Problèmes combinatoires posés par la physique statistique
Séminaire Bourbaki : volume 1983/84, exposés 615-632, Astérisque, no. 121-122 (1985), Talk no. 626, 22 p.
@incollection{SB_1983-1984__26__225_0,
     author = {Viennot, G\'erard},
     title = {Probl\`emes combinatoires pos\'es par la physique statistique},
     booktitle = {S\'eminaire Bourbaki : volume 1983/84, expos\'es 615-632},
     series = {Ast\'erisque},
     note = {talk:626},
     pages = {225--246},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {121-122},
     year = {1985},
     mrnumber = {768962},
     zbl = {0563.60095},
     language = {fr},
     url = {http://www.numdam.org/item/SB_1983-1984__26__225_0/}
}
TY  - CHAP
AU  - Viennot, Gérard
TI  - Problèmes combinatoires posés par la physique statistique
BT  - Séminaire Bourbaki : volume 1983/84, exposés 615-632
AU  - Collectif
T3  - Astérisque
N1  - talk:626
PY  - 1985
SP  - 225
EP  - 246
IS  - 121-122
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/SB_1983-1984__26__225_0/
LA  - fr
ID  - SB_1983-1984__26__225_0
ER  - 
%0 Book Section
%A Viennot, Gérard
%T Problèmes combinatoires posés par la physique statistique
%B Séminaire Bourbaki : volume 1983/84, exposés 615-632
%A Collectif
%S Astérisque
%Z talk:626
%D 1985
%P 225-246
%N 121-122
%I Société mathématique de France
%U http://www.numdam.org/item/SB_1983-1984__26__225_0/
%G fr
%F SB_1983-1984__26__225_0
Viennot, Gérard. Problèmes combinatoires posés par la physique statistique, in Séminaire Bourbaki : volume 1983/84, exposés 615-632, Astérisque, no. 121-122 (1985), Talk no. 626, 22 p. http://www.numdam.org/item/SB_1983-1984__26__225_0/

[1] R. Baxter, Exactly solved models in statistical mechanics, Academic Press, New-York, 1982. Des livres de base sur la mécanique statistique sont : | MR | Zbl

[2] D. Ruelle, Statistical mechanics, rigorous results, Benjamin, New-York, 1969, | MR | Zbl

[3] C. Domb et M. S. Green, eds, Phase transition and critical phenomena, Academic Press, New-York, 1974. Pour les méthodes combinatoires en physique statistique, une solution combinatoire du modèle d'Ising et une formulation dans le langage des graphes, voir respectivement | MR

[4] J. K. Percus, Combinatorial methods, Applied mathematical sciences, vol. 4, Springer-Verlag, New-York/Berlin, 1971, | MR | Zbl

[5] P. W. Kasteleyn, Graph theory and crystal physics, in "Graph theory and theoretical physics", F. Harary ed., Academic Press, New-York, 1967, 43-110, | MR | Zbl

[6] F. Y. Wu, Graph theory in statistical physics, in "Studies in foundations and combinatorics", Advances in Math. supplementary studies, vol. 1, 1978. Pour une revue très récente des problèmes de percolation, percolation dirigée et animaux voir (avec les articles de synthèse cités) | MR | Zbl

[7] M. Sahimi, Critical exponents and thresholds for percolation and conduction, in "The mathematics and physics of disordered media", Lecture Notes in Maths n° 1035, Springer-Verlag, New-York/Berlin (1983), 314-346. | Zbl

[8] N. Breuer, Corrections to scaling for directed branched polymers (lattice animals), preprint (1983), soumis à Z. Physik B.

[9] N. Breuer et H. K. Janssen, Critical behaviour of directed branched polymers and the dynamics at the Yang-Lee edge singularity, Z. Physik B, 48 (1982) 347-350.

[10] J. L. Cardy, Directed lattice animals and the Lee-Yang edge singularity, J. Phys. A : Math. Gen., 15 (1982), L593-L595. | MR

[11] A. R. Day et T. C. Lubensky, ε expansion for directed animals, J. Phys. A : Math. Gen., 15 (1982),L 285-L 290.

[12] D. Dhar, Equivalence of the two-dimensional directed-site animal problem to Baxter's Hard-Square Lattice-Gas model, Phys. Rev. Lett., 49 (1982), 959-962. | MR

[13] D. Dhar, Exact solution of a directed-site animals-enumeration problem in 3 dimensions, Phys. Rev. Lett., 59 (1983), 853-856. | MR

[14] D. Dhar, M. K. Phani et M. Barma, Enumeration of directed site animals on two-dimensional lattices, J. Phys. A : Math. Gen., 15 (1982), L 279-L 284. | MR

[15] F. Family, Relation between size and shape of isotropic and directed percolation clusters and lattice animals,J. Phys. A : Math. Gen., 15 (1982), L 583-L 592. | MR

[16] J. E. Green et M. A. Moore, Application of directed lattice animal theory to river networks, J. Phys. A : Math. Gen., 15 (1982), L 597-L 599. | MR

[17] V. Hakim et J. P. Nadal, Exact results for 2 D directed animals on a strip of finite width, J. Phys. A : Math. Gen., 16 (1983), L 213-L 218. | MR

[18] H. Herrmann, F. Family et H. E. Stanley, Position-space renormalisation group for directed branched polymers, J. Phys. A : Math. Gen., 16 (1983), L 375-L 379.

[19] T. C. Lubensky et J. Vannimenus, Flory approximation for directed branched polymers and directed percolation, J. Physique, 43 (1982), L 377-L381.

[20] J. P. Nadal, Etude de systèmes dirigés en physique statistique, Thèse 3ème cycle, Univ. d'Orsay, 1983.

[21] J. P. Nadal, B. Derrida et J. Vannimenus, Directed lattice animals in 2 dimensions : numerical and exact results, J. Physique, 43 (1982), 1561. | MR

[22] J. P. Nadal, B. Derrida et J. Vannimenus, Directed Diffusion-controlled Aggregation versus directed animals, Preprint (1983).

[23] S. Redner et A. Conioeio, Flory theory for directed lattice animals and directed percolation, J. Phys. A : Math. Gen., 15 (1982, L 273 -L 278.

[24] S. Redner et Z. R. Yang, Size and shape of directed lattice animals, J. Phys. A : Math. Gen., 15 (1982), L177 - L187. | MR

[25] H. E. Stanley , S. Redner et Z. R. Yang, Site and bond directed branched polymers for arbitrary dimensionality : evidence supporting a relation with the Lee-Yang edge arbitrary, J. Phys. A : Math. Gen., 15 (1982), L569 -L573. | MR

[26] G. Viennot, Combinatorial solution of the 2D directed lattice animals problem with heaps of dominos, en préparation.

[27] G. Viennot, Directed animals and combinatorial interpretation of the density of a gaz, destiné à Advances in Applied Maths.

[28] G. Viennot et D. Gouyou-Beauchamps, The number of directed animals, destiné à Advances in Maths.

[29] G. E. Andrews, R. J. Baxter et P. J. Forresters, Eight vertex SOAS model and generalized Rogers-Ramanujan type identities, preprint (1984). | MR

[30] R. J. Baxter, Hard hexagons : exact solution, J. Phys. A : Math. Gen. 13 (1980)L61 -L70. | MR

[31] R. J. Baxfer, Rogers-Ramanujan identities in the hard hexagon model, J. Stat. Physics, 26 (1981), 427-452. | MR | Zbl

[32] R. J. Baxter, Lettre à Dhar, citée dans [12].

[33] R. J. Baxter et P. A. Pearce, Hard hexagones : interfacial tension and correlation length, J. Phys. A : Math. Gen., 15 (1982), 897-910. | MR

[34] M. T. Jaekel et J. M. Mkillard, Modèles solubles en mécanique statistique, Proc. R.C.P. 25, vol.29, Publ. IRMA, Strasbourg (1982),93.

[35] J. M. Maillard, Equations fonctionnelles en mécanique statistique, Note CEA-N- 2332, (1983).

[36] G. Parisi et N. Sourlas, Phys. Rev. Lett. 14 (1981), 871. | MR | Zbl

[37] A. M. W. Verhagen, J. Stat. Phys., 15 (1976), 219. | MR

[38] P. Cartier et D. Foata, Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Maths. n°85, Springer-Verlag, New-York/Berlin, 1969. | MR | Zbl

[39] M. De Sainte Catherine, Couplage et Pfaffien en combinatoire et physique, Thèse 3ème cycle, Université de Bordeaux I, 1983.

[40] S. Dulucq et G. Viennot, The Cartier-Foata commutation monoid revisited with heaps of pieces, manuscrit, 1983.

[41] D. Dumont, Une approche combinatoire des fonctions elliptiques de Jacobi, Advances in Maths., 41 (1981), 1-39. | MR | Zbl

[42] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math., 32 (1980) , 125-161. | MR | Zbl

[43] D. Foata, La série génératrice exponentielle dans les problèmes d'énumération, Presses de l'Univ. de Montréal, (1974). | MR | Zbl

[44] D. Foata, A non-commutative version of the matrix inversion formula, Advances in Maths., 31 (1979), 330-349. | MR | Zbl

[45 ] D. Foata, A combinatorial proof of Jacobi's identity, Annals of Discrete Maths. 6 (1980) , 125-135. | MR | Zbl

[46] D. Foata, M. P. Schützenberger, Théorie géométrique des polynômes Eulériens, Lecture Notes in Maths. n°138, Springer-Verlag, New-York/Berlin, (1970). | MR | Zbl

[47] A. Garsia, S. Milne, A Rogers-Ramanujan bijection, J. Combinatorial Th., A, 31 (1981), 289-339. | MR | Zbl

[48] C. D. Godsil, Matchings and walks in graphs, J. Graphs Th., 5 (1981), 285-291. | MR | Zbl

[49] S. N. Joni et G. C. Rota, Coalgebras and bialgebras in combinatorics, Studies in Applied Maths., 61 (1979), 93-139. | MR | Zbl

[50 ] A. Joyal, Une théorie combinatoire des séries formelles, Advances in Maths., 42, (1981), 1-82. | MR | Zbl

[51 ] P. A. Macmahon, Combinatory Analysis, Cambridge Univ. Press, London, 1915. Réimpression Chelsea, New-York, (1960). | JFM | MR

[52] G. C. Rota, On the foundations of combinatorial theory, I. Theory of Möbius functions, Z. Wahrsch. Band 2, Heft 4, (1964), 340-368. | MR | Zbl

[53 ] G. Viennot, Une interprétation combinatoire des coefficients des développements en série entière des fonctions elliptiques de Jacobi, J. Combinatorial Th. A, 29 (1980), 121-133. | MR | Zbl

[54 ] G. Viennot, Théorie combinatoire des nombres d'Euler et Genocchi, Séminaire Théorie des Nombres 1981/82, Publication Université de Bordeaux I, 94 p.

[55] G. Viennot, Théorie combinatoire des polynômes orthogonaux généraux, Notes de séminaire de l'Univ. du Québec à Montréal, (1983), 165 p.

[56] G. E. Andrews, The theory of partitions, Encyclopedia of Maths. and its applications, G.C. Rota ed., vol.2, Addison-Wesley, Reading, (1976). | MR | Zbl

[57] G. E. Andrews, The hard-hexagon model and Rogers-Ramanujan identities, Proc. Nat. Acad. Sci. U.S.A., 78, (1981), 5290-5292. | MR | Zbl

[58] P. Cartier, La théorie classique et moderne des fonctions symétriques, Séminaire Bourbaki, exposé n°597, Astérisque n°105-106, (1983), 1-23. | Numdam | MR | Zbl

[59] I. G. Macdonald, Affine Lie algebras and modular forms, Séminaire Bourbaki, exposé n°577, Lecture Notes in Maths. n°901, Springer-Verlag, Berlin/ New-York, (1981), 258-275. | Numdam | MR | Zbl