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Séminaire BOURBAKI

29e année, 1976/77, n° 491 Novembre 1976

KLEINIAN GROUPS

[A Survey]

by William James HARVEY

The study of discontinuous groups in the plane was begun in the 1880’s by Schottky,

Poincaré and Klein, although the main area of activity lay in specific subclasses.

A good impression of the subject before 1960 can be gleaned from the treatise of

Fat ou

Developments since then have been the introduction of quasi-conformal mappings

by Ahlfors and Bers, which caused the modern revival in the general theory, and an

amalgam of techniques due to Maskit in the topology of planar domains and coverings

linked with methods of construction which are in direct descent from some work of

Klein and Koebe. Recently the original idea of Poincaré to use the extended action

on hyperbolic 3-space has been implemented by Marden using results of Waldhausen.

Following the realisation by Greenberg of the significance of the assumption that

fundamental polyhedra have finitely many faces, attention has naturally focussed

on groups which satisfy this condition.

Among topics which go unmentioned for lack of space we list the study of auto-

morphic forms and cohomology, and the structure of deformation spaces. Details and

references for these will be found in [10,20].

§ 1. Generalities

We consider two closely related actions of the group G = SL2(C?~~~I~ . The first
is as the group of Mobius transformations C U ~~~ :

Here the subgroup of real matrices GR preserves the upper and lower half-planes

U and J* .

GC also acts on the symmetric space X ~ GC/SU2(C) , which is the 3-

dimensional hyperbolic space H = {(x , y , t) : t > 0) . The link with (1.1) is most

neatly established by representing R3 as the set of quaternions

1 
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(q = x + yi + tj + and writing

It follows that GC preserves the subspace ~ and the boundary 826 , which is

naturally identifiable with C U (oo) ; moreover (1.2) extends (1.1).

We shall need the familiar classification of elements of GC as elliptic,

parabolic or loxodromic (hyperbolic if in GR ) according as they are conjugate to
a rotation, a translation or a dilation.

Let r be a discrete subgroup of G . Then r acts properly discontinuously

on K , , as was proved by Poincaré, but the action on PC may not be discontinuous.

We denote by A(r) the limit set of r , which is the set of accumulation points

of r-orbits (any single r-orbit suffices to determine A(r) unless r is cyclic),
and write Q(r) for the complementary set in PC , referred to as the disconti-
nui ty region or ordinary set of r .

DEFINITION.- A Kleinian group is a group r with .

It follows easily for Kleinian groups that A is either finite ( 0 , 1 or 2

points), in which case the group is termed elementary, or a nowhere dense perfect

set.

For discrete groups r one can form the quotient space and

if r is Kleinian there is an associated 3-manifold with boundary,

U ~(r)~ ! r . The boundary o?7Z.(r) = carries a complex structure and

we consider it as a disjoint union of Riemann surfaces

The connected components of 03A9 fall into corresponding r-conjugacy classes i
covering the various S.. If we denote by ri the stabiliser in T of a given

component 03A9i C 03A9 then of course 03A9i/0393i = S.. Such a subgroup is termed a compo-
nent subgroup of r .

An important class of Kleinian groups is those which possess a component

which is preserved by all elements of r , i.e. the stabiliser ro is r.

These groups are called function groups and is called an invariant component.



§ 2. Examples

(i) The elementary Kleinian groups consist of :

(a) the finite groups of symmetries of the regular solids,

(b) the infinite cyclic and dihedral groups (and finite extensions),
(c) the doubly periodic groups of translations (and finite extensions).

If r = (T) , with T loxodromic, then is a solid torus, while if T

is parabolic then 1Q(r) is homeomorphic to (0  1~ x (0,1) with boundary

a twice-punctured sphere.

If r = (z - z + w~ , z r-~ z + w2 ) , then 1R(r) is homemorphic to

(0  1} X S~ 1 and } is a torus.

(ii) A Fuchsian group is a Kleinian group which is conjugate in G~ to a subgroup

of GR . The theory of these groups is quite highly developed and is a frequent

source of motivation and a useful tool in the general theory. If r is a (finitely
generated) Fuchsian group of the first kind preserving U (and £ ) then is a

Riemann surface of finite topological type. In fact is conformally a compact

surface with a finite number of branch points and deleted points corresponding to

the conjugacy classes of elliptic and parabolic elements of r , and on fixing a

Poincaré area measure usually diJ. = (2 Im z) _o dx dy,, one can speak of the

Poincare area of S = 1l/r as (S) = D d  , for D some suitable Borel-

measurable fundamental set for r . By the Gauss-Bonnet theorem, one has

if there is no torsion and S is compact.

For Fuchsian groups r the 3-manifold (r) is homeomorphic to the product

of S = 1L/r with a closed interval, and the boundary is the disjoint uni-on of S

and its mirror image J~/r .

(iii) A Schottky group is a group generated by a finite set of loxodromic elements

T 1 ,...,T n for which there is a collection 03B31 , Y1 : - .. ; Y n ,Y’ n of mutually exte-

rior Jordan curves (closed) in P1C such that T. 1 maps the exterior of y. 1 onto

the interior of y! 1 for i = 1,...,n . The corresponding manifold is a handle

body with boundary a single compact surface of genus n . It is easy to terify that

Schottky groups are free. Conversely by a theorem of Maskit any free purely loxo-

dromic Kleinian group is Schottky.



§ 3. Cus s, geometric finiteness and the structure of 

Let d( , ) denote hyperbolic distance in X . For any discrete group F SE G~
and base point 03C3 ~ H we define the Dirichlet polyhedron 03C3) by

where ~ is the half space ~q E ~ : d(q , 0’~ s d(q, It is easily verified

that ~ is a fundamental set for r in K and if r is Kleinian then the Eucli-

dean closure of o~ intersects in a fundamental set for r in Q(r) .

The naive approach to a structure theorem for the manifolds using iden-

tification of congruent faces of a suitable fundamental set relies on there being

finitely many faces essentially. This need not be true for finitely generated

Kleinian (or merely discrete) groups (see § 4 for "degenerate" groups).

DEFINITION.- A discrete subgroup of G C is called geometrically finite if it has

a finite sided fundamental polyhedron in ~ .

Note.- For such groups the polyhedron a~ (r , is finite-sided for all points 0’

To describe (r) accurately we must first discuss the possible boundary

points which do not lie in n(r) . These correspond to the conjugacy classes of

maximal parabolic subgroups of r and are usually referred to as the cusps of r .

Let P E A(r) be a parabolic fixed point of r and denote by M- its r-

stabiliser. Then MP is either (a) free abelian of rank 2 or (b) infinite cyclic
modulo torsion.

DEFINITION.- A horosphere at P is an open Euclidean ball in H tangent at P to

~H .
It is possible to find horospheres {BP} for all parabolic fixed points of r,

such that is precisely invariant under M , , i.e., ,

In case (a) above, one sees that tf~P ~ MP "--’ (0  z ~  1 ~ x S 1 ( cf . example

(i) (c) in § 2), and one refers to it as a solid cusp torus P for r at P .

The collection {P} for a given group can be chosen to be mutually disjoint.

In case (b) the situation is more complicated. Certainly one has (cf. example

(i) } (b)) ~P ~ MP ^-_’ (0  Izl  1) x (0,1) but one needs more information about

the nature of Q(r) near P . We distinguish those points P which are cusps (i.e.

punctures) of some component surface S 
© 

of Le t 0 be a component of



Q(r) corresponding to S and P . Then Q contains a horocyclic disc D with
o o

P £ D and D precisely invariant under MP , so that (BD ’P) / MP is a loop in

S retractible to the puncture § (P) E S . For some points P it is possible to

have two associated punctures § , 03BE1 in Q(r)/r , either on the same surface S
o o

or on distinct ones So’ S . In this case we say that So’ , 03BE1 are paired : there

is then a pair of tangent horocyclic discs D D at P, as pictured below
o 1 .

A simple example is the classical modular group GZ .

For points P representing two paired cusps (one might call P a bicuspidal

point) there is an associated solid cusp cylinder CP ~ fl(r) , conjugate to a set
of the form

where T(z) = z + 1 . Here too the collection (’C-) for all P belonging to given

r can be chosen disjoint.

Marden has given the following structure theorem for 

THEOREM 1 [11].- r is geometrically finite if and only if there are a finite set

of disjoint solid cusp tori and cylinders in such that the complement is

compact.

The proof is similar to the classical one for Fuchsian groups.

Remark.- A further important consequence of the geometric finiteness assumption for

Kleinian r is a result due to Ahlfors j~3] that the limit set A(r) has zero

Lebesgue measure. It has been conjectured that this holds for all finitely generated

Kleinian groups - counter examples are known (1] for infinitely generated groups.



§ 4. Quasi-conformal mappings and deformations of Kleinian groups

The powerful analytical methods developed by Ahlfors and Bers in the context of

Teichmuller theory (see for example Gramain, Sém. Bourbaki, exposé 426 (1973)) make
it possible to generate a large class of Kleinian groups by conjugation of a given

one with suitable homeomorphisms of 

Recall that a homeomorphism f defined on a region D ~ P1C is called K-quasi-

conformal on D ( K finite) if it has generalised derivatives f , f which are

locally in L2(D) 
. 

and satisfy 
z 

~

almost everywhere in D . Notice that a 1-q-c mapping on D is conformal.

The fundamental result which is used in Kleinian group theory is the existenee

theorem below.

THEOREM 2 C4~.- For each measurable complex function W in L (C~ with

]]p 0o _ K K + 1 1  1 , there is a unique K-q-c homeomorphi sm wN’ of P 1C fixing

0 , 1 and ~ and satisfying the Beltrami equation

Moreover the is holomorphic.

Remark.- There is an explicit estimate of w as ~, --~ 0 which is of great impor-

tance for the analytic study of deformations.

To apply this we observe that if r is Kleinian and W is quasi-conformal

on j~(r) , then the group

is discontinuous on v(n). . The deformed group I’ is therefore Kleinian if and

only if it is contained in , and this occurs precisely when

_ 

B 2014- /

for all T ( r and z E Q , since ~’~’ o T must be a solution to (4. 1 ) .

DEFINITION.- A function  ~ L with support in D E and ~ ~  1 satis-

fying (4.3) is called a Beltrami coefficient for r on D . The corresponding group

r is s called a q-c def ormati on of F .



An important class of groups arises in this way if we take for r c GR a

Fuchsian group of the first kind (with finite area). The space of Beltrami coeffi-

cients for r contains a subspace arising from the automorphia forms of weight 4

for r : if B4 (r , denotes this space of cusp forms on ~L. (with finite 1~

norm : ~~ = sup 4y~ c~ ( z ~ j ( ) then the rule

determines a family of q-c deformations of r with support in ~ . . The correspon-

ding Kleinian groups represent two homeomorphic surfaces of which one is always

conformally equivalent to .~lr , while the other is (usually) different. A key
result due to Bers [5] states that any pair of homeomorphic surfaces can be repre-

sented in this way. Such groups are called quasi-Fuchsian.

§ 5. Schwarzian derivatives, Teichmüller space and degenerate groups

Although we shall not discuss Teichmuller space here, it should be noted that the

two theories have developed in parallel and there are important interactions of

which we must describe one in order to introduce the,mysterious class of groups

known as degenerate.

Consider for a fixed Fuchsian group r the space B(r) = B4(r ,-C) of cusp

forms on £ . . For cp E B(r) , we denote by w~ the unique solution to the

Schwarzian differential equation

which satisfies w (z) = 20142014r + 0( hs + it) near -i , recalling that Such solu-

tions arise as quotients of solutions to the linear D.E .

(5.2) 2u" + (p(z) .u = 0 .

A direct computation shows that for T E r , w o T is a solution to (5.1) and
, ~

so w o T = T o w , determining a deformation
cp cp ’

Note . - If w extends to a r-compatible q-c mapping , then 6 (r) is of

course quasi-Fuchsian. The set of all such cp is denoted °~°(r ~ . It is the Bers

embedding of Teichmüller space,a bounded domain in which lies inside the ball



(see [7] and references there).

We are interested in the boundary of ~(r) for the following reason.

THEOREM 3 [7].- Every point cp in ~(0393) determines a univalent function w ,
and the associated deformation r is a Kleinian group with a simply connected

invariant component which contains w (f) . .

The proof involves only the Hurwitz theorem on limits of univalent functions

and the properties of equation (5.1).

DEFINITION.- A Kleinian group is termed a b-group if it has a simply connected

invariant component.

In analogy with the theory of moduli for elliptic curves there is a subset of

referred to as the set of cusps of ~(r) distinguished by the following

property.

DEFINITION.- A cusp of ~(r) is a Kleinian group F which contains a parabolic

element T =6 (T) with T hyperbolic in r . Such an element T is termed

accidental parabolic for r , because it does not (as it should) determine a punc-

ture of w 03C6(L)/039303C6 .
Note.- The nomenclature suggests that there should be a discontinuous group acting

on ~(r) which might contain elements fixing a cusp group, and indeed there is

such a group - the Teichmuller modular group.

DEFINITION.- A b-group is called totally degenerate if it contains no accidental

parabolic elements.

The question of existence of degenerate groups is settled by the observation

that the condition for an element T . to be accidental parabolic in r may be

expressed as

and this determines an analytic set in B(r) for each of the countably many hyper-

bolic elements T E r . Thus most points of B~(r) are not cusps.

THEOREM 4 [7].- A totally degenerate group F 6 ~(0393) has discontinuity set the

single (invariant) component, w (.E) . 

~



For if ~3~ I is another component, then either it is r -invariant in which case
w 

cp 
extends to PC 1 and r 

cp 
is quasi-Fuchsian contradicting the assumption

r E or 0 is not invariant so the inverse image r. = 03B8-103C6 stab(03A91)
in r , having infinite index in r , contains a boundary hyperbolic element which

must have parabolic image in F , contradicting degeneracy.

Remarks.- 1~ No explicit example of a degenerate group is known, although there are

clearly an uncountable number representing each conformal type of Riemann surface.

2) Bers has conjectured that the set of cusps of is dense in the boundary.

§ 6. The finiteness theorem

A crucial r6le in providing a focal point of interest and new methods was played

by Ahlfors in proving the following result.

THEOREM 5 C2J.- Let r be a finitely generated Kleinian group. Then the space

consists of a finite number of surfaces S. , each a Riemann surface
of finite area.

In order to o.utline the method of proof we need to recall the Eichler cohomo-

logy of r .

Let V denote the vector space of polynomials in C[X] of degree ~ 2q-2 ,

q = 2 ,3 .... Then GC acts on Vq by the rule

(for q = 2 one finds this is isomorphic to the adjoint action on the Lie algebra

of C ). Denote by H1(r, V ) the first cohomology group of F with respect to

this action. One easily verifies that if r has N generators then

dim H1(r, V ) S (2q - 1 )(N - 1) . . Ahlfors’ result follows from the fact that there
q

is an injective mapping P (anti-linear) from the space of cusp forms B2 q (r, 
for r into H (r , V ) for each q ~ 2 ; for it is well known that these spaces

are finite dimensional if and only if every component S. is of finite area and they

are finite in number, since B2 (r, ~ B2 (r. 03A9i) with (r., running

through a system of non-r-conjugate component subgroups.

We describe the map f3q for q = 2 : let cp E B4 (T , ~ ) . There is a function

F cp , continuous on ~’ ~ , wi th



and aF - - 0 on A , satisfying a growth condition F(z) = Such an
aZ

F can be written down explicitly. Now if T ~ r the expression

is a polynomial of degree ~ 2 , and is a 1-cocycle of r in V2 . To

finish the proof for q = 2 one must show this rule is injective and this is carried

out using a delicate estimate for F (z) as z --~ A and a smoothing operator

which allows the use of Stokes’ theorem to show CT cp . ~r . ( ~ ( Z ~ ~ 2 . dx dy = 0 for

all integrable holomorphic functions.. on Q . 
~

A further development due to Bers [6] was the extension of this method to

higher values of q . Using the Riemann-Roch theorem to write down dimensions of

B2q (r. and dividing by q , one obtains as q -* c&#x26; the formula for the area

of S. (up to multiple 2n ). This implies the result

THEOREM 6.- The total area of Q/r is at most 4n(N - 1) , , if r has N generators.

Remark.- More precise relations between N and Q/r can be derived in certain cases.

If r is torsion free then Q/r has at most 2 (N - 1 ) components, while if r is

loxodromic there are at most N - 1 .

In fact a purely topological argument (see [11]) shows that if S, has genus

gi then E g, i s N (the kernel of the surjection H1(~M(0393)) ~ H1(M(0393)) has

dimension 2 dim H1 ). Therefore if r is loxodromic the number of components

is at most N/2 .

§ 7. Function groups and b- ou s

The first step in classification of Kleinian groups is to study the component sub-

groups and these are function groups (§ 1). We shall sketch the classification of

these, due to Maskit and, in the torsion free case, worked out by Marden using 3-

manifolds.

It is natural to consider first the groups with two components.

THEOREM 7 ~ 12~ .- A finitely generated group with two invariant components is quasi-
Fuchsian.

By Ahlfors’ theorem 5 each component ~j , ~ of r with stabiliser r. , ,
resp. r2 , represents a finitely punctured surface. For elementary reasons there



are no other components and each Q. is simply connected. The Riemann mappings

F 1 3 ~~ -~ 1.l, F2 : determine type-preserving isomorphisms ~i ,
i = 1 , 2 , of r onto Fuchsian groups r’ , r2 and by the Nielsen-Fenchel theorem 

1

(see [ ]) there is a homeomorphism f ?,(, -~?(,. which realises

in fact f may be assumed piecewise linear (hence q-c). Therefore setting

f1 = f o F1 , and ~(z) = (f 1 )- 2 l (f1 ~z for z E Q and 0 elsewhere, one obtains

by theorem 2 a global homeomorphism w of PC and a Kleinian group 0393  having
two invariant components and possessing an automorphism e induced by an orientation-

reversing homeomorphism g of 03A9(0393 ) :

g = w~ o F21 o j o f 1 o (w~’ ~ 1 on w~’ (f~1 ~ , with j denoting complex conjuga-
tion.

It follows also that 8 preserves the trace of each element of r and this

implies by a standard argument that e extends to an automorphism of GC . Hence
g is anti-Möbius and r is Fuchsian.

THEOREM 8 [11].- If r has two invariant components then is the product of

a surface 03A91/0393 with the interval [0,1].

(For compact this is a result of Waldhausen.)

The argument involves choosing a set {03B1j} of simple loops in S1 - 03A91/0393 ,
each intersecting only its successor (transversely and in one point). Using the

Cylinder theorem [19] there is a corresponding set {03B1’j} on S2 and pairing cylin-

ders C. in having the same intersection properties. Hence

S ’(S1 ’ D U j is a disc, and ’similarly for S2 with the result that

is a 3-ball since it has boundary containing a sphere. The result

now follows in the compact case. The non-compact case is more delicate, using

theorem 1.

For degenerate b-groups the structure of is still a mystery. Here is

one reason why.

THEOREM 9 [9].- A degenerate b-group is not geometrically finite.

Proof. For simplicity assume r is a purely loxodromic group, degenerate and

geometrically finite. By theorem 4, a’~(r~ - Q/F is connected. Taking the double

1 
See A. Marden, Isomorphisms be tween Fuchsian groups , Lec ture Notes in Math.,

vol. 505, p.56-71, Springer, 1974.



of M one finds that the Euler characteristics satisfy ~() = 0 =

2 x (~~ - ~ (a~,~ . But here, so 0 which implies f~~r
is a torus ; this is impossible for a loxodromic group of this type.

If r is a b-group with no degenerate subgroups, the structure of is

analogous to that in theorem 8. If 11l (r) denotes the result of removing all solid

cusp cylinders in 11l(r) which are disjoint from S , then is not con-

nected and it can again be shown that is a product S I x [0,1] . The cusp

cylinders here correspond to the conjugacy classes of primitive accidental parabo-

lic elements of r . . The various boundary surfaces S. with i ~ 1 fit together

using these linkings by paired cusps (see § 2) to make up a 2-complex K of the

same homotopy type as S~ , and one finds that

(7.1) Total area of ~~r - 2 (Area of S 1 ~ .
When r contains degenerate subgroups some part of the complex K is missing,

and the equality in (7.1) becomes a strict inequality.

In a recent series of papers Maskit has extended the above heuristic descrip-

tion to give a structure theorem for finitely generated function groups. It is

appropriate to use the notion of a graph of roups in formulating his result (see

[18] for the definition).

THEOREM 10 ~ 14~ .- Associated to each function group r there is a graph of groups

((~ , K) , whose vertex groups are either Fuchsian or elementary Kleinian groups and
whose edge groups are elliptic or parabolic cyclic (or trivial), such that r is

isomorphic to K) .

Remark.- The vertex groups can be identified up to conjugacy in r as maximal sub-

groups H with a simply connected invariant component, having no accidental para-

bolic elements and containing all parabolic elements of r which have fixed point

in A(H) .

The method of proof is to use the planarity of the covering Q - S1 - 
to find loops (w ) in S which lift to loops in Q when raised to some power

03B1 ~ ~ . These generate the defining group of the covering under normal closure in
J

and they give rise to the decomposition K of S .
From theorem 10 one can then prove an isomorphism theorem : rand r’ are

geometrically isomorphic if and only if their graphs are isomorphic, and the classi-

cal notion of signature for describing the geometric type of a Fuchsian group

extends naturally to the framework of the graph (~ , K) .



§ 8. Constructions

Combination methods formulated originally by Klein and used by Nielsen and Fenchel

in Fuchsian group theory have been significantly developed by Maskit into a power-

ful tool for generating both examples and models for classification. The technique

constitutes a geometrical realisation in the plane of familiar constructions in

topology and group theory. Here are some characteristic examples.

(a) Free products. Given a Kleinian group r and two disjoint discs D , D2
in with a Mobius transformation T : D , the group

r 
I 
= (r , T) is Kleinian and r * (T) . This is the process of attaching a

handle to a component of or a connecting link between two components.

(b) Amalgamated products. Take horocyclic discs at two punctures in Q(r) ,

Q(r’) , and assume things so arranged that the discs are complementary in IP1 and

the stabilising subgroups coincide ( = H , say). Then r = (r , r’ ) is Kleinian and

isomorphic to r * H r’ .

(c) H.N.N. extensions. Take two horocyclic discs in Q(r) and a transformation

T , permuting the stabilising subgroups and taking the exterior of one disc onto

the interior of the other. Then (r , T) is Kleinian and isomorphic to r * (T) .

Using (b) and (c) one can construct from Fuchsian groups models of all non-

degenerate b-groups [12], and the method can be extended to encompass function

groups 

§ 9. Marden’s isomorphism theorem

Using methods of Waldhausen [19], Marden has proved the following result on isomor-

phisms of Kleinian groups without torsion.

THEOREM 11.- Let r be geometrically finite and cp : r -~ r’ an isomorphism onto

a discrete group r’ . Assume in addition that

t~ is induced by a q-c homeomorphism of i~(r) --~ Q(r’) . Then f lifts to a

q-c map of ’~ -~ ~ which induces ~p and r’is geometrically finite.

We note that if f is in fact conformal on Q(r) then it is the restriction

of a Möbius transformation since A(r) has zero area. The main tool in proving

the theorem is the geometric realisation of isomorphisms between and

which respect the injections of and This is

possible because the manifolds are "Waldhausen" manifolds (see
Gramain, Sém. Bourbaki, expose 485 (Jui n 1976), Proposition 9).



§ 10. Euler characteristics

By Maskit’s decomposition theorem 10, one sees that the notion of Euler characteris-

tic function (see for example [8]) extends to the class of finitely generated func-

tion groups and this can be used to derive an inequality for the total area of such

groups which makes more precise the immediate estimate, due to Bers, which reads in

usual notation

Total Area of 2 (Area of Q /r) .
One is naturally tempted to conjecture that all finitely generated Kleinian groups

have finite Euler characteristic i.e., belong to Chiswell’s class FP(~) . This
would follow if they were all constructible using Maskit’s methods. Certainly the

class of geometrically finite Kleinian groups are in FP(~) as it is known by results

of Waldhausen that any such torsion-free group has a 3-manifold decomposition into

a union of balls using a sequence of incompressible surfaces. Unfortunately there

is no known a priori method of carrying this out.

There is an interesting example due to J~rgensen. ~ 1 of a discrete subgroup r of

G (not Kleinian) in FP(Q) which is a normal subgroup of infinite index in agroup r* . Here r~ - X, Y, T ; (XYX 1 Y 1 ) n - 1 TXT 1 = XY 1 , and

r - X,Y ; 1> . Note that r is isomorphic to a Fuchsian group

so that X(r) - -(n-1)/n, whereas r* has Euler characteristic 0 because is

a compact 3-manifold. The group r is of course not geometrically finite.

§11. Comments

1) One would like to know more about discrete groups with finite volume in G~ .
Riley [17] has given a number of examples of knot and link groups admitting faithful

representations into GC , and has deduced that the knot complement admits

a structure of hyperbolic 3-space form usually with finite volume. The simplest

examples are the figure-8 knot and the Boromean rings, which correspond to subgroups

of where 0’d denotes the ring of integers in ~( ~~ , with d = 3 , ’ 1

respectively. The knot k (or link) appears as the omitted central axis of the

solid cusp torus (or tori) associated to the group.

2) Two major obstacles to progress in Kleinian groups are the shortage of explicit

examples of unif ormi sati ons of Riemann surfaces (as opposed to families of examples

which are plentiful) and the lack of information on degeneracy, which we have formu-
1 

Compact 5-manifolds of constant negative curvature fibering over the circle.



lated here only for b-groups. Known examples without invariant component exist (see

~15~, ~~ but no general pattern is known.
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Added postscript : A similar example to that of J~rgensen, (§ 10) but whithout

torsion, has been discovered by Riley (oral communication) : inside the group
of a figure-8 knot embedded in SL2(03~, the commutator subgroup J = %L~t] has

infinite index and is free of rank 2 with a parabolic subgroup which is not cusped,
so J is not geometrically finite.


