SÉMINAIRE N. BOURBAKI

HARISH-CHANDRA

Some applications of invariant differential operators on a semi simple Lie algebra

Séminaire N. Bourbaki, 1958, exp. nº 160, p. 319-326

<http://www.numdam.org/item?id=SB_1956-1958_4_319_0>

© Association des collaborateurs de Nicolas Bourbaki, 1958, tous droits réservés.

L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SOME APPLICATIONS OF INVARIANT DIFFERENTIAL OPERATORS

ON A SEMISIMPLE LIE ALGEBRA

by HARISH-CHANDRA

Let R and C be the fields of real and complex numbers respectively and E_o a vector space of finite dimension over R. We assume that there is given on E_o a real, non-degenerate, symmetric bilinear form $\langle X, Y \rangle$ $(X, Y \in E_o)$. Let E denote the complexification of E_o and S(E) the symmetric algebra over E. By means of the above bilinear form, we can identify E with its dual. In this way any element of S(E) becomes a polynomial function on E. Now let $C^{\infty}(E_o)$ denote the space of all indefinitely differentiable functions (with complex values) on E_o . For any $X \in E_o$, we define a differential operator $\partial(X)$ on E_o as follows :

$$(\partial(\mathbf{X})\mathbf{f})(\mathbf{Y}) = \left\{ \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{f}(\mathbf{Y} + \mathbf{t} \mathbf{X}) \right\}_{\mathbf{t}=\mathbf{0}} \quad (\mathbf{f} \in \mathbf{C}^{\infty}(\mathbf{E}_{\mathbf{0}}), \mathbf{Y} \in \mathbf{E}_{\mathbf{0}}, \mathbf{t} \in \mathbf{R}) .$$

Let \mathcal{E} be the algebra of all differential operators on \mathbf{E}_{o} . The mapping $X \longrightarrow \partial(X)$ can obviously be extended uniquely to a homomorphism ∂ of $S(\mathbf{E})$ into \mathcal{E} . Thus for every $\mathbf{p} \in S(\mathbf{E})$, we get a differential operator on \mathbf{E}_{o} . Moreover \mathbf{p} , being a polynomial function on \mathbf{E}_{o} , is also a differential operator of order zero. Thus $S(\mathbf{E})$ and $\partial(S(\mathbf{E}))$ are both subalgebras of \mathcal{E} . We denote by $\mathbf{D}(\mathbf{E})$ the subalgebra of \mathcal{E} generated by $S(\mathbf{E})\cup S(\partial(\mathbf{E}))$. $\mathbf{D}(\mathbf{E})$ will be called the algebra of polynomial differential operators on \mathbf{E} .

For any two elements p, q in S(E), let $\langle p$, $q \rangle$ denote the value of the polynomial function $\partial(p)q$ at zero. It is easy to see that in this way we get an extension of our original bilinear form to a non-degenerate bilinear form on S(E).

We fix the following notation. For any open set U in E_o , $C^{\infty}(U)$ denotes the space of all indefinitely differentiable functions on U and $C_c^{\infty}(U)$ the subspace of $C^{\infty}(U)$ consisting of those functions which vanish outside some compact subset of U. Moreover C(U) is the space of those $f \in C^{\infty}(U)$ such that

$$\nu_{D}(\mathbf{f}) = \sup_{\mathbf{X} \in U} |(D\mathbf{f})(\mathbf{X})| < \infty$$

for every $D \in \mathcal{D}(E)$. We topologise C(U) by means of the seminorms \mathcal{D}_{D} $(D \in \mathcal{D}(E))$.

Now let γ_{10} be a semisimple Lie algebra over R. Put $\langle X, Y \rangle = tr(ad X ad Y)$

 $(X, Y \in \underline{q}_{0})$, where $X \rightarrow ad X$ is the adjoint representation of \underline{q}_{0} . Then the above procedure is applicable to \underline{q}_{0} . Let G denote the connected component of 1 in the adjoint group of \underline{q}_{0} . Naturally G operates on the algebra \underline{c} of all differential operators on \underline{q}_{0} in the obvious way. Moreover since the fondamental bilinear form is invariant under G, p^{X} is the function $X \rightarrow p(x^{-1} X)$ ($X \in \underline{q}_{0}$) and $\partial(p^{X}) = (\partial(p))^{X}$ ($p \in S(q)$, $x \in G$). It is clear that \overline{d} (\underline{q}) is stable under the operations of G. Let $\overline{d}'(\underline{q})$ denote the set of those elements of $D(\underline{q})$ which are invariant under G. Also let $I^{\infty}(\underline{q}_{0})$ denote the set of invariant functions in $C^{\infty}(\underline{Q}_{0})$ (i.e. those f for which f(xX) = f(X) for all $x \in G$ and $X \in \underline{q}_{0}$). Then $I^{\infty}(\underline{q}_{0})$ is stable under any operator in $\overline{d}'(\underline{q})$. Let h_{0} be a Cartan subalgebra of \underline{q}_{0} . For any $f \in I^{\infty}(\underline{q}_{0})$, let \overline{f} denote the restriction of f on h_{0} . Then for a fixed $D \in \overline{d}'(\underline{q})$.

the restriction of f on h. Then for a fixed $D \in \mathcal{I}'(\mathfrak{G})$, we seek the relation between the two functions \overline{f} and \overline{Df} ($f \in I^{\infty}(\mathfrak{G})$).

Let \mathcal{L} be the rank of \mathfrak{q} . An element $X \in \mathfrak{q}$ is called regular if ad X takes the eigenvalue zero exactly with the multiplicity \mathcal{L} . Let \mathfrak{g}'_{0} denote the set of all regular elements in \mathfrak{q}_{0} and put $\mathfrak{h}'_{0} = \mathfrak{q}'_{0} \cap \mathfrak{h}_{0}$. Then \mathfrak{g}'_{0} and \mathfrak{h}'_{0} are both open and dense subsets of \mathfrak{q}_{0} and \mathfrak{h}'_{0} respectively.

LEMMA 1. - For each $D \in \mathcal{I}'(\mathcal{Y})$ there exists a unique differential operator $\delta'(D)$ on h'_{o} such that

 $\overline{Df} = \delta'(D)\overline{f}$ on h_0

for every $f \in I^{\infty}(\mathfrak{A}_{0})$. Moreover $D \to \mathcal{S}(D)$ is a homomorphism of $\mathfrak{F}(\mathfrak{G})$ into the algebra of all differential operators on \mathfrak{h}'_{0}

So now we have to determine the operator $\delta'(D)$. Let I(q) denote the algebra of invariant elements in S(q) so that $I(q) = S(q) \cap \overline{\mathcal{I}}(q)$. Then I(q) and $\partial(I(q))$ are both subalgebras of $\overline{\mathcal{J}}(q)$. Denote by $\overline{\mathcal{I}}(q)$ the subalgebra of $\overline{\mathcal{I}}(q)$ generated by $I(q) \cup \partial(I(q))$. We intend to give an explicit formula for $\delta'(D)$ in case $D \in \overline{\mathcal{I}}(q)$. First of all notice that if $p \in I(q)$, then $\overline{pf} = \overline{p} \ \overline{f}$. Hence $\delta'(p) = \overline{p}$. In view of the fact that δ' is a homomorphism and $\overline{\mathcal{I}}(q)$ is generated by I(q).

The restriction of our fundamental bilinear form on h_0 is also non-degenerate. Hence we can take $E_0 = h_0$ in our earlier set up. Then for any $q \in S(h)$, $\partial(q)$ is a differential operator on h_0 . Also $\mathfrak{D}(h)$ is the algebra of all polynomial differential operators on h_0 . Let W denote the Weyl group of Q with respect to h. Then W operates on h and therefore also on S(h)and D(h). Moreover our bilinear form on h is invariant under W. Let $\mathcal{I}'(h)$ denote the set of those elements in D(h) which are invariant under W. Also put $I(h) = S(h) \cap \mathcal{I}'(h)$. Then CHEVALLEY has proved the following result (see [1], p. 10).

LEMMA 2 (GHEVALLEY). - The mapping $p \rightarrow \overline{p}$ ($p \in I(\underline{\gamma})$) is an isomorphism of $I(\underline{\gamma})$ onto $I(\underline{k})$.

Now introduce some lexicographic order among the roots of Ω with respect to \mathbf{h} and let α_1 , α_2 , ..., α_r be all the distinct positive roots under this order. Put $\mathbf{T} = \alpha_1 \alpha_2 \cdots \alpha_r$. Then \mathbf{T} is a polynomial function on \mathbf{h} .

LEMMA 3. - Let p be an element in $I(\mathbf{q})$. Then $\delta'(\partial(\mathbf{p})) = \pi^{-1} \partial(\mathbf{p}) \circ \pi$ (where o denotes the product of two differential operators). See [4], p. 98, for the proof.

Let $\exists(h)$ denote the subalgebra of $\exists'(h)$ generated by $I(h) \cup \partial(I(h))$. Then it is easy to obtain the following theorem from lemmas 1, 2 and 3.

THEOREM 1. - There exists a unique homomorphism $S \text{ of } \mathcal{I}(q)$ onto $\mathcal{J}(h)$ such that

(i)
$$\delta(p) = \overline{p} \text{ and } \delta(\partial(p)) = \partial(\overline{p})$$
 $(p \in I(C_1))$
(ii) $\delta'(D) = \pi^{-1} \delta(D) \circ \pi$ $(D \in \Xi(C_1))$.

We shall now derive some consequences of this theorem. First consider the case when \mathcal{G}_{o} is compact (i.e. the quadratic form $\langle X, X \rangle$ is negative definite on \mathcal{G}_{o}). For any $f \in C^{\infty}(\boldsymbol{q}_{o})$, put

$$\Phi_{f}(H) = \pi(H) \int_{G} f(xH) dx \qquad (H \in \mathcal{H}_{0})$$

where dx is the normalized Haar measure on G. If follows from theorem 1 that $\Phi_{\text{Bf}} = \delta(D) \Phi_{f}$ for $D \in \mathcal{F}(q)$. Hence in particular $\Phi_{\delta(p)f} = \delta(\overline{p}) \Phi_{f}$ ($p \in I(q)$). Apply this in particular to the function $f = e^{H_{0}}$ where H_{0} is a fixed element in h. (We recall that H_{0} is a linear function on Φ_{0} and (therefore $f(X) = e^{-H_{0}, X}$ for $X \in \Phi_{0}$). Obviously $\delta(p)f = p(H_{0})f$ for any $p \in S(\Phi)$. Hence

$$\Phi(\overline{p}) \Phi_{f} = \Phi_{\partial(p)f} = p(H_{o}) \Phi_{f}$$
 (p $\in I(q)$).

Hence by Chevalleys' theorem (Lemma 2), $\partial(q) \Phi_r = q(H_r) \Phi_r$ for every $q \in I(h)$. Let χ be any homomorphism of I(h) into C. We consider the system of differential equations $\partial(q) \Phi = \mathcal{L}(q) \Phi$ ($q \in I(\mathcal{L})$) on a non-empty connected open set U of h_{0} . First of all, one sees easily that this system always contains equations of the elliptic type-Hence every solution Φ of this system is analytic. Let w be the order of the group W . It follows from a result of CHEVALLEY [2] that S(h) is a free abelian module over I(h) of rank w. Hence we can select u_1 , ..., $u_w \in S(h)$ such that $\sum_{\substack{1 \leq i \leq w}} I(h) u_i = S(h)$. Therefore it is clear that if the derivatives $\partial(u_i)\Phi$ vanish simultaneously at some point H of U for some solution Φ of our system, all derivatives $\partial(u)\Phi$ are zero at H and therefore $\frac{1}{2}$, being analytic, is identically zero on U. Hence our system can have at most w linearly independent solutions. Now assume that H is regular. Then sH \neq H for s \neq 1 in W. Then e (s \in W) are w linearly independent solutions of the system $\partial(q) \Phi = q(H_{n}) \phi$ $(q \in I(h))$ on h_{0} . Therefore $\oint_{f} = \sum_{s \in W} c_{s} \in \bigcup_{s \in W} v_{s}$ where c_{s} are constants. On the other hand it is known that $\pi^2 \in I(h)$ and therefore $\pi^s = \mathfrak{s}(s)\pi$ (seW) where $\xi(s) = \frac{1}{2}$. Moreover \mathcal{O}_{0} being compact, for every $s \in W$, we can choose x G G such that sH = xH for all $H \in \mathfrak{h}$. Hence it is obvious from its definition that $\Phi_{f}(sH) = \mathcal{E}(s) \Phi_{f}(H)$. Therefore

$$\mathcal{P}_{f} = c \sum_{s \in W} \varepsilon(s) e^{sH}$$

where c is a constant. On the other hand, it is obvious that

$$(\partial(\pi)\Phi_f)_{H=0} = \langle \pi, \pi \rangle f(0) = \langle \pi, \pi \rangle$$

But $\partial(\pi)\delta^{\text{sH}} = \epsilon(s)\pi(\mathbb{H}_0)e^{\text{sH}}$. Hence

 $\langle \tau \tau , \tau T \rangle = c \tau (H_{n}) w$

and so we get the following result.

THEOREM 2. - Suppose G is compact. Then

$$\Pi(H_{o}) \Pi(H) \int_{G} e^{\langle H_{o}, xH \rangle} dx = w^{-1} \sum_{s \in W} \varepsilon(s) e^{\langle H_{o}, sH \rangle}$$

for H_o , $H \in h$. (Here dx is the normalized Haar measure on G).

We actually proved this result for $H_o \in h'_o$ and $H \in h_o$. But since both sides are holomorphic in H_o , H the more general case follows immediately.

For later use we also note the formula

(1)
$$(\partial(\pi)\Phi_f)_{H=0} = \langle \pi, \pi \rangle f(0)$$
 $(f \in C^{\infty}(\underline{q}_0))$.

The proof is trivial.

Now we take up the more difficult case when q_{o} is not compact so that the quadratic form $\langle X, X \rangle$ is indefinite on q_{o} . Let A be the Cartan subgroup of G corresponding to h_{o} . (By definition, A is the centralizer of h_{o} in G). We denote by $x \rightarrow x^{*}$ the natural mapping of G on $G^{*} = G/A$. Put $x^{*}H = xH$ ($x \in G$, $H \in h_{o}$) and let dx^{*} denote the invariant measure on G^{*} (normalized in some fixed but arbitrary way). For any $f \in C(q_{o})$, put

$$\Phi_{\mathbf{f}}(\mathbf{H}) = \pi(\mathbf{H}) \int_{\mathbf{G}^{\star}} f(\mathbf{x}^{\star}\mathbf{H}) d\mathbf{x}^{\star} \qquad (\mathbf{H} \in \mathbf{h}_{o}')$$

Then it can be shown without difficulty that the integral converges for $H \in \mathbf{h}'_{o}$ and that $\Phi_{\mathbf{f}}$ is of class C^{∞} on \mathbf{h}_{o} . Again, we can conclude from theorem 1 that $\Phi_{\mathbf{f}} = \delta(\mathbf{D})\Phi_{\mathbf{f}}$ for all $\mathbf{D}\in\mathcal{I}(q)$ and so in particular $\Phi_{\partial(\mathbf{p})\mathbf{f}} = \partial(\mathbf{p})\Phi_{\mathbf{f}}$ for $\mathbf{p} \in \mathbf{I}(q)$. Now an important consequence of this relation is the following result (see [5], theorem 3, p. 225).

LEMMA 4. - For any
$$f \in C(q_o)$$
, $\Phi_f \underline{\text{lies in }} C(h'_o) \cdot \underline{\text{Moreover }} f \to \Phi_f$
is a continuous mapping of $C(q_o) \underline{\text{into }} C(h'_o) \cdot$

The main point of interest here is the fact that $\partial(q)\overline{\Psi}_{f}$ remains bounded on h'_{o} for every $q \in \delta(h)$. The proof of this fact in the general case is rather complicated. So, as an illustration, let us consider the following example. Take \mathfrak{P}_{o} to be the Lie algebra of all 2×2 real matrices with trace zero and h_{o} the Cartan subalgebra of \mathfrak{P}_{o} spanned over R by the matrix $H_{o} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Then A is compact and zero is the only singular point in h_{o} . Hence we can write

$$\bar{\Psi}_{\mathbf{f}}(\Theta H_{O}) = 2\mathbf{i}\Theta \int_{\mathbf{G}} \mathbf{f}(\Theta x H_{O}) dx \qquad (\mathbf{f} \in \mathbf{C}_{\mathbf{c}}^{\infty}(\mathfrak{g}_{O}), \quad O \in \mathbb{R}, \quad \Theta \neq 0)$$

because $\pi(H_{2}) = 2i$. Put

$$F_{f}(\Theta) = \Theta \int_{G} f(\Theta x H_{O}) dx \qquad (\Theta \neq 0) .$$

We have to show that $\frac{d^{r}}{d\theta^{k}} F_{f}$ remains bounded around $\theta = 0$ for every $k \ge 0$. This is done as follows. Consider the polynomial ω on θ' given by $\omega(X) = tr(X^{2})$ ($X \in \theta'$). Then $\omega \in I(\theta)$ and $\omega(\theta H_{0}) = -2\theta^{2}$. Therefore since $\Phi_{\partial(\omega)f} = \partial(\overline{\omega}) \Phi_{f}$, we conclude that

$$\frac{d^2}{d\theta^2} F_f = -2 F_{\partial(\omega)f}$$

Now first one proves by a crude estimate that there exists an integer $n \ge 0$ with the property that $c(f) = \sup_{\Theta} |\Theta^n F_f(\Theta)| < \infty$ for every $f \in C_c^{\infty}(\alpha_0)$. Assume now that n is the least possible such integer. We claim n = 0. For otherwise suppose $n \ge 1$. Then

$$\frac{d^2}{d\theta^2} \mathbf{F}_{\mathbf{f}} \leq 2 |\mathbf{F}_{\partial(\omega)\mathbf{f}}| \leq 2 |\theta|^{-n} \mathbf{g}(\partial(\omega)\mathbf{f}) \cdot$$

Hence if $n \ge 2$, it follows easily by integration that

$$|\mathbf{F}_{\mathbf{f}}| \leq |\Theta|^{2-n} \operatorname{c'}(\mathbf{f})$$

where c'(f) is a positive constant depending on f. As this contradicts the choice of n, we must have n = 1. But since log $|\Theta|$ is locally summable around $\Theta = 0$, it follows by the same argument that $|F_f| \leq c_1(f)$ where $c_1(f)$ is another constant depending on f. Thus we again get a contradiction. Hence $|F_f|$ remains bounded and therefore

$$\frac{d^{2k}}{d\sigma^{2k}} F_{f} = (-2)^{k} F_{\partial(\omega^{k})f}$$

also remains bounded for every $\,k\,\geqslant 0$. But then by integration we can conclude the same for

$$\frac{d^{2k-1}}{d\theta^{2k-1}} F_{f} \qquad (k \ge 1)$$

The reasoning in the general case, althrough more complicated, is essentially the same.

Let dX and dH denote the Euclidean measures on \mathfrak{P}_{o} and \mathfrak{h}_{o} .respectively. For any $f \in C(\mathfrak{q}_{o})$ and $g \in C(\mathfrak{h}_{o}')$, put

$$\begin{aligned} \widetilde{f}(Y) &= \int_{\mathfrak{G}} e^{i \langle Y, X \rangle} f(X) dX & (Y \in \mathfrak{G}_{0}) \\ \widetilde{g}(H') &= \int_{h_{0}} e^{i \langle H', H \rangle} g(H) dH & (H' \in h_{0}) \end{aligned}$$

Then, in the compact case, theorem 2 can be interpreted to mean that Φ_f and $\tilde{\Phi}_f$ are the same except for a constant factor which is independent of f. Similar but more complicated results hold when \mathfrak{A}_0 is not compact (see [5], lemma 24). We give only one such result here (see [5] theorem 4, p. 247). Let K be a maximal compact subgroup of G and let dk denote the normalized Haar measure of K.

THEOREM 3. - Suppose h_0 is contained in the Lie algebra of K. Then it follows easily that $sh_0 = h_0$ for every $s \in W$. For any $f \in C(h_0)$, put $\hat{f}(X) = \int_{K \times h} e^{i \langle X, kH \rangle} \overline{n} (H)^2 \sum_{s \in W} f(sH) dk dH \quad (x \in \mathcal{H}_0).$

Then the integral

$$\oint_{\mathbf{f}} (\mathbf{H}) = \mathbf{T}(\mathbf{H}) \int_{\mathbf{G}^{\star}} \hat{\mathbf{f}}(\mathbf{x}^{\star}\mathbf{H}) \, d\mathbf{x}^{\star}$$

converges for $H \in \mathcal{H}_{0}$. Moreover there exists a complex number $c \neq 0$ such that $\sum_{s \in W} \varepsilon(s) \Phi_{A}(sH') = c \int_{H} \sum_{s \in W} \varepsilon(s) e^{i \langle H', sH \rangle} \pi(H) f(H) dH$ for all Hie h_0 and $f \in C(h_0)$.

The main object of this theory is to obtain the analogue of (1) in the non-compact case. Fix a connected component h_1 of h_0' and put

$$\Gamma(f) = \lim_{H \to 0} \partial(\pi) \Phi_{f} \qquad (H \in h_{1})$$

for $f \in \mathcal{C}(q_0)$. It follows from lemma 4 that this limit exists and that T is a distribution on \mathfrak{Q}_{0} . The main task now is to show that T is a constant multiple of the δ -distribution corresponding to the unit mass at the origin. Let \widetilde{T} denote the Fourier transform of T. Then we have to prove that \widetilde{T} is a constant. As before, let φ'_0 be the set of all regular elements of φ'_0 and \mathcal{J}_1 , \mathcal{J}_2 , ..., \mathcal{J}_N all the distinct connected components of \mathcal{J}_i^{\sim} . It follows without much difficulty (again by using theorem 1) that on each \mathcal{J}_i° . T coincides with a constant c_1 . The main remaining difficulty is to show that c_1 , ..., c_N are all equal (see [5], paragraphe 7). This however requires considerable work and a rather detailed investigation [6]. The final result can be stated as follows.

THEOREM 4. - There exists a real number c such that

$$\lim_{H \to 0} \partial(\pi) \Phi_{f} = c f(0) \qquad (H \in k'_{c})$$

)

for every $f \in C(q_0)$.

Actually it turns out that c = 0 most of the time. Put $co(X) = \langle X, X \rangle$. Then ω is a quadratic form on γ_0 and its restriction $\overline{\omega}$ on h_0 is a quadratic form on h_0 . Let ℓ_2 denote the number of negative eigen-values of Cartan subalgebra of \hat{g}_{o} if ℓ_{-} has the maximum possible value. Any two fundamental Cartan subalgebras are conjugate under G. Moreover, the constant c of theorem 4 is different from zero, if and only if, h_{o} is fundamental. In view of the arbitrary normalization of the measure dx^{*} on G^{*}, it is only the sign of c which is of interest (in case h_{o} is fundamental). Let K be a maximal compact subgroup of G. Then c has the sign $(-1)^{q}$ where

$$q = \frac{1}{2}$$
 (dim G/K - rank G + rank K)

(see the remark at the end of [7]).

Theorem 4 had been announced by GELFAND and GRAEV [3] in the case of the Lie algebra \mathfrak{Q}_{0} of all $n \times n$ real matrices with trace zero. However the reasoning sketched by them appears to me to be incorrect because they seem to assume (or to assert) that \mathfrak{F}_{f} (or rather $\left|\frac{\pi}{\pi}\right|\mathfrak{F}_{f}$) can always be extended to a function of class \mathfrak{C}^{∞} on h_{0} (see the lines between equations (4) and (5) on p. 462 of [3]). This is false even in the case of the algebra of all 2×2 real matrices with trace zero.

BIBLIOGRAPHY

- [1] CARTIER (Pierre). Théorie des caractères, II : Détermination des caractères, Séminaire Sphus Lie, t. 1, 1954/55.
- [2] CHEVALLEY (Claude). Invariants of finite groups generated by reflexions, Amer. J. Math., t. 77, 1955, p. 778-782.
- [3] GEL'FAND (I.M.) i GRAEV (M. I.). Analog formuly Planšerelja dlja vešestvennykh poluproctykh grupp Li, Doklady Akad. Nauk SSSR, N. S., t. 92, 1953, p. 461-464.
- [4] HARISH-CHANDRA. Differential operators on a semisimple Lie algebra, Amer. J. Math., t. 79, 1957, p. 87-120.
- [5] HARISH-CHANDRA. Fourier transforms on a semisimple Lie algebra, I., Amer. J. Math., t. 79, 1957, p. 193-257.
- [6] HARISH-CHANDRA. Fourier transforms on a semisimple Lie algebra, II., Amer. J. Math., t. 79, 1957, p. 653-686.
- [7] HARISH-CHANDRA. A formula for semisimple Lie groups, Amer. J. Math., t. 79, 1958 (October number).

326