@incollection{SB_1999-2000__42__299_0, author = {Frenkel, Edward}, title = {Vertex algebras and algebraic curves}, booktitle = {S\'eminaire Bourbaki : volume 1999/2000, expos\'es 865-879}, series = {Ast\'erisque}, note = {talk:875}, pages = {299--339}, publisher = {Soci\'et\'e math\'ematique de France}, number = {276}, year = {2002}, mrnumber = {1886764}, zbl = {0997.17015}, language = {en}, url = {http://www.numdam.org/item/SB_1999-2000__42__299_0/} }
TY - CHAP AU - Frenkel, Edward TI - Vertex algebras and algebraic curves BT - Séminaire Bourbaki : volume 1999/2000, exposés 865-879 AU - Collectif T3 - Astérisque N1 - talk:875 PY - 2002 SP - 299 EP - 339 IS - 276 PB - Société mathématique de France UR - http://www.numdam.org/item/SB_1999-2000__42__299_0/ LA - en ID - SB_1999-2000__42__299_0 ER -
%0 Book Section %A Frenkel, Edward %T Vertex algebras and algebraic curves %B Séminaire Bourbaki : volume 1999/2000, exposés 865-879 %A Collectif %S Astérisque %Z talk:875 %D 2002 %P 299-339 %N 276 %I Société mathématique de France %U http://www.numdam.org/item/SB_1999-2000__42__299_0/ %G en %F SB_1999-2000__42__299_0
Frenkel, Edward. Vertex algebras and algebraic curves, in Séminaire Bourbaki : volume 1999/2000, exposés 865-879, Astérisque, no. 276 (2002), Talk no. 875, 41 p. http://www.numdam.org/item/SB_1999-2000__42__299_0/
[ADKP] Moduli spaces of curves and representation theory, Comm. Math. Phys. 117 (1988) 1-36. | MR | Zbl
, , and -[BL] Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994) 385-419. | MR | Zbl
and -[BB] A Proof of Jantzen Conjectures, Advances in Soviet Mathematics 16, Part 1, pp. 1-50, AMS 1993. | MR | Zbl
and -[BD1] Affine Kac-Moody algebras and polydifferentials, Int. Math. Res. Notices 1 (1994) 1-11. | MR | Zbl
and -[BD2] Quantization of Hitchin's Integrable System and Hecke eigensheaves. Preprint.
and -[BD3] Chiral Algebras. Preprint. | MR
and -[BFM] Introduction to Algebraic Field Theory on Curves. Preprint.
, and -[BG] Infcnitesimal structure of moduli spaces of -bundles, Duke Math. J. IMRN 4 (1992) 63-74. | MR | Zbl
and -[BS] Determinant bundles and Virasoro algebras, Comm. Math. Phys. 118 (1988) 651-701. | MR | Zbl
and -[BPZ] Infinite conformal symmetries in two-dimensional quantum field theory, Nucl. Phys. B241 (1984) 333-380. | MR | Zbl
, and -[BF] Vertex algebras and algebraic curves, book in preparation. | Zbl
and -[B1] Vertex algebras, Kac-Moody algebras and the monster. Proc. Nat. Acad. Sci. USA 83 (1986) 3068-3071. | MR | Zbl
-[B2] Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992) 405-444. | MR | Zbl
-[B3] Quantum vertex algebras, Preprint math.QA/9903038. | MR
-[Bo1] Introduction to the vertex algebra approach to mirror symmetry, Preprint math. AG/9912195.
-[BoL] Elliptic genera of toric varieties and applications to mirror symmetry, Invent. Math. 140 (2000) 453-485. | MR | Zbl
and -[dBT] The relation between quantum -algebras and Lie algebras, Comm. Math. Phys. 160 (1994) 317-332. | MR | Zbl
and -[dFMS] Conformal Field Theory. Springer-Verlag 1997. | MR | Zbl
, and -[D1] Vertex algebras associated with even lattices, J. Algebra 161 (1993) 245-265. | MR | Zbl
-[D2] Representations of the moonshine module vertex operator algebra, Contemp. Math. 175 (1994) 27-36. | MR | Zbl
-[DLM] Twisted representations of vertex operator algebras, Math. Ann. 310 (1998) 571-600. | MR | Zbl
, and -[DS] Lie algebras and type equations, J. Sov. Math. 30 (1985) 1975-2036. | Zbl
and -[EK] Quantization of Lie bialgebras. V, Preprint math.QA/9808121. | Zbl
and -[Fa] A proof of the Verlinde formula, J. Alg. Geom. 3 (1994) 347-374. | MR | Zbl
-[FL] The models of two-dimensional conformal quantum field theory with Zn symmetry, Int. J. Mod. Phys. A3 (1988), 507- 520. | MR
and -[Fe1] The semi-infinite cohomology of Kac-Moody and Virasoro Lie algebras, Russ. Math. Surv. 39, No. 2 (1984) 155-156. | MR | Zbl
-[FF1] A family of representations of affine Lie algebras, Russ. Math. Surv. 43, No. 5 (1988) 221-222. | MR | Zbl
and -[FF2] Affine Kac-Moody algebras and semi-infinite flag manifolds, Comm. Math. Phys. 128 (1990) 161-189. | MR | Zbl
and -[FF3] Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Int. Jour. Mod. Phys. A7, Suppl. 1A (1992) 197-215. | MR | Zbl
and -[FF4] Integrals of Motion and Quantum Groups, in Lect. Notes in Math. 1620, pp. 349-418, Springer-Verlag 1996. | MR | Zbl
and -[FS] Realization of a modular functor in the space of differentials, and geometric approximation of the moduli space of G-bundles, Funct. Anal. Appl. 28 (1994) 257-275. | MR | Zbl
and -[FKW] Characters and fusion rules for -algebras via quantized Drinfeld-Sokolov reduction, Comm. Math. Phys. 147 (1992), 295-328. | MR | Zbl
, and -[FKRW] and with central charge , Comm. Math. Phys. 170 (1995) 337-357. | Zbl
, , and -[FR] Towards deformed chiral algebras, Preprint q-alg/9706023.
and -[FK] Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980) 23-66. | MR | Zbl
and -[FGZ] Semi-infinite cohomology and string theory, Proc. Nat. Acad. Sci. U.S. A. 83 (1986) 8442-8446. | MR | Zbl
, and -[FLM] Vertex Operator Algebras and the Monster. Academic Press 1988. | MR | Zbl
, and -[FHL] On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 104 (1993), no. 494. | MR | Zbl
, and -[FZ] Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 60 (1992) 123-168. | MR | Zbl
and -[FrS] The analytic geometry of two-dirnensional conformal field theory, Nucl. Phys. B281 (1987) 509-545. | MR
and -[G] Notes on 2D Conformal Field Theory and String Theory, in Quantum fields and strings: a course for mathematicians, Vol. 2, pp. 1017-1089, AMS 1999. | MR | Zbl
-[Ga] Conformal field theory, Sém. Bourbaki, Exp. 704, Astérisque 177-178 (1989) 95-126. | Numdam | MR | Zbl
-[GKF] The actions of infinite-dimensional Lie algebras, Funct. Anal. Appl. 6 (1972) 9-13. | MR | Zbl
, and -[Gi] Resolution of diagonals and moduli spaces, in The moduli space of curves, Progress in Math. 129, pp. 231-266, Birkhäuser 1995. | MR | Zbl
-[Go] Meromorphic conformal field theory, in Infinite-dimensional Lie algebras and groups, V. Kac (ed.), pp. 556-587, World Scientific 1989. | MR | Zbl
-[GKO] Unitary representations of the Virasoro and super-Virasoro algebras, Comm. Math. Phys. 103 (1986) 105- 119. | MR | Zbl
, and -[GMS] Gerbes of chiral differential operators. I, math.AG/9906116; II, math.AG/0003170.
, and -[Gu] Lectures on Riemann Surfaces. Princeton University Press 1966. | MR | Zbl
-[Hu] Two-dimensional conformal geometry and vertex operator algebras. Progress in Math. 148. Birkhäuser 1997. | MR | Zbl
-[HL] On the -module and formal variable approaches to vertex algebras, in Topics in geometry, pp. 175-202, Birkhäuser 1996. | MR | Zbl
and -[K1] Infinite-dimensional Lie algebras, Third Edition. Cambridge University Press 1990. | MR
-[K2] Vertex Algebras for Beginners, Second Edition. AMS 1998. | MR | Zbl
-[K3] Formal distribution algebras and conformal algebras, in Proc. XXIIth ICMP, Brisbane, 1994, pp. 80-96, International Press 1999. | MR
-[KL] Tensor structures arising from affine Lie algebras IV, J. of AMS 7 (1993) 383-453. | MR | Zbl
and -[Ko] The Virasoro algebra and Teichmüller spaces, Funct. Anal. Appl. 21 (1987), no. 2, 156-157. | MR | Zbl
-[KNR] Infinite Grassmannians and moduli spaces of G-bundles, Math. Ann. 300 (1993) 395-423. | MR | Zbl
, and -[LW] Construction of the affine Lie algebra , Comm. Math. Phys. 62 (1978) 43-53. | MR | Zbl
and -[Li] Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Alg. 109 (1996) 143-195. | MR | Zbl
-[LZ] G. Zuckerman - New perspectives on the -algebraic structure of string theory, Comm. Math. Phys. 154 (1993) 613-646. | MR | Zbl
and[MSV] Chiral deRham complex, Comm. Math. Phys. 204 (1999) 439-473. | MR | Zbl
, and -[SV2] Quantum groups and homology of local systems, in Algebraic Geometry and Analytic Geometry, M. Kashiwara and T. Miwa (eds.), pp. 182-191, Springer-Verlag 1991. | MR | Zbl
and -[Se] The Definition of Conformal Field Theory, unpublished manuscript.
-[So] La formule de Verlinde, Sém. Bourbaki, Exp. 793, Astérisque 237 (1996) 87-114. | Numdam | MR | Zbl
-[TK] Vertex operators in conformal field theory on and monodromy representations of the braid group, in Adv. Stud. Pure Math 16, pp. 297-372, Academic Press 1988. | MR | Zbl
and -[TUY] Conformal field theory on universal family of stable curves with gauge symmetries, Adv. Stud. Pure Math. 19, pp. 459-566, Academic Press 1989. | MR | Zbl
, and -[Wa] Fock representations of affine Lie algebra , Comm. Math. Phys. 104 (1986) 605-609. | MR | Zbl
-[Wa] Rationality of Virasoro vertex operator algebras, Duke Math. J. IMRN 7 (1993) 197-211. | MR | Zbl
-[Wi] Quantum field theory, Grassmannians and algebraic curves, Comm. Math. Phys 113 (1988) 529-600. | MR | Zbl
-[Z1] Modular invariance of characters of vertex operator algebras, J. AMS 9 (1996) 237-302. | MR | Zbl
-[Z2] Global vertex operators on Riemann surfaces, Comm. Math. Phys. 165 (1994) 485-531. | MR | Zbl
-