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Séminaire BOURBAKI

33e ann~e, 1980/1981, no 576 Juin 1981

PRIMALITY TESTING ALGORITHMS

[after ADLEMAN, RUMELY and WILLIAMS]

by H.W. LENSTRA, Jr.

§ 1. Introduction

Most methods that are used to decide whether a given integer n > 1 is prime or

composite deal much more easily with composite numbers than with prime numbers. This

is, in particular, true for the methods that are based on Fermat’s theorem, asserting

that a mod n for all prime numbers n and all integers a. A single a not

satisfying this congruence suffices to prove that n is composite, without, however,

yielding a factorization of n. But not every composite n can be proved composite

in this way: the composite numbers n = 561 = 3.11.17, 1105 = 5.13-17, 1729 =

7.13-19, and probably infinitely many others, have the property that a s a mod n
for all integers a. A stronger version of Fermat’s theorem, which does not have

this defect, states that

( 1.1 ) a (n 1 ) /2 - Cn1 - ±1 mod n
for all odd primes n and all integers a ~ 0 mod n. Here (a n) denotes the Jacobi

symbol, for a and n an odd positive integer. It can be proved that for odd,

composite n at most half, and usually much less, of all a E {1, 2, ..., n - 1}

satisfy ( 1.1 ) . For any a in this range, a (n 1)/2 
mod n and (a n) can be calcu-

lated efficiently: the first by repeated squarings and multiplications modulo n,

using the binary representation of (n- 1)/2, and the second by means of the recip-

rocity law for Jacobi symbols. These calculations can be done in time 0((log n) 2 + e ),
for any e > 0. This leads to an easy practical method of recognizing composite

numbers: draw integers a at random from {1, 2, ..., n- 1} until one is found not

satisfying (1.1). If several hundreds of values for a have been tried, and they

all satisfy (1.1), one can safely bet that n is prime, or use n as a prime number

for commercial purposes; but one is not mathematically certain.

The algorithm just described is due to Solovay and Strassen [12]. It is an

example of a probabilistic compositeness test, i.e. an algorithm that on input n

tells us whether n is prime or composite if it terminates, and that has a high

probability of terminating if n is composite; we do not care about termination if

n is prime. The notion of a probabilistic primality test is defined similarly, inter-

changing ’prime’ and ’composite’. A deterministic primality (or compositeness) test

is one that terminates with certainty and tells us whether n is prime or composite.

The main topic of this lecture is the primality testing algorithm of Adleman



and Rumely [1, 2]. In this algorithm, the number n is subjected to a large number

of tests similar to (1.1). If n does not pass all these tests, it is composite. If

n does pass all these tests, one can determine a small set of numbers containing

all divisors  n~ of n. Checking these individually one can decide whether n

is prime or composite.

There are two versions of the algorithm: a probabilistic one, discussed in

section 4, and a slightly more complicated deterministic one, which is discussed in

section 5. Variants and extensions of these tests are described in sections 6 and 7.

Section 8 is devoted to the relation of the new test to older primality algorithms.

It is hoped that these later sections will contribute to the practical feasibility

of the test for numbers of hundreds of decimal digits.

The analysis of the running time leads to a problem in analytic prime number

theory, which was resolved by Pomerance and Odlyzko. They proved that there is an

effectively computable constant cl such that the running time of the deterministic

algorithm, and the expected running time of the probabilistic algorithm for prime n,

are bounded by (log , for n > e . This is much faster than
Pollard’s deterministic algorithm [9], which runs in time O(n(1~8) + s) ) for any E > 0.

If certain generalized Riemann hypotheses are admitted, there is a still much

faster deterministic primality testing algorithm. It consists of testing (1.1) for

all positive integers a  70(log n)2 not divisible by n. If n passes all these

tests one can show, using the Riemann hypotheses, that n is prime. This algorithm

has running time O( (log n) 4 + E ) , for any e > 0.

We refer to Williams’ excellent survey paper [13] for more information about

primality testing, and in particular for an improvement, due to Miller and Rabin, of

the tests based on (1.1). The related but much different problem of decomposing a

number into prime factors is discussed in [5, 11]. For efficient algorithms to per-

form arithmetic operations we refer to C6~.

Throughout this expose we fix an integer n > 1. One should think of n as

an integer that is very likely to be prime, in the sense that a compositeness test

like the one described above failed to show that n is composite. The problem is

how to prove that n is prime.

Further notation: § is a primitive m-th root of unity, A* the group of

units of a ring A with 1, and a> the subgroup generated by a; by a) b we

mean that a divides b and is positive; v (m) is the number of factors p in

m, for p prime; S is the ring of p-adic integers, and F the finite field

with q elements.



§ 2. Gaussian sums

In this section we fix two prime numbers p and q with plq - 1. We assume that

gcd(pq, n) = 1. We put R = and we let x be a character of order p

and conductor q, I,e, a group homomorphi sm x: F*q ~ R* with ~[F*q] = 03B6p>. The

Gaussian sum T ()() is the element of R defined by

T (X) = -~X-1 X (x) ~x q
where x(x) = X(x mod q). By a routine calculation, we have

(2.1) T (X)n - x (n) mod nR if n is prime.

We shall investigate what, conversely, can be said about n if the following

slightly weaker congruence holds:

(2.2) T (X) n - ~(~)-n.03C4(~n) mod nR for some 03B6p>.
We make the following assumption.

(2.3) Condi tion on p. For every prime r ~ n we ha ve v (r 1- 1 ) ? v ( np-1- 1 ) .
This inequality can also be formulated as r p-1 p - 1 mod (n p-1 -1)~ ; p if it

P
holds for all primes r)n, it clearly holds for a11 r~n. If (2.3) is satisfied we

write

Q p (r) - ( (rp 1- 1 ) / (np 1- 1 ) mod p) for r ~ n;

this is considered as an element of We have

(2.4) !Lp (rr’ ) - Qp (r) (r’) if rr’ f n,

(2.5) Qp (n) = 1 .

(2.6) Proposition. Suppose that (2.2) and (2.3) are true. Then n(x) = x(n), and

X (r) - x (n) P (r) for each rjn.

The proof is given below. In (2.9) we shall see that condition (2.3) cannot be

omitted. In order to be able to apply (2.6) we need a method to verify (2.3). For

this purpose we can often apply the following proposition, the proof of which is also

given below.

(2.7) Proposition. If (2.2) is satisfied with then p = order (x)

sa ti sfi es (2.3) .

Trivially, we have

(2.8) if 1 mod p 2 then (2.3) is satisfied.

(2.9) Example. Let p = 2. Then x is given by x(x) = (x q). Put a = = ±q,

the sign being such that a s 1 mod 4. It is well known that T(X)2 - a, so (2.1)

amounts to

a (n - 1 ) /2 - fn1 mod n if n is prime, gcd( 2q, n) - 1 .

This leads to the quadratic reciprocity law: (a n) = (n q). Similarly, (2.2) is equiv-

alent to

a (n - 1 ) /2 - ±1 . mod n.

Let now n be the Ramanujan number n = 1729 = 7’13’19. Then a(n-1)/2 - 1 mod n



for all a with gcd(a, n) = 1, so (2.2) is satisfied for all q, with n(x)
= 1. Choosing q such that X(n) - -1, e.g. q = 11, we obtain an example in which

n ( X ) ~ X (n) . This shows that condition ( 2 . 3 ) cannot be omitted from ( 2 . 6) . 
’

Proof of (2.6) and (2.7) . Suppose that (2.2) is satisfied. Applying the automorphism

of R sending § 
P 

to 03B6nip and 03B6
q 

to itself we find that

T (Xnl) n - n (X) -ni+1 ’ ) mod nR

for ~~0, and by induction on i this yields

T ( x ) mod nR

for all i e ~~ . With I = p - 1 we have T(Xnl) - r(x), and this element repre-

sents a unit of R/nR because r(x)’T(x) = q. Therefore we obtain

(2.10) T ( x )  p-1 - 1 - n(x) mod nR.

Now let rjn be prime. Then (2.2), with n replaced by r and n(x) by x0r)~ r

is satisfied, so for the same reason we have

(2.11) T(x) = X(r) mod rR.

Hence if w denotes the order of (T (X) mod rR) in (R/rR) *, then 

To prove ( 2 . 7 ) , assume that n ( X ) x 1. From ( 2 .10 ) we see that T ( X ) 
np-1 - 1 =

n (X) ~ 1 mod rR, so M divides p (nP-1 - 1 ) but it does not divide nP 1 - 1.
Therefore v (w) = v (p (nP 1 - 1 ) ) . Since v (w)  v (p (rp 1 - 1 ) ) , this proves that

P P P P
(2.3) is satisfied, as required.

To prove ( 2 . 6 ) , assume that ( 2 . 3 ) holds. We can write ( rp 1 - 1 ) / (nP 1 - 1 ) =

a/b with a, b E 2Z , b ~ 0 mod p, and we can even achieve that b = 1 mod p.

Then lp ( r ) = ( a mod p ) , and by ( 2 .10 ) and ( 2 .11 ) we now have

X (r) - X (r) b - ’r (X ) b (rp 1 1 ) - T ( X ) a (nP 1 1 ) - n ( ,a a - ~1 (X ) Qp (r) mod rR , .

and therefore

X (r) - 

This we proved for prime Using (2.4) we see that the same equality holds for

arbitrary r)n. With r = n we find, by (2.5) , that X (n) - n (X) . This proves (2 .6) .

§ 3. A result from analytic prime number theory

Pomerance and Odlyzko have shown that there exists an effectively computable con-

stant c2 such that for every integer n > ee there exists t E S satisfying

the following conditions :

(3 .1 ) t is squarefree,

( 3 . 2 ) t  ( log 

( 3 . 3 ) s > n½ for s = 03C0q Prime, .

The proof employs an idea due to Prachar [10] and is given in C2D. It does not yield

an actual construction of t. In particular, Adleman’s conjecture that one can take



t = n p for some x remains unproved. See [1, 2] for the heuristic

argument and the numerical evidence supporting this conjecture. If we take x = 19

then (3.3) is true for n ~ 10350 .
The result of Pomerance and Odlyzko is best possible in the sense that there

exists a positive constant c3 such that t > (log n)C3.logloglog n for any posi-

tive integer t satisfying (3.3), cf. [2~.

§ 4. A probabilistic primality test

The test runs as follows. Find a positive integer t satisfying (3.1) and (3.3),

e.g. by trying t = 1, 2, 3, ... in succession. Let s be as in (3.3). Check that

n is not divisible by any prime dividing s or t. For each pair of primes p, q

with p~q - 1 and qls (so select a character x of order p and con-

ductor q, and verify (2.2) for this X. Next, prove that each prime p dividing

t satisfies (2.3). Usually, for each p there will be at least one x for which

I, and then (2.7) suffices to prove (2.3). If this is not the case, and

(2.8) does not apply either, test (2.2) for characters x of order p having other

conductors, until an example of n(x) ~ 1 is found. If (2.3) is proved for all

primes p dividing t, determine r. E ~ by

n = r, mod s, 0  r.  s
i i

for i = 0, 1, ..., t- 1, and check that none of the r. is a non-trivial divisor

of n. If n passes all these tests, declare n to be prime. This finishes the

description of the algorithm.

To justify the algorithm, assume that n passes all tests but is not a prime

number. Let r be a non-trivial divisor of n satisfying r  n~. Define 1,

using the Chinese remainder theorem, by

A E {0, 1, ..., t- I},

(r) mod p for any prime ptt, 
~

with 1 P (r) as in section 2. By (2.6), we have x(r) = x(n1) for all characters x

that have been tested. Since these characters generate the group of all characters

of the group (ZZ/sZZ)* ~ ~q|03C3 prime F*q, (s . it follows that r - nl ~ rl mod s. From

0  r  n  s and 0  r1  s it now follows that r = r~, so r1 is a non-

trivial divisor of n. This is a contradiction.

The only non-deterministic part of the algorithm is the verification of condi-

tion (2.3). This verification may, for n prime, in the worst case be very time con-

suming ; and if n is composite this part of the algorithm need not even terminate,

since it is conceivable that (2.3) is not satisfied. If certain generalized Riemann

hypotheses are admitted, this non-deterministic aspect can be removed in the same way

as was done for the Solovay-Strassen test in the introduction. Another solution, not

using unproved hypotheses, in given in section 5.



The analysis of the running time is straightforward if we apply the result of

section 3. One finds that, for any e with 0  e  1, the algorithm terminates

with probability ? 1 - e in time _ )log for all prime

n > ee; here c4 denotes an absolute, effectively computable constant.

We note an improvement of practical interest. Put h(p) = v (np 1 - 1) and

s’ = s’H the product ranging over all primes p dividing gcd(s, t). Then

condition (3.3) can be weakened to s’ > n~, and s can be replaced by s’ in the

algorithm. The justification of this employs that by the definition of t (r) we have

X(r) = x(n) p P (r) for every r f n and every character x of p-power order P and con-
ductor dividing 

1 
.

§ 5. A deterministic primality test

First, let p, q, R, x and T(X) be as in section 2. We replace the test (2.2) by

a somewhat more complicated set of conditions.

Write nP 1 - 1 = ph.u with u ~ 0 mod p. We consider the sequence

T(X) . T (X)P u...., T(X)
modulo nR. Notice that these elements belong to the subring ZZ[03B6p ] of R. Our

first condition is just (2.10) :
h

(5.1) n(x) mod nR for some n(x) E 03B6p >.

We know that (5.1) is satisfied if n is prime, with n(x) = x(n).

Assume that (5.1) holds, and let w(x) be the smallest integer i E {1, 2,

..., h} with the property that is congruent to an element of ~p> modulo

nR. Our second condition is:

(5.2) if w ( X ) >_ 2 and = 1 mod nR, then for each j E f 0 , 1,
w(X)-1 , 

.

..., p - 1} the element u - ~ ~ has, when ex-

pressed on the basis 1, 03B6p, ..., 03B6p-2p of p ZZ[03B6p] P over a coeffi-

cient that is coprime with n.

w(X) _1 .

By definition of w(X) , each T(X)P u - ~~ has a coefficient ~ 0 mod n, so
P

by a gcd-calculation we can check (5.2), or else find a non-trivial divisor of n.

(5.3) Proposition. If ( 5 .1 ) and (5.2) are satisfied, then rp 1 - 1 mod for

every prime r)n. 
w(X) 

.

Proof. This is trivial if w(X) = 1. If 1 mod nR we can imitate

the proof of (2.7), with np 1 - 1 replaced by p w (X) u. So assume that w (X) >_ 2

and that 1 mod nR. Suppose that r- p-1 F 1 mod p w (X) . Then we can

write pw (X) 1u/ (rP 1 - 1) = a/b with a, b E ~>p, , b == 1 mod p. Combining
w(x)

u - 1 mod rR with (2.11) we find that



03C4(x)pw(~)-1u ~ 03C4(~)pw(~)-1ub=03C4(~)(rp-1-1)a=~(r)a=03B6jp mod rR (X) (X) 

for some j ~ { 0, 1, ... , p - 1 } . Hence all coefficients of T (X) - 

03B6jp
are divisible by r, in contradiction with (5.2). This proves (5.3).

Assume (5.1 ) , and let an integer w be fixed for which w(X)  w  h and

r = 1 mod pw for each prime r)n. Put

l’p(r) = ( (rp 1 - 1 ) / (Pwu) mod p) ~ ZZp/pZZp = ZZ/pZZ

for each r)n, and P let n ’ (x) E 03B6p> be determined by P - t1 ’ ( X ) mod nR .

(5.4) Proposition. With these hypotheses and notations, we have

X (r) - 

for each r ~ n, and X (n) - n (x) .

The proof is almost identical to the proof of (2.6), and it is left to the

reader.

After these preparations we present the deterministic primality test. Choose t, s

as in section 4, check that gcd(st, n) = 1, and select a character x of order p

and conductor q for each pair of primes p, q with p~q - 1 and Verify

(5.1 ) and determine w(x) for each X . Next, for each prime p ( t, do the follow-

ing. Put w = max w(X), the maximum being taken over all characters x of order p

that have been selected (if there are none, disregard p). Test (5.2) for a single

X of order p with w = w (X) . This being done for each p, calculate all n’ (X) ;

these are well-defined, since w satisfies the above hypotheses. By a repeated

application of the Chinese remainder theorem, determine the unique residue class

(v mod s) for which X (v) - n’(x) for all x’s. Let r. satisfy

B) = r. mod s, 0  r.  s
i i ~

for i = 0, 1, ..., t - 1, and check that none of the r. is a non-trivial divisor

of n. If n passes all these tests, declare n to be prime. This finishes the

description of the algorithm.

The correctness of the algorithm is proved as in section 4, with (2.6) replaced

by (5.4). The running time is bounded by (log for all n > ee,
with c5 denoting an absolute, effectively computable constant.

§ 6. Jacobi sums

Let p, q, R, x and be as in section 2. In this section we shall see that

condition (2.2) can be replaced by a condition that refers only to elements of the

subring ] of R.
P

Denote by A the Galois group of 03A6(03B6p) over $ and by its group

ring over S. We have g’p - A, under an isomorphism sending (j mod p) to ?.,
where 03C3j(03B6p) = 03B6jp. We let A act on 03A6(03B6p, 03B6q) by 03C3j(03B6q) = 03B6q for all j. The

action of A induces natural ZZ[0394]-module structures on the multiplicative groups



~ (~p, q *, ~ (~p) *, (R/nR)*, so for x in any of these

groups and a E we can meaningfully speak of x.
Define the ring homomorphism ~ : ~ C ~ ] -~ g’p by ~ ( Q j ) - (j mod p), and

let p be the kernel of ~. This is a prime ideal of with and

it is generated by {cr. - j: j E 2Z - It is the annihilator of the 

module 03B6 >.
P

Fix an element ~r of p. Checking the action of the Galois group of

~ (~p, ~q) we find that E ~ (~p) * and, similarly, that
P ~ u(X) P = (T (X) mod 

P

belongs to the subgroup ] ) * of (R/nR)*. We attempt to replace (2.2)

by a condition on u ( x ) rather than T(X).

Using the ZZ[0394]-module structure we can formulate (2.2) as

(6.1) (T (X) mod nR)n (n(x) mod nR) for some n (x) E 03B6p >.

Suppose now that a, $ E satisfy

(6.2) Qn) . ~ ~ p.

Then we find, by raising (6.1) to the power P:

(6.3) u (x) a - (~ (X) 
n03C8(03B2) mod P P ]) for some n (X) E P P >.

( 6 . 4 ) Proposition. Propositions ( 2 . 6 ) and ( 2 . 7 ) remain true with ( 2 . 2 ) replaced by

(6.3) , where a, P E satisfy (6.2).

The proof employs that (2.2) is at least true when raised to the power P,

where (0 mod p), and is otherwise similar to the proof given in section 2.

It is left to the reader.

Elements a, 3t as in (6.2) exist if and only if n - on belongs to the

ideal generated by 03C0 in the local ring Using standard techniques from

commutative algebra one shows that this local ring is a discrete valuation ring with

completion isomorphic to the corresponding map ZZp being given by

Q , J t-* limm~~ j . Hence certainly exist if 
P

(6.5) ~r maps to a generator of the ideal p2Z .

If the ring homomorphism 03C8’ : ZZ[0394] ~ ZZ/p2 ZZ is defined by P 03C8’(03C3j) = (jp mod p2) ,
then (6.5) is equivalent to

(6.6) (0 mod p) , (0 mod p2) .
(6.7) Example : 03C0 = p. In this case we can take

03B2 = jOj (with 03C8(03B2) = (-1 mod p) ) .

03B1 = 03A3p-1j=1 [nj p]03C3-1j
where [x] denotes the greatest integer  x. If p = 2 then u(X) = (T(x)2 mod
nR) is simply given by u (X) - mod nR), cf. (2.9).

(6.8) Example : n = where a, b E ~ satisfy ab(a + b) ~ 0 mod p



(so p = 2 is excluded) and ap + (a + b)p mod p~ (cf. (C.6) ) ; e.g., a =

b = 1 for p  6.109, p ~ f1093, 3511}. In this case we can take

where ~r(~) ~ (0 mod p) is a consequence of p~. By ~7, Ch. I, §ii,

the element v(X) is given by the Jacobi sum

u (x) = x)b mod 

This element can be calculated within the ring ?~[~p].
(6.9) Remark. It is an interesting problem to find a method for the calculation of

v(X) that is more efficient than directly using its definition or, in a special

case, the formula given in (6.8). For p = 2 this is trivial. In the general case,

it might be possible to use the arithmetical characterization of Gaussian sums for

this purpose [7, Ch. I]. This can certainly be done for p  11, employing the

Euclidean algorithm in (cf. F8]) ; here we assume that an x E is known

with X (x) ~ 1.

§ 7. Characters of prime power order

In this section we generalize the results of the preceding sections by indicating

how characters of prime power order can be used. The proofs are slightly more in-

volved than those given earlier, and they are omitted.

We start with two prime numbers p and q not dividing n, and an integer

k > 1 with pk|q - 1. Put R = ZZ[03B6p k, 03B6q], and let x: IF* ~ R* be a character

of order p and conductor q. The Gaussian sum 03C4(~) = -03A3q-1x=1 ~(x) 03B6xq e R again

satisfies ( 2 .1 ) . We consider the analogue of ( 2 . 2 ) :

(7.1) T (X)n - n(x) mod nR for some n (x) ~; ~pk>-
(7.2) Condition on p. For every prime r|n there exists lp(r) E ZZp such that

rp 1 - (np 1 ) Qp (r) in the group 1 + 

This condition is equivalent to (2.3) for p > 2, and if n - 1 mod 4 also

for p = 2. Defining R, P (r) E ?L 
P 

for every r ~ n by rp 1 - (np we now

have the following analogues of (2.6) and (2.7).

(7.3) Proposition. Suppose that ( 7 .1 ) and (7.2) are true. Then n(x) = X (n) , and

X(r) = x(n) 
/y-B 

for every r ~ n .

(7.4) Proposition. Suppose that (7.1 ) is satisfied, with n(x) a primitive p-th
root of unity, and that one of (a) , (b) , (c) holds:

(a) p is odd;

(b) p = 2 , k = 1 and n s 1 mod 4 ;



(c) p = 2, k > 1 and r(x ) == -1 mod nR.

Then (7.2) is satisfied.

If p = 2 and n - 3 mod 8 then (7.2) is satisfied if 2(n 1)/2 - -1 mod n.
A further way of verifying (7.2) is given in (8.6).

Using (7.1), (7.2), (7.3) and (7.4) instead of (2.2), (2.3), (2.6) and (2.7)

in section 4 we obtain a probabilistic primality test in which the restriction

(3.1) that t be squarefree can be removed. This is an improvement of practical

interest. As far as the running time is concerned, the improvement affects at most

the constant in the exponent (cf. the final paragraph of section 3). As in the final

paragraph of section 4, we can replace s by s’ = 
. 

pm(p),
where m(p) = v (n - 1) - 1. 

’ ’

The results of section 6, which are important for practical purposes, have

been generalized to the present situation by H. Cohen. For p ~ 2 he finds for-

mulae similar to those in (6.8), but the case p = 2 is rather more delicate. The

conclusion is that all calculations can be performed in the ring 

The generalization of the deterministic test from section 5 takes the follow-

ing shape. Let p, k, q, R, X, leX) be as above, and denote by G the Galois

group of $(C. - P ~) over $. For j ~ 2Z* P let be the element of G with

o.(C, pk) - 03B6Jpk-. We let G act on R by 03C3j(03B6q) = q for all j. Choose u ~

z1 - pZL such that p u E cr) for some m e ; e.g., take for u the

largest divisor of 1 that is not divisible by p. Define A(x) =

(T (x) mod nR) u, and assume that (7.1) is satisfied. Then A(x) belongs to the

p-primary part of (R/nR)*. This p-primary part may be considered as a module

over ZZp[G]. Let H be the set of all a E 2Zp for which there exists n(x, a)

E 03B6pk> such that 

03BB(~)1 - (a/03C3a) = (r1 (X. a) u mod nR) g
e.g., n E H , with n(x, n) = n(x). It is easily checked that H is a subgroup

X X
of and that the map x: H~ ~ 03B6pk>, (a) = n (X, a), is a group homomorphism.

Consider, for a E ZS* - H , the following condition:

(7.5) for each j E {0, 1, ..., p - 1} the coefficients of the element

of when expressed on a basis

over /n, generate the unit ideal of 

Given a it is easy to check this condition or else to find a non-trivial divisor

of n, cf. (5.2).

We shall only be interested in the pro-p-primary subgroup J = H n 
X X P

of H .
X

(7.6) Proposition. Let X satisfy (?.1), and suppose that every subgroup J C

1 +p with J C J and index[J:J j - p contains an element a satisfying
P X X



(7.5). Then for every r)n we have

X ( rp 1 ) - ~ { rp 1 ) .
X

Note that at most three subgroups J have to be considered, and at most one

if p > 2.

The deterministic test based on (7.6) runs as follows. Let s, t be as in

(3.3) and check that gcd(st, n) = 1. For each pair of primes p, q with p)q - 1

and qls select a character x of order pk and conductor q, where k =

v P (q - 1 ) . Test (7.1) and determine J X for each X . Next, for each prime plt,
do the following. Put J = f1 J, the intersection being taken over all charac-

ters x of p-power order that have been selected. Test (7.5) for a few pairs

(a, x), selected in such a way that by (7.6) we know that J for each r~n.

If -1 E J (so p = 2), choose y E J such that J = u (-03B3ZZpp). Other-

wise, choose Yp E Jp such that J P = Yp P. This being done for each p, determine
the unique residue class (v mod s) with X{v) - XOy ) for all X’s. Let v ==

r. mod s, with 0  r.  s, for i = 0, 1, ..., t- 1, and check that none of the

ri is a non-trivial divisor of n. If -1 E J , determine (p mod s) by

X(P) = X {-1 ) if x has 2-power order,
’ 

X{u) - 1 for the other x’s,

define ri by ri mod s, 0 ~ ri  s, for i = 0, 1, ..., t - 1, and check

that none of the ri is a non-trivial divisor of n. If n passes all these

tests, it is a prime number.

§ 8. Galois theory tests

The probabilistic primality tests discussed in sections 4 and 7 attempt to show that

n is prime by proving that any divisor r of n is a power of n, in various

senses: in the group 1 + as in (7.2); in the group of values of a character

X, as in (7.3); and in the group (2Z/sS)*, as in section 4. It turns out that

several older primality tests can be formulated in a similar way. This applies in

particular to the tests employed by Williams that depend on Lucas functions and

generalizations thereof, see [13] for references. In this section we give an account

of these methods from the present point of view, and we discuss how they are related

to Adleman’s tests. We use the language of finite rings rather than that of Lucas

functions. By "ring" we shall mean "commutative ring with I", and subrings are

supposed to have the same unit element. _

(8.1) Theorem. Let s E 2Z . Let A be a ring containing as a subring.

Suppose that there exists a E A satisfying the following conditions:

a = 1,
as/q - 1 E A* for every prime qls,



the polynomial 03C0t-1i=0 (X - an ) has coefficients in 

for some t E 2Z .
Then every divisor r of n is congruent to a power of n modulo s.

Proof. We may assume that r is prime. Since r is a zero-divisor (or zero)

in A, there exists a maximal ideal m c A with r E m. Let A be the field

A/m, and a = (a mod m) E A. The first two conditions on a imply that a has

order s in A*. The polynomial (X - a ), which has a as a zero, has

coefficients in the prime field F of A. Therefore 03B1r is also a zero of this
r 

v ni
polynomial, so there exists i E {0, 1, ..., t - 1} with a = a , i. e. r -

nl mod s. This proves (8.1).

(8.2) To obtain a primality test one applies (8.1) to a ring A that, if n were

prime, would be the field Fnt’ where t is some positive integer. For s one

takes the largest divisor of nt - 1 that one is able to decompose into prime ,

factors. One chooses a to be an element of A* of order s. If n is actually

prime, then such an a is in practice easy to construct by manipulating with el-

ements of the E A*, and it satisfies the conditions of (8.1).

Conversely, these conditions imply that any r)n is modulo s congruent to a

power of n, so if s > n~ we can check whether n is prime as in the algorithm

of section 4.

Classical tests are obtained for small values of t. The test with t = 1

and A = yields the result that every r~n is 1 mod s, where s is the

completely factored part of n - 1; so n is prime if s > n½. For t = 2 and

n odd one can take A = where u, v E ZZ/nZZ are such that

(2014) = -1 for d = u2 - 4v. In the resulting test, which is usually formulated in

terms of Lucas sequences, we can use known prime factors of n + 1 in addition to

those of n - 1. If n = 2m - 1 is a Mersenne number then n + 1 is easy to

factorize, and in this case (8.1) leads to the well-known Lucas-Lehmer test for

Mersenne numbers [13, p. 152].

Two important features of the tests described in are not shared by the

test described above. The first is the possibility to employ lower bounds for the

unknown prime divisors of nt - 1. Further research is required to find out whether

these are equally useful for the larger values of t that we shall be interested

in. The second is the possibility to combine the information gained by considering

several different values of a and even of t. In order to incorporate this fea-

ture into our test we endow A with extra structure.

Let A be a ring containing as a subring, and let a> be a cyclic

group of ring automorphisms of A, with generator o. We say that A is a Galois

extension of with group a> if there exist t E and z2, ..., zt
E A such that



det ~Ql { z j ) ~ 1 ~i r , 7_ ~t E A* .
zi, z , ..., zt is a basis of A over 

(so #A = nt). We call t the rank of the extension. If A is a Galois exten-

sion of ZZ/nZZ with group Q> then {x E A : a (x ) - x } , by [4, Ch. III,

prop. 1.2].

(8.3) Lemma. Let n be rime, /. and Jet A be a Galois extension of IT with group

a>. Then any ring homomorphism T : A - A wi th T(l) = 1 and TO = or belongs

to 6>.

Proof. Let t be the rank. By [3, theorem 3.1~ (applied to f = g = T)

there is a unique system (e.) ._~ of pairwise orthogonal idempotents of A such

that t-1 1 e. - 1 and ~ ~"t-1 1 for all x E A. The uniqueness and
1 ~_~ ( 

) 
~ 

q

the fact that ~TQ = T imply that Q (ej ) - e., so e. E ~’n, for 0  j  t.

Since F n has no non-trivial idempotents , it follows that ei - 1 for some i

and e, - 0 for all j x i. Hence T = Q1, as required.

Alternatively, we can use Grothendieck’s theory of £tale coverings to reduce

(8.3) to the following easily proven fact: if G is an abelian transitive permuta-

tion group of a set X, then any map X -~ X commuting with all elements of G

belongs to G.

If zi, z2, ..., zt is a basis of A over then an element x =

a,z, of A, with ai E is called primiti ve if a1, a2, ..., a
generate the unit ideal in 

(8.4) Theorem. Let s E TL~~, ~ and let A be a Galois extension of rank t of

with group 6>. Suppose that for every prime q(s there exists a E A

wi th the foll owing properties;
m(q)

aq 
m (q) = 

1 where m(q) = v ( s ) ,

aq - 1 is primitive,

a (a) - an.
Then 1 mod s, and for every we have (r mod s) E n mod s> in the

group (~/s~) * .

Proof. For each prime the corresponding a has order qm(q) in A*,

and a = 6t (a) - so 1 mod . Therefore 1 mod s. Let now

r~n be prime. Then A = A/rA is a Galois extension of F with group ~>,

where 03C3 is induced by Q. The map T: A ~ A, T(x) - xr, r is a ring homomor-

phism with T(I) = 1 and TO = 03C303C4, so (8.3) implies that T = Ql for some i .

We prove that r - nl mod s. Let q)s be prime, and a as in the theorem. Then

a = (a mod rA) has order q ~q) in A*, and T (a) - 61 (a) - so r -

nl mod qm (q) . This proves (8. 4) .



(8.5) The following method to construct Galois extensions is useful for primality

testing. Take A = (~/n~) CX~/ (f) , where f E has a unit discriminant

and is such that 
i

f (Y) - (Y - ~n ) > in ACY~

where t = degree(f) and ~ = (X mod (f)) E A. This is a Galois extension of

with group a>, where a(~) - ~n. If n is actually prime then such an

f is in practice not difficult to find.

Another construction method for Galois extensions consists of taking tensor

products, over of Galois extensions of coprime ranks. This method makes it

possible to combine information coming from different rings A.

The use of (8.4) for primality testing is analogous to the use of (8.1). One

of the main difficulties is to find a relatively small t E S and a completely

factorized divisor s of nt - 1 for which s > n½. If s = q

then by Fermat’s theorem s divides n - 1 (unless gcd(n, s) > 1), so the

result of section 3 shows that a suitable t can be found with t 

(log This leads to a probabilistic primality test whose speed

is comparable to that of the previously discussed probabilistic tests (sections 4

and 7).

It is an advantage of the new test over the previous ones that known primes

1 for which q - 1 does not divide t can also be used; but Pomerance

writes me that not too much gain should be expected from this. On the other hand,

the previous tests have the advantage that the necessary calculations can be per-

formed in rings whose ranks over are much smaller than t.

It is a natural question to ask to which extent both types of tests can be

combined. Using Adleman’s tests together with the special case A = of

(8.4) one obtains a test in which the number that should exceed n~ is the least

common multiple of H . q and the completely factored part of n - 1.

The following theorem is an example of a result that applies more generally.

(8.6) Theorem. Let all hypotheses of (8.4) be satisfied. Let pit be prime, and

assume that v (s) = v (n - 1) > 0. Then p satisfies condition (7.2), and if
P P

rln, r - n mod s, then (r) mod where Q (r) is as in section 7.
P P P

The proof is an easy exercise in elementary number theory.

(8.7) Remark. All primality tests in this expose use an auxiliary number s that

is required to be greater than n~. At the cost of some extra work in the algor-

ithms it is possible to replace the lower bound n~ by nZ/3. . This is done by

viewing a possible factorization of n modulo s2 and applying reduction tech-

niques for two-dimensional lattices.
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