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SOME APPLICATIONS OF INVARIANT DIFFERENTIAL OPERATORS

ON A SEMIS IMPLE LIE ALGEBRA

by HARISH-CHANDRA

Seminaire BOURBAKI
(Fevrier 1958)

Let R and C be the fields of real and complex numbers respectively and Eo
a vector space of finite dimension over R . We assume that there is given on Eo
a real, non-degenerate, symmetric bilinear form ( X ~ Y ~ (X ~ Y E E ). Let
E denote the complexification of Eo and S(E) the symmetric algebra over E .

By means of the above bilinear form, we can identify E with its dual. In this way

any element of S(E) becomes a polynomial function on E . Now let 

denote the space of all indefinitely differentiable functions (with complex values)
on E . For any X we define a differential operator ~(X) on E as

follows :

Let  be the algebra of all differential operators on E . The mapping X ~ a(X)
can obviously be extended uniquely to a homomorphism a of S(E) into ’&#x26; . Thus
for every p E S (E) , we get a differential operator on E . Moreover p , being a

polynomial function on E , is also a differential operator of order zero. Thus
S(E) and 6(S(E)) are both subalgebras of 8 . We denote by ,~ (E ) the subalgebra

of generated by will be called the algebra of polyno-
mial differential operators on E .

For any two elements p ~ q in S (E ) ~ let  p , q ) denote the value of the

polynomial function at zero. It is easy to see that in this way we get an

extension of our original bilinear form to a non-degenerate bilinear form on S(E) .

We fix the following notation. For any open set U in E , Coo(U) denotes

the space of all indefinitely differentiable functions on U and C~C(U) the

subspace of C (U) consisting of those functions which vanish outside some com-

pact subset of U ..Moreover C (U) is the space of those f ~ C
o° 

(U) such that

for every D G We topologise C(U) by means of the seminorms L D

Now let So be a semisimple Lie algebra over R . Put  X , Y ) _ tr (ad X ad Y)



(X , Y C G~ o ) ~ where ad X is the adj oint representation of (~o . Then the
above prooedure is applicable to o . Let G denote the connected component of 1

in the adjoint group Naturally G operates on the algebra % of all

differential operators on ~o in the obvious way.Moreover since the fondamental

bilinear form is invariant under G, p is the function X --~ p(x X) ~o )
= (c~ (p) )x (p E S ( ) ~ x E G) . It is clear that % ( ) is stable

under the operations of G. Let ~~( ) denote the set of those elements of

~( ) which are invariant under G . Also let Io°( denote the set of inva-

riant functions in (i . e . those f f or which f (xX ) = f (X ) f or all

x EG and X C o ) . Then I °° ( ~ o ) is stable under any operator in 

Let ~o be a Cartan subalgebra of o . For any f ~ I ~ ( ~o ) ~ let f denote

the restriction of f on Then for a fixed D C ~~( d) ~ we seek the relation
between the two functions - f and - Df I ~ ( ~o ) ) . 

,.J

Let l be the rank of . An element X c g is called regular if ad X takes

the eigenvalue zero exactly with the multiplicity ~ . Let ~o ~ denote the set

of all regular elements in ~o and put ’b ~ = o 
r 

Then ’ 
0 

and 0
are both open and dense subsets of go 

and h
o 

respectively.

LEMMA 1. - For each D E ~( ) there exists a unique differential operator

~ ~ (D ) on ~~ such that

for every f6I~(Y ). Moreover D2014~ $(D) is a homomorphism of ~’(0) into

the algebra of all differential operators on )~~
So now we have to determine the operator $ (D) . Let l(~) denote the algebra

of invariant elements in S(~) so that l(e) = S(C()n~(~) . Then l((y) and

6(l(Cf)) are both subalgebras of ~’(q) . Denote by ~(Cf) the subalgebra of

3(Ct) generated by l(Qf) U ~(l(~)) .Me intend to give an explicit formula for
~’(D) in case D 6?(~) . First of all notice that if p e then

’p? = ~ ? . Hence ?(p) = p~ ’ In view of the fact that &#x26; is a homomorphism and

~f((y) is generated by l(.y) and 6(l(~)) ~ it is sufficient to determine
§’(o(p)) for p e I(0j) .
The restriction of our fundamental bilinear form on )~ is also non-degenerate .

Hence wo can take E = ~ in our earlier set up. Then for any q e S(~) ~
~(q) is a differential operator on h . Also D ( h) is the algebra of all

polynomial differential operators on h.. . Let W denote the Weyl group



ot q ’With respect Then W operates and therefore also on S(h)
and J~( ),) . Moreover our bilinear form on h is invariant under W . Let ?~(~)
denote the set of those elements in ~(t~) which are invariant under W . Also
put I(h) = S(h) ~ J’(h) . Then CHEVALLEY has proved the following result
(see [1] , p. 10).

LEMMA 2 (GHEVALLEY) . - The mapping p-~~ (p6l(~)) is an isomorphism of

I((Y) onto 

Now introduce some lexicographic order among the roots of g with respect to h
and let ~ ~ ~ ~ ... , ~ be all the distinct positive roots under this order.
Put "~= ~ ~ ’~ ~ * Then TT is a polynomial function on t~..

LEMMA 3 . - Let p be an element in I ( g) . Then &#x26;(o(p)) o(~) oTT
(where o denotes the. product of two differential operators). See [4] ~ p. 98, for
the proof.

Let denote the subalgebra of ~f ( t~) generated by I( R) U ~(l( h)) .
Then it is easy to obtain the following theorem from lemmas 1 , 2 and 3.

THEOREM 1. - There exists a unique homomorphism $ of ?(!{) onto 7(~) such
that ~ ’

We shall now derive some consequences of this theorem. First consider the case
when compact (i.e. the quadratic form ~C X ~ X) is negative definite on

For any fe C o° ( ~o ) ~ put

where dzx is the normalized Haar measure on G . If follows from theorem I that
= E D> ’r for D " X I > . Hence in particular = 8P> ’ I

(p 6 1 ( g ) ) . Apply this in particular to’the function f = e 
Ho 

where H is a
fixed element in h . (We recall that H is a linear function on go ando o H ,X >
( therefore f (X) = e ° 

for X e j£J ) . Obviously 8 (p)f = p (H)f for anyO O
p e S ( Jf ) . Hence



Hence by Chevalleys’theorem (Lemma 2), c~ (q ) ~ - for every qE: 

Let ~ be any homomorphism of into C , I We consider the system of dif-

ferential equations a (q ) ~ = ~ (q ) ‘~ (q c I ( on a non-empty connected open

set U First of all, one sees easily that this system always contains

equations of the elliptic type-Hence every solution % of this system is analytic.
Let w be the order of the group W . It follows from a result of CHEVALLEY [2]
that S ( 1~ ) is a free abelian module over I ( ~) of rank w . Hence we can

select ul ’ ... , S(h) such u. = S(h) . Therefore

it is clear that if the derivatives ~(ui)03A6 vanish simultaneously at some point

H of U for some solution 03A6 of our system, all derivatives ~(u)03A6 are zero

at H and therefore § , being analytic, is identically zero on U . Hence our

system can have at most w linearly independent solutions. Now assume that H
is regular. Then sHo ~ H for s ~ 1 in W . Then esHo (s e W ) are w 

0

linearly independent solutions of the system ~(q)03A6 = (q E I(h)) on

ho . Therefore 03A6f = where c are constants. On the other hand

it is known that 03C02 ~ I(h) and therefore = (s ) T’ (s C W ) where

E (s ) ~ ± 1 . Moreover being compact, for every s 6. W , we can choose

x G G such that sH = xH for all H E.  . Hence it is obvious from its defini-

tion Therefore

where c is a constant. On the other hand, it is obvious that

and so we get the following.result.

THEOREM 2. - Sup~ pose G is com act. Then

for H , H C h . (Here dx is the normali zed Haar measure on G) .

Ve actually proved this result for Ho C h’o and H But since both sides

are holomorphic in H , H the more general case follows immediately.
o

For later use ve also note the formula



The proof is trivial.

Now we take up the more difficult case when ~o is not compact so that the

quadratic form  X , X ~ is indefinite on .o . Let A be the Cartan subgroup
of G corresponding to f1.. (By definition, A is the centralizer of (1 0
in G). We denote by x - x* the natural mapping of G on G* = G/A. Put
x*H = xH {x (; G, and let dx* denote the invariant measure on G*
(normalized in some fixed but arbitrary way). For any put

Then it can be shown without difficulty that the integral converges for H e h§
and that 03A6f is of class c 

° 
on E . Again, we can conclude from theorem i

that 03A6Df = for all D ~ J(g) and so in particular 03C6~(p)f = ~(p)03A6f

for p £ I ( § ) . Nov an important consequence of this relation is the following
result (see [ 5 ] , theorem 3, p. 225 ) .

LEMMA 4. - For any i E. e (go), 03A6f lies in e h§ > . Moreover f ~ 03A6f
is a continuous mapping of @ (,.go) into e ( fi’ ) .

The main point of interest here is the fact that ~(q)03A6f remains bounded on

h’o for every q e $ ( I, ) . The proof of this fact in the general case is rather
complicated. So, as an illustration, let us consider the following example. Take
go to be the Lie algebra of all 2 x 2 real matrices with trace zero and h
the Cartan subalgebra of go spanned over R by the matrix H = 

o i 
. 

o

,.::Jo ° ~- l 0~
Then A is compact and zero is the only singular point in bl . Hence ue can
write

r

We have to show that 2014.- F~ remains bounded around 0=0 for every k ~ 0 .

This is done as follows. Consider the polynomial w on g given by
= (X(~ ) . Then ~ ~ !(()() and == - 20~ . Therefore

since ~(~)f = ~(S)~~ ~ we conclude that 
o



Now first one proves by a crude estimate that there exists an integer n ~ 0 with

the property that c(f) = sup ~On co for every f6 C c o° ( o ) ~ Assume

now that n is the least possible such integer. We :claim n = 0 . For otherwise

suppose n ~ 1 . Then

Hence if n >, 2 ,it follows easily by integration that

where c’(f) is a positive constant depending on f . As this contradicts the

choice of n ~ we must have n = 1 . But since log ~Oi is locally summable around

0 = 0 , it follows by the same argument that c~(f) where is another

constant depending on f . Thus we again get a contradiction. Hence remains

bounded and therefore

also remains bounded for every k ~ 0 . But then by integration we can conclude

the same for

The reasoning in the general case~althrough more complicated, is essentially the

same.

Let dX and dH denote the Euclidean measures on Cf and ho .respectively.
For any f E ~ ( ~~ o ) and 

Then~ in the compact caae, theorem 2 can be interpreted to mean that and

are the same except for a constant factor which is independent of f . Similar

but more complicated results hold when go is not compact (see [5], lemma 24).
We give only one such result here (see [5] theorem 4, p. 247). Let K be a maximal

compact subgroup of G and let dk denote the normalized Haar measure of K .



THEOREM 3. - Suppose ho is contained in the Lie algebra of K . Then it
follows easily that = ~ for every s C W . For any f C ~ ( ~o ~ ~ put

converges for H * Moreover there exists a complex number c ~ 0 such that

for all H’ ~ ho and f ~ C(ho).

The main object of this theory is to obtain the analogue of (1) in the non-compact
case. Fix a connected component ~ of and put

for f ( o) . It follows from lemma 4 that this limit exists and that T is

a distribution on Cf . The main task now is to show that T is a constant mul-

tiple of the 6 -distribution corresponding to the unit mass at the origin. Let
N ~

T denote the Fourier transform of T ~. Then we have to prove that T is a cons-

tant. As before, let o be the set of all regular elements of go and

S 1 ’ ~2 ~ ~" ~ ~~ all the distinct connected components follows

without much difficulty (again by using theorem 1) that on each 0~ . T coincides

with a constant c. . The main remaining difficulty is to show that c.. ~ ... , car
are all equal (see [ 5 ], paragraphe 7). This however requires considerable work

and a rather detailed investigation [6] . The final result can be stated as follows.

THEOREM 4. - There exists a real number c such that

for every f ~ L’ ~ o ) .
Actually it turns out that c = 0 most of the time. Put sa (X ) _ ~ X ~ X ; ,

Then co is a quadratic form on ~o and its restriction 1i3 on h is a

quadratic form on ~t 0 . Let e_ denote the number of negative eigen-values of
03C9 (taking into account their multiplicity). Then we say that ho is a fundamental
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Cartan subalgebra of Q if ~ _ has the maximum possible value. Any two funda-
mental Cartan subalgebras are conjugate under G . Moreover, the constant c of

theorem 4 is different from zero, if and only is fundamental. In view of

the arbitrary normalization of the measure dx* on G* , it is only the sign of
c which is of interest (in case is fundamental). Let K be a maximal

compact subgroup of G . Then c has the sign (-1)q where

q = -~-(dim G/K - rank G + rank K)
(see the remark at the end of [73).

Theorem 4 had been announced by GELFAND and GRAEV [3 ] in the case of the Lie

algebra ~o of all n x n real matrices with trace zero. However the reasoning
sketched by them appears to ne to be incorrect because they seem to assume (or
to assert) that 1 f (or rather |03C0| 03C003A6f) can always be extended to a function
of class C on ho (see the lines between equations (4) and (5) on p. 462
of [3 ~). This is false even in the case of the algebra of all 2 x 2 real matrices

with trace zero.
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