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COHERENCE OF 3-MANIFOLD FUNDAMENTAL GROUPS

by John STALLINGS

Seminaire BOURBAKI

28e annee, 1975/76, n° 481 Fevrier 1976

G. P. Scott [3] proved that fundamental groups of 3-dimensional manifolds,

closed or not, possess a remarkable quality : every finitely generated subgroup

is finitely presented. We call this quality coherence. It should be remarked

that P. Shalen also discovered this result independently, and that G.A. Swarup

j~5] had an important partial result along these lines.

To delineate the nature of coherence, we note that free groups and funda-

mental groups of 2-manifolds are coherent : if A is such a group, then any fini-

tely generated subgroup is again such a group and hence finitely presented.

Incoherent groups can be constructed using Higman’s embedding theorem (1).

As a more explicit example, the direct product of two non-cyclic free

groups is incoherent : 
.. ,._a,-....._..

Let A = {a,b} x (c,d} be the direct product of two free groups of rank

two. Consider the subgroup N generated by a , c , and bd . It is easy to see

that N is a normal subgroup of A , with infinite cyclic quotient group

Z = A/N . If we consider homology with coefficients the field Q of rational

numbers, it turns out that H2(N) cannot be finitely generated over Q and

so N cannot be finitely presented. This is an exercise which can be performed

with the help of the spectral sequence of the extension, together with the fact

that H (Z ; M) and M) have the same rank over Q , if M is a

QZ-module which is finitely generated over Q .

It follows from Scott’s theorem therefore that this group A cannot be

the fundamental group of any 3-manifold.

Scott’s proof follows this pattern : reduce to the case of a group S

which is freely indecomposable ~i.e. indecomposable into a free product). Show
that any indecomposable, finitely generated group is the image of an indecompo-



sable, finitely presented group such that all intermediate groups are indecompo-

sable. Finally, apply some topological ideas due to Swarup to finish the proof.

THEOREM.- Let M be a 3-manifold, and let S be a subgroup of rr (M) , such

that S can be generated by n elements, 0 S n  ~ . Then S is finitely

presentable.

(a) The proof is by induction on n . The theorem is clear if n = 0 or 1 .

If S can be decomposed into a free product A * B with neither factor trivial,

then Grushko’s theorem [4] shows that both A and B can be generated by fewer

than n elements. Inductively both A and B are finitely presented and thus

so is S .

(b) The problem is now narrowed down to the case in which S is indecom-

posable into a free product, and in which every subgroup of S generated by

fewer than n elements is finitely presentable. At this point some very inte-

resting points of group theory come into play.

be free products; where F is a free group ; let 03C6 : G ~ H be an epimor-

phism such that for i = 1,...,r , is conjugate to a subgroup of some

factor H./.B ’ Then there is a free decomposition

such that (p(K.) = H. f or all j .

This improvement on Grushko’s theorem (to which it reduces for r = 0 )
from [2] can also be proved topologically along the lines of ~4~.

(d) Suppose G is a finitely generated group. Then it can be decomposed

as a free product

where F is a free group of rank s , and each G. is neither infinite cyclics i



nor decomposable into a free product. The existence of such a decomposition

follows from Grushko’s theorem ; the Kurosh subgroup theorem implies that the

G. are unique up to order and conjugacy within G , , and that s is determined

by G . The pair c(G) = (r + s , s) is called the complexity of G ; complexi-

ties are compared lexicographically.

If G is as above, a homomorphism 03C6 : G - H will be called semi-

injective if cpjG. i is injective for all i . It is easy to see that this notion

is independent of the particular decomposition of G, and that if any free

decomposition of G is given such that tp is injective on all the non-free

factors, then (p is semi-injective.

A major lemma can now be stated :

(e) Let cp : G -~-~ H be a semi-injective epiniorphism, where G i s as

in (d). Then if tp is not an isomorphism, c(G) > c(H) .

To see this, factor H into indecomposable factors

with u infinite cyclic factors Z . Thus c(G) = (r + s , s) and

c(H) --- (t + u, u) . We suppose G factored as in (d). Then, since is

indecomposable, not infinite cyclic, by Kurosh’s theorem cp(G.) is conjugate

to a subgroup of some H, . Now apply ( c) . The result is to factor G in to

where each term maps onto the corresponding factor of H ; thus, each factor

K, is non-trivial, and since G can be decomposed into only r + s factors,

we find

If r + s = t + u , the factors K. have to be indecomposable. Thus all

C. occur, up to conjugacy, in the list of K . If K. is conjugate to G ,
i j j i

then by the semi-injective hypothesis is one-to-one, and so cp(Kj is

not Z . This shows that, if r + s == t + u ,



If s = u , then : H. 
1 

for i ~ t , and for i > t , cp(K.) = one of
the Z factors ; with the fact that K. = Z for i > t , we would have shown

that cp is an isomorphism on each K factor into the corresponding H factor,

and so cp would be globally an isomorphism. Since we are assuming cp is not

an isomorphism, this means that if r + s = t + u , then s > u ; knowing

r + s ~ t + u , we have proved (r + s, s) > (t + u , u) , Q.E.D.

Now we return to the proof of the theorem, recalling the situation at (b).

(f) Let S be generated by n elements and be indecomposable into a free

product. Suppose that every subgroup of S generated by fewer than n elements

is finitely presented. Then there is an indecomposable finitely presented group

H and an epimorphism

such that if H’ is any intermediate group, i.e.

then H’ is also indecomposable.

To see this, consider the class of all finitely presented groups generated

by n elements, which can be mapped onto S by a semi-injective epimorphism.

The free group of rank n is in this class, and their complexities constitute

a well-ordered set. Let then A -’-* S be a semi-injective epimorphism with A

generated by n elements and having minimal complexity. In the uninteresting

case that A ---~ S is an isomorphism, we take H = A ~ S .

Otherwise let H be A factored by one additional relation p in the

kernel of A - S . Suppose H’ is an intermediate group ; we shall show that

H’ is indecomposable. If, to the contrary, H’ = B~ ~ B2 non-trivially, since

H’ has n generators, Grushko’s theorem implies that B and B2 have fewer

generators. Then the images Ci of B. 1 in S are, by hypothesis, finitely pre-

sented groups, and H ---~ S factors through C~ ~ C . Note that C~ ~ C2 is



finitely presented, and that C 1 * C2 - S , being injective on each. factor,
is semi-injective :

The top arrow is semi-injective, and so A - C1 * C2 is semi-injective ;

and in the case we are considering, the kernel of A -*-* C~ ~ C2 contains a

non-trivial element p . Thus by (e), c(C1 * C~)  c(A) contradicting the

choice of A . Thus, H’ is indecomposable.

(g) If S is a subgroup of rr~(M3) , by passing to a covering space,
we can arrange to have S = rr ~ (M ) . By parts (a), (b) and (f), the proof of the

theorem will be finished if we can show this :

Let n1(M) - S (a non-cyclic group), and suppose there is a finitely pre-
sented group H and an epimorphism cp : H -*-* S such that any group interme-

diate to H and S is freely indecomposable. Then there is a compact submani-

fold N of M with 03C01(M) . (The fundamental group of a compact mani-
fold is always finitely presented.)

To see this, first find a finite 2-dimensional complex K with

03C01(K) = H and a map f : K -. M inducing 03C6 . A neighborhood of f(K) in M

can be taken to be a compact 3-manifold L with boundary Bd L . If H’ is

the image of in n1(L) , then H’ is intermediate to H and S and

therefore freely indecomposable.

We shall change L by surgery on its boundary within M . Throughout,

there will be a subgroup H’ of Tt (L) which maps by inclusion onto rr ~ (M ) - S ,

and which is intermediate to Hand S .

Exterior surgery : a 2-cell D c M with D 0 L = Bd D non-contractible

in Bd L . Change L to L U (thickened D ) . H’ is changed to the image of

the old H’ ir. the new 



Interior surgery : a 2-cell D c: L , with Bd D = D n Bd L non-contrac-

tible in Bd L . Change L to L’ = L B (thickened D ). This removes a 1-handle

from L , and thus TT (L) = rr (L’) * Z (*). The old H’ is an indecomposable

subgroup of rr~ (L) , not cyclic, and so is conjugate to a subgroup of n1(LI)
which becomes the new H’ .

Eventually, Bd L becomes "incompressible" and so, by the theorems of

Papakyriakopoulos is a monomorphism. It is also an epimorphism

since H’ in n1(L) maps onto n~(M) . Let N be this final L . That comple-

tes the proof.

(*) Or, TT 1 (L) = n~(L’~ ~ -n~(L") .
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