an F-crystal where F is
induced by the Frobenius Fr : X -~ X~°~~, compare [Me], IV.2.5.

For the sequel it is not essential to have mastered the notion of an F-crystal over
a scheme, in order to understand the resulting statements for p-divisible groups (al-
though some proofs in this special case are based on general F-crystals for which one
can perform the usual linear algebra operations like tensor products etc.).

The most basic statement about families of F-crystals is the following semi-
continuity theorem. Recall the usual dominance order on (Qn)+, for which
( vl , ... , vn )  ( vi , ... , if and only if

THEOREM 1.5 (Grothendieck ~G~). - Let (E, F) be an F-isocrystal over a scheme S
of characteristic p. Then the Newton vector of Fs), for s ranging over the points
of S, goes down under specialization. More precisely, let (~, F) be of constant rank n.
Then the function s FS ) ~~ is locally constant on S and for any vo E 
the set

is Zariski closed in S.

We note here that the Newton vector of the fiber of £ at a geometric point s of S
only depends on the underlying point s E S.

The proof by Katz in [Ka] relies on the relation between the Newton vector of an
F-isocrystal and the divisibility by p of F with respect to an underlying F-crystal. For
(the F-isocrystal associated to) a p-divisible group over S a simple proof is contained
in [D]. D

Remark 1.6. - This theorem is reminiscent of a theorem on vector bundles on a

compact Riemann surface. In this theory one associates to a vector bundle of rank
n its Harder-Narasimhan vector in (~n)+, and it is a basic fact that the HN-vector
goes up (!) under specialization [AB].

COROLLARY 1.7. - Let (E, F) be an F-isocrystal over a noetherian scheme S of
characteristic p. Then the set of points of S where the Newton vector is constant is
locally closed m S and this defines a finite decomposition of S.



Proof. - We may assume S connected. Let us only consider the case when (~*, F)
comes from a p-divisible group X over S. Then the height and the dimension of X
are constant. The assertion then follows from the preceding theorem by the following
two observations.

For any vo E (Qn)+ the set

{v E (~n)+ ; v  vo and v satisfies the integrality condition in Cor. 1.3}
is finite.

If v = v(M(X), F) for a p-divisible group X of dimension d and height n, then
v  ( 1 d, O’~-d ) . This is a consequence of Mazur’s inequality between the Hodge
vector of an F-crystal over a perfect field and the Newton vector of its underlying
F-isocrystal, [Ka]. D

Let (?, F) be an F-isocrystal of rank n over a noetherian scheme S of characteris-
tic p. Associating to a geometric point s of S the Newton vector of (~s, we obtain

a map

Let Sv be the fiber of this map over v E (Q~)+ (with its reduced scheme struc-
ture). The corresponding disjoint decomposition of S, finite according to Corollary
1.7, is called the Newton stratification of S associated to the F-isocrystal (~, F). The
subschemes Sv are called the Newton strata.
We speak of a stratification in the strong sense if the closure of a stratum is a union

of strata. In general the Newton stratification associated to an F-isocrystal is not a
stratification in the strong sense.

2. PURITY OF THE NEWTON STRATIFICATION

Let (?, F) be an F-isocrystal of rank n over a scheme S of characteristic p, with
associated Newton stratification of S. The purity theorem states that the
jumps in this stratification all occur in codimension one. The corresponding statement
for families of vector bundles on a Riemann surface (cf. Remark 1.6) is false.

THEOREM 2.1 (de Jong, Oort [JO]). - Let (~, F) be an F-isocrystal of rank n over
a locally noetherian scheme S of characteristic p, with associated Newton stratification

Let v E Let ~ be a generic point of the scheme Then

An equivalent statement is the following.

THEOREM 2.2. - Let (~, F) be an F-isocrystal over a locally noetherian scheme S
of characteristic p. Let U be an open subset of S such that codim(S B U) > 2. If the
Newton vector of (~, F) is constant at all points of U, then it is constant on all of S.



These theorems are referred to as purity theorems since they are reminiscent of the
purity theorem of Nagata-Zariski on étale coverings. We shall be mainly interested
in this statement when (E, F) comes from a p-divisible group over S. The structure
of a p-divisible group with constant Newton vector is addressed in the following two
results.

THEOREM 2.3 (de Jong, Oort [JO]). - Let S = Spec A, where A is a complete
noetherian local ring of characteristic p with algebraically closed residue field k. Let
X be a p-divisible group over S with constant scalar Newton vector, i. e., there is

only one slope at all points of S (isoclinic case). Then X is isogenous to a constant
p-divisible group, i. e., one of the form Xo x spec ~ S for a p-divisible group Xo over
Spec k.

The motivation for this theorem is the heuristic idea that a p-divisible group with
constant scalar Newton vector is analogous to a local system over S. The hypotheses
on S in Theorem 2.3 ensure that it behaves like a simply connected space. One may
expect a similar result for general F-isocrystals with constant scalar Newton vector,
compare [JO], Remark 2.18. The case where A is a complete discrete valuation ring
with algebraically closed residue field is due to Katz, [Ka], Thm. 2.7.1. D

The constancy up to isogeny becomes false when the constant Newton vector
has more than one slope, for there can be highly nontrivial extensions of constant
F-isocrystals over Spec k[[t]] (e.g. the p-divisible group of the universal deformation
of an ordinary elliptic curve is a nontrivial extension of Qp/Zp by When there
is more than one slope, there is the following analogue of the Harder-Narasimhan
filtration of vector bundles, c f . Remark 1.6.

THEOREM 2.4 (Zink [Z3]). - Let S be a regular scheme of characteristic p. Let X

be a p-divisible group over S with constant Newton vector v E (~n)+. Then X is

isogenous to a p-divisible group Y which admits a filtration by closed embeddings of
p-divisible groups

such that the following condition is satisfied. Let v = (v(1)ml, ... , with v(l) >
~ ~ ~ > v(r), cf. integrality condition in Cor. 1.3. Then there are natural numbers

0, si > 0 (i = 1, ..., r) such that v(i) = ri/si and such that



The degree of the isogeny between X and Y may be bounded in terms of the
height of X. The heuristic idea behind this theorem is that the isotypic direct sum
decomposition of an F-isocrystal over an algebraically closed field is replaced in the
case of a more general base scheme by a filtration. In ongoing work of Oort and
Zink, the regularity hypothesis on S is weakened. The case where S = Spec k for an
arbitrary field k is due to Grothendieck [G]. D

The proof of Theorem 2.2 is based on the following result which is of independent
interest.

THEOREM 2.5 (de Jong, Oort [JO]). - Let S = Spec A, where A is a normal com-
plete noetherian local ring of dimension 2 with algebraically closed residue field k. Let
U = S v ~s~, where s denotes the closed point. Let S - S be a resolution of singu-
larities, i. e. a proper morphism from a regular scheme which induces an isomorphism
over U and such that E = = Ei is a union of smooth divisors crossing
each other normally. Identifying (U) with U we have the restriction map

This map is an isomorphism.

In terms of the fundamental groups (w.r.t. some geometric point of U) the assertion
is that

Since both 7rl (5) and 7r(U) are factor groups of the Galois group of the fraction
field of S, the homomorphism ~rl (U) -~ ~rl (S) is surjective. Therefore we have the

injectivity of the map (1), and to prove the surjectivity we may replace Zp by Qp in
(1). Topologically or when p ~ char k, this surjectivity is easy to see. Indeed, we
need the injectivity of

But Qp) has the classes cls(Ei), i = 1, ... , m, as basis (purity). The image
of cls(Ei) under the composition

is the intersection product The injectivity of (2) follows therefore from the
negative-definiteness of the intersection matrix 
When p = char k, the proof of Theorem 2.5 is much more diflicult. (That the

situation in this case is radically different is already apparent from the fact that
7~p) _ (0) when p = char k. This is easily checked using Artin-Schreier theory.)

Suppose that A has characteristic p, c A. In this case, using de Jong’s technique
of alterations there is a reduction to the following situation. Let C -~ Spec l~~~t~~ be
a flat projective family of curves with smooth generic fiber and strict semistable



reduction. Let C’ be the scheme obtained from C by collapsing a proper union E of
irreducible components of the special fiber to a point P. Then A is the complete local
ring of P.

One now starts with an element a E Zp) and first globalizes it into an
element ai E ~P~, ~r) - This element ai is then ex-
tended to a2 E Het (C, Zp) by using de Jong’s extension theorem on homomorphisms
of p-divisible groups ~Jl~, [J2]. According to this theorem, any homomorphism be-
tween the generic fibers of p-divisible groups over Spec k[[t]] extends. D

Let X be a p-divisible group of height h over a scheme S of characteristic p, for
which there exists r > 0, s > 0 such that

To X we associate the lisse p-adic sheaf of )-modules Cx = lim CX,n for the
étale topology on S, such that for any afline S-scheme Spec R

Here M denotes the W(R)-module defined by the Dieudonné crystal of X. The fibers
of Cx are free W(Fps )-modules of rank h. The formation of Cx is compatible with
base change and defines a functor from the category of p-divisible groups over S with
(3) to the category of lisse p-adic sheaves of W (Fps )-modules on S. The corresponding

~~p Qp-adic sheaf only depends on the isogeny class of X and corresponds to
a representation of the fundamental group,

Let R be a discrete valuation ring of characteristic p, with uniformizer 7r, residue

field k and fraction field K. Let X be a p-divisible group over R. After replacing
XK by an isogenous p-divisible group Y over K we have integers 0, s > 0
and a filtration (0) = Yo C Yi C ~ ~ ~ C Yr = Y as in Theorem 2.4. Applying
the preceding considerations to S = Spec K and Yi/Yi-1 we therefore obtain p-adic
Galois representations

where h2 = The proof of Theorem 2.2 is based on the following
lemma.

LEMMA 2. 6. - With the previous notation, the following conditions are equivalent.

(i) oi is unramified, V i =1, ..., r.

(ii) The Newton vector of X is constant.
Under these conditions the representations o2 are also unramified.



In the proof of this lemma, again, as in the proof of Theorem 2.5, de Jong’s the-
orem on extension of homomorphisms of p-divisible groups (or rather the techniques
entering into the proof) plays a key role. D

Proof of Theorem 2. 2. - We limit ourselves to the case where (E, F) comes from a p-
divisible group X on S. An easy reduction allows us to assume that S = Spec A, where
A is a complete normal noetherian local ring of dimension 2 and where U = S’ v ~s},
with s denoting the special point. In proving Theorem 2.2, we may replace A by an
A-algebra A’ of the same kind such that the special point s’ of Spec A’ is the unique
point mapping to s. Since the Newton vector of X is constant on the regular scheme
U, we obtain via Theorem 2.4 p-adic Galois representations,

i = 1,..., r. The determinant representation of each f2i is a character of ~rl (U) with
values in (W(Fps ) ®~p Since (W(IFps) ®~p contains an open subgroup
of the form Z~, we may assume by the initial remark that is an s-tuple of
homomorphisms from 7rl (U) to Zp. Let 7r : S --~ S be a resolution of singularities.
Then by Theorem 2.5 this s-tuple of homomorphisms factors through 7rl(S). Let E
be an irreducible component of the exceptional fiber ~r-1 (s). Applying Lemma 2.6 to
the discrete valuation ring (~s,E, the pullback of X to Spec has constant Newton

vector, as had to be shown. 
~ 

D

3. THE SIEGEL MODULI SPACE

We fix a positive integer g. For an auxiliary integer m ~ 3 prime to p, we denote
by = Mg = à4g,nz the Siegel moduli space of genus g over SpecIFp. It represents
the functor which to a locally noetherian scheme S in characteristic p associates the
set of isomorphism classes of triples (A, À, 7y), where A is an abelian scheme of relative
dimension g over S, is a principal polarization, and yy is a (full)
level-m-structure on (A, À) .

The universal abelian scheme over defines a p-divisible group X on à4. The
existence of a polarization implies that the Newton vectors of the fibers of X lie in
the subset (~2g)+ of (Q2g)+,

Let Bg be the set of elements in (~2g)+ which satisfy the integrality condition in
Cor. 1.3. Then Bg is a finite partially ordered set ( poset), which has a unique maximal



element and a unique minimal element,

o = (19, Og) the ordinary Newton vector (maximal)
a = ( ( 1 /2) 2g ) the supersingular Newton vector (minimal).

For v E Bg we denote by Sv the corresponding Newton stratum in à4. By
Grothendieck’s semi-continuity theorem, Theorem 1.5, we have

In particular Sa is a closed subset and S(2 is an open subset.

Picture of B4

LEMMA 3. 2. - Let v, v’ E Bg. Then

(i) v  v’ if and only if C 0(v’).
(ii) If v  v’, then any shortest chain in the poset Bg starting at v and ending at

v’ has length d(v’) - d(v). In particular, Bg is a catenary poset. D

THEOREM 3.3 (Oort [02]). - Each Newton stratum Sv is equidimensional of dimen-
sion d(v). The Newton stratification of à4 has the strong stratification property,

Remark ~.1~. - The analogous statement for moduli spaces of vector bundles on a
Riemann surface is false. More precisely, consider the stack .M = of holo-

morphic vector bundles of rank r and degree d over a Riemann surface X. Then M
is the disjoint union of its Harder-Narasimhan strata Mv, and we have



c f . Remark 1.6. If g (X ) = 0 we have equality here and the same holds for g (X ) = 1,
according to a recent paper of Friedman and Morgan [FM]. This fails for g(X ) > 2
[FM]. It is conceivable that

and in loc. cit. this is proved, provided v’ and v are adjacent. D

The proof of Theorem 3.3 is based on the following theorem.

THEOREM 3.5 (Oort [02]). - Let (Xo, ~o) be a p-divisible group with principal po-
larization of dimension g and height 2g over an algebraically closed field k of charac-
teristic p. Let vo E Bg be the Newton vector of Xo, and let v E Bg with v. Then

there exists a principally polarized p-divisible group (X, À) over k[[t]] with special fiber
(Xo, Ào) and with Newton vector of the generic fiber of X equal to v.

Theorem 3.5 implies via the Serre-Tate theorem the second statement in Theorem
3.3. Since, as is easily seen, (the supersingular locus), Theorem 3.5 implies

for all v E Bg . The first statement in Theorem 3.3 now follows from Lemma
3.2 and the purity theorem. D

The two extreme cases in the Newton stratification deserve a separate discussion.

The supersingular stratum Sa . - The fact that Sa is equidimensional of dimension
d(a) = ~g2/4~ (a special case of Theorem 3.3) was proved earlier by Li and Oort ~LO~,
among other things. The supersingular Newton stratum is exceptional in several
aspects. Every abelian variety occurring as a fiber of the universal abelian scheme at
a point of Sa is isogenous to Eg, where E is a supersingular elliptic curve. Moreover,
let x E Sa and let (A, A) be the fiber of x of the universal object on .M. Then one can
represent (A, A) in an almost canonical way as the quotient of Eg by a finite group
scheme. This leads to the dimension formula for this stratum and in fact much more.
There is the hope for an explicit synthetic description of Sa , like the one of Kaiser [K]
for g = 2 (compare also [KR], and [R] for g = 3). In [LO] the number of irreducible
components of Sa is given.

The ordinary stratum Sp. - In contrast to the supersingular stratum, the ordinary
stratum is quite amorphous and nonlinear, and there is no hope of an explicit descrip-
tion of it. According to Theorem 3.3, Se is open and dense in à4 . This fact has been
known for a long time, by more direct and easier proofs: 1) There is the proof by
Mumford [M], and Norman and Oort [NoO] (compare also Chai and Faltings [FC]) us-
ing Cartier theory to construct deformations. 2) There is the proof by Koblitz [Kob],
compare also [Ill], App. 2, who investigated by deformation-theoretic arguments the
stratification of .~1 by the p-rank of X. 3) There is the global proof using toroidal
compactifications [FC]. 4) There is the proof of Ngo and Genestier [NG] who deduce
the density result from a corresponding density result (of a combinatorial nature) in



bad reduction. Furthermore, Chai ~C1~ has proved the much stronger assertion that
the orbit of an arbitrary ordinary point under the Hecke correspondences of degree
prime to p is dense in M. D

The proof of Theorem 3.5 is rather round-about. For a p-divisible group X over
an algebraically closed field k, let

Here (M, F) is the Dieudonné module of X and V = Hence a(X) = 0 if
and only if X ~ G~ x In a first step one proves Theorem 3.5 under the
additional assumption a(Xo) = 1, cf. Oort [01] (the case where a(Xo) = 0, where
vo = o, is trivial). The technical tool for this is the theory of displays, compare Section
4, which allows one to write down explicitly by display equations deformations of a

(polarized) formal p-divisible group. The hypothesis a(Xo) = 1 is then needed to

read off from these display equations the Newton vectors of the p-divisible groups
occurring in the deformation.

In a second step, one shows that (Xo, ~o) can be deformed into a principally polar-
ized p-divisible group (X, A) with the same Newton vector and with a(X) = 1. This
in turn is reduced to the following statement which is of independent interest.

THEOREM 3.6 (de Jong, Oort [JO]). - Let Xo be a p-divisible group over an alge-
braically closed field k of characteristic p such that its F-isocrystal is irreducible. Then
there exists an irreducible scheme T over k and a p-divisible group X over T together
with an isogeny Xo Spec k T ~ X over T, such that any p-divisible group over k

isogenous to X o occurs as a fiber of X at a k-rational point of T.

An equivalent formulation of the previous theorem is the following. Let Xo be as in
the previous theorem. By [RZ] the following functor on (Sch/ Spec k) is representable
by a formal scheme S locally formally of finite type over Spec k,

s f---~ (isomorphism classes of pairs (X, o), where X is a p-divisible group
over Sand {! : Xo X Spec k S --~ X is a quasi-isogeny of height 0~ .

Then S is irreducible. D

COROLLARY 3.7. - Let Xo be as m the previous theorem. Then there exists a de-

formation of Xo into a p-divisible group X isogenous to Xo with a(X) = 1 .

Indeed, the locus in T where a(X) == 1 is open. It therefore suflices to produce one

point t E T(k) where a(Xt) == 1. This is easy. D

CONJECTURE 3.8. - Let v, v’ E Bg v. The closure of each irreducible

component of sv meets 



Conjecture 3.8 would certainly hold if Oort’s conjecture [02] was true, according
to which for 03BD ~ a the intersection of Sv with any connected component of is

irreducible.

4. DISPLAYS

Display equations for formal p-divisible groups were introduced by Mumford [M].
These techniques were applied to moduli problems of abelian varieties by Norman

[No] and Norman and Oort [NoO]. We will follow here the recent formulation of the
theory due to Zink [Zl].

Let R be a ring of characteristic p. We denote by W(R) its ring of Witt vectors
and by x H Fx its Frobenius resp. Verschiebung endomorphisms. Let
IR C W (R) be the ideal of Witt vectors with trivial 0-component.

DEFINITION 4.1. - A not necessarily nilpotent display (= 3n-display) over R is a
quadruple (P, Q, F, consisting of a finitely generated projective W (R)-module P,
a submodule Q C P and F-linear maps F : P -> P and V -1 : Q -~ P. The following
conditions are required:
(i) IRP c Q c P and the quotient P/Q is a projective R-module.
(ii) F-linear epimorphism.
(iii) For x E P and w E W(R) we have x E Q and we require that

We note that F is determined by the remaining data. There is no operator V. The
reason for the notation comes from the following example.

Example 4.2. - Let R = k be a perfect field. Then an F-crystal (M, F) over k such
that pM c FM defines a 3n-display Here as usual V = 

This defines an equivalence of categories.

The notion of a display is obtained by imposing a nilpotency condition as follows.
After localization in R there exists a W(R)-basis ei,..., en of P such that

Q = IRel EB ... C IRed s9 s9 ... s9 W(R)en ,
for some d with 0 ~ d  n. Then there exists an invertible matrix (Qij) E GLn (W (R) )
such that



Conversely, any E defines a 3n-display. Let (~3~~) be the inverse
of Let B E be the image of (,~~~)~,,~=d+1,,.,,n under the 0-component
map

Let B(p) be the matrix obtained from B by raising its coefficients to the power p. The
nilpotency condition can now be formulated: there exists N such that

In the context of Example 4.2 the F-crystal (M, F) defines a display if and only if
pM c FM and if V = is topologically nilpotent on M.

THEOREM 4.3 (Zink [Zl]). - We assume that the nilideal of R is nilpotent. Then
there is a fully faithful functor BT from the category of displays over R to the category
of formal p-divisible groups over R. This is an equivalence of categories if either R is
an excellent local ring or an algebra of finite type over a field k.

It is quite likely that this equivalence of categories holds for any noetherian ring
R of characteristic p. The functor BT has the following properties: 1) It commutes
with arbitrary base change. 2) Lie BT (P, Q, F, = P/Q. 3) P can be iden-
tified with the value at W(R) of the crystal defined by the universal extension of
BT(P, Q, F, V-1), cf. Example 1.4. 4) The passage from a formal p-divisible group
to its dual p-divisible group can be expressed in terms of displays, provided that the
dual p-divisible group is a formal group, i.e. has trivial étale part. D

The theory also works if p is only supposed to be nilpotent in R. For an extension
of the theory to p-divisible groups with an étale part, compare [Z2].

5. OTHER MODULI SPACES OF ABELIAN VARIETIES

Let F be a finite-dimensional semisimple Q-algebra equipped with a positive invo-
lution * and let V be a finite F-module equipped with an alternating non-degenerate
Q-valued skew-hermitian pairing (, ). The F-linear similitudes of (V, (, )) form an
algebraic group G over Q. We assume that G is a connected reductive algebraic group.
We also fix a conjugacy class of algebraic homomorphisms h : c~X - satisfying
the usual Riemann conditions. Let E be the corresponding Shimura field, i.e. the field
of definition of the corresponding conjugacy class of co characters J--l : - Gc. We
assume that p is a prime of good reduction, in particular GQp is unramified, and
we choose a hyperspecial maximal compact subgroup Kp of G(Qp). We choose a
prime ideal of E over p with residue field Ii. After a choice of some sufficiently small
open compact subgroup KP c Kottwitz has defined a moduli prob-
lem of abelian varieties which is representable by a smooth quasi-projective scheme
A4 = h)K = V, (, ), h, KP.Kp) over Spec ~.



Let L be the fraction field of W(Fp) and let B(G) be the set of a-conjugacy classes
in G(L). By associating to a point s E M the F-isocrystal with G-structure defined
by the fiber at (a geometric point over) s of the universal abelian scheme over with

its auxiliary structure (endomorphisms and polarization), we obtain a map

The conjugacy class J1 defines a finite subset of B(G) ([Kot2], §6). It is defined

by the group-theoretic version of Mazur’s inequality, compare the proof of Corollary
1.7. The image of the map above is contained in B(G,J1) [RR]. (In the case of the
Siegel moduli space Mg we have G = GSp2g and = Bg, cf. section 3.) Fur-
thermore, is partially ordered and the semicontinuity theorem 1.5 continues
to hold in this context [RR]. We therefore obtain the generalized Newton stratification
of M (by the locally closed subsets arising as inverse images of elements of B (G, J1)),

Just as Bg , also is a catenary poset ~C2~ with a unique minimal element bo
(the p-basic element) and a unique maximal element bl (the p-ordinary element).

THEOREM 5.1 (Wedhorn[W]). - The p-ordinary locus Mb1 is open and dense in fl4 .
D

This is about the only known general statement in direction of the following con-
jecture.

CONJECTURE 5.2. - (i) The generalized Newton stratification of fl4 = fl4(G, h)K
has the strong stratification property.
(ii) The generalized Newton stratum corresponding to b E B(G, p) is equidimensional
of dimension d(b) = dim à4 - c(b), where c(b) is the length of a chain joining b to bl .
(iii) Let b, b’ E B(G,,u) with b’  b. The closure of each irreducible component of Mb
meets 

We note that Chai [C2] has given a group theoretical formula for d(b). When G is a
group of unitary similitudes, there are results supporting (i) and (ii) of this conjecture:

THEOREM 5.3 (Oort). - Let F be an imaginary quadratic field such that p splits
in F. Then (i) and (ii) of Conjecture 5. 2 hold true for M = V, (, ), h, 

The proof is analogous to the proof of Theorem 3.3 (which proves (i) and (ii) of
Conjecture 5.2 for the Siegel moduli space). The analogue of Theorem 3.5 is the
following statement which confirms a conjecture of Grothendieck [G]. Its proof is
similar to that of Theorem 3.5, but simpler.



THEOREM 5.4 (Oort[02]). - Let Xo be a p-divisible group of height n and dimen-
sion d over an algebraically closed field k of characteristic p, with Newton vector
vo E (Qn)+. Let v E (Qn)+ such that v satisfies the integrality condition of Corollary
1.3 and with vo  v  (ld, Then there exists a p-divisible group X over k[[t]]
with special fiber Xo and with Newton vector of the generic fiber of X equal to v. D

Using the Serre-Tate theorem, Theorem 5.4 implies that property (i) holds in The-
orem 5.3. Using Honda-Tate theory one shows that the ,a-basic locus of is non-

empty, compare [Z4]. Therefore as in the proof of Theorem 3.3, Theorem 5.4 implies
that à4b is non-empty for all b E and the purity theorem allows one now to
deduce also property (ii) in Theorem 5.3 from Theorem 5.4. D

We mention that when F is an imaginary quadratic field such that p ~ 2 is inert,
Bültel and Wedhorn [BW] have proved (i) and (ii) of Conjecture 5.2, provided that
the signature of the skew-hermitian form (, ) on V is of the form (n - 1 , 1) . On the
other hand, the conjecture seems to be open even for such classical moduli spaces as
the Hilbert-Blumenthal varieties.
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