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In this exposé we present some results from a joint paper
with J. Bourgain P.G. Casazza and L. Tzafriri (in preparation). It
is a continuation ot exposé no IV orf this seminar [1] in which another

part or this paper was presented.

It is well known that £2, £1 and Co are the only Banach
spaces which have up to equivalence a unique normalized unconditional
basis. If we consider spaces which have a unique normalized uncondi-

tional basis up to equivalence and a permutation we get a larger class

or spaces whose extent is not clear at present. Edelstein and Wojtaszczyk
proved in [2] that the spaces 21 @ c,0 ﬂl 2 £2’ c, @ 22 and <, @ ﬁ] ¥ 22
belong to this class. We shall present below (cf. Proposition 5) a
simple result concerning unconditional bases in direct sums oI two
Banach spaces which gives in particular a simple proor of the result

ot Edelstein and Wojtaszczyk and allows us to handle also some other

direct sums which cannot be handled by the methods of L2].

The main purpose or this exposé is however to treat infinite
direct sums. If we consider the most simple infinite direct sums of

the three spaces co,ﬁ and 22 then there are up to duality three such

1
spaces namely (Z @ 22)0, (z® £, and (z® £1)2' Surprisingly these
three spaces exhibit different behaviour in connection with the problem

of uniqueness orf unconditional bases.

Theorem 1 : The space (& @ ﬁz) has up to equivalence and permuta-
—_— o
tion a unique normalized unconditional basis. More precisely : if

{e.}7 is the natural unit vector basis of (£ ® £_) and ir {u.}?
1 i=1 270 17 i=1

is another normalized unconditional basis of this space with uncondi-
tionality constant A then there is a permutation n orf the integers

so that

[0

a, el = | a. Ul s T Z a. e.ll

. 1 1 . 1 1 . 1 1

i=1 1:1 i=1

™M 8
™M 8

(1) r() 7

[es)
. . N . n .
for all choices of scalars {ai}, where 1(A) = ¢cA ftor some ¢ > O
i

=1’
and integer n.
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[Theorem 2 : The spaces (Z ©® 00)1 has up to equivalence and permu-
tation a unique normalized unconditional basis. However, in this case
any function f(A) ror which (1) holds cannot be of polynomial growth.

cA

|The function £(A) has to satisfy r(A) = e for some c > O,

[Theorem 3 : The space (L @ £1)2 fails to have a unique normalized

unconditional basis up to equivalence and permutation.

Theorem 1 follows by a standard compactness argument from

the following proposition

?roposition 4 : There are constants ¢, o, B > O having the following

property. Let {Xi}2_ be a rinite normalized sequence in (Z @ 52)0

1
with unconditional constant A. Let P be a projection rrom (X © 22)0

onto [Xi]g_ . Then there is a partition of {1,2,...,n} into disjoint

1
sets {r }t so that for all scalars {a.}?
s s=1 i’i=1
1/2 . n . 1/2
(2) K lmax( 2 Ja.l?®) <2 a %0 <Kmax( = Ja.|?)
. i . i i .- i
S 1&’[5 i=1 S 16TS

where K = K([Pl[,2) = cllp|* AP .

We present now the proof of proposition 4. It is similar

in spirit to the proof of the main result in [4].

We can assume without loss of generality that each Xi
m

has only a finite number of components i.e. X; = z X5 j y 1 =i=n
j=1
6 2’ . .

where Xi,j 5 for every i and j
Consider now the vectors

A n 2" k

X. = u Y 6 x., . (o 22) , 1 =i <n

i j=1 k=1 i iy o

where {6?,...,6ﬁ}, k = 1,2,...,2n are all the possible n-tuples of
signs + 1 and for fixed i each 9? X. . is considered as an element

1d oA
of a dirferent copy of £2 . Obviously {xi}?—l is 1-unconditional and

A equivalent to {Xi}g—l' Indeed



n A n Kk ' ., n K . n
| = a; Xi“ = sup || Z a; ei X4 .”2 = sup| X a; 6, xi“ S A Z a X
i=1 gk i=1 *J k i=1 i=1
Let the projection P be given by
n
PX = & X¥(x) X,
. i i
i=1
m
where xX¥ = & x¥% ., € (Z2® £4_)_ . Put
i . 1,] 2°1
J=1
A m 2n K
X¥ =2 I o) xx /a"e¢ (Z®4,) ., 151i=n.
i j=1 k=1 i i,
. A\IA -
Notice that X¥(X,) = 6. since
i “h i,h
n
2
(3) z of ek _ong
k=1 1 h ish
n A A A n
Therefore Q u = £ X#%(u) X. is a projection from (X ® £_) onto (x.10 ..
i=1 i i 2°0 i"i=1

A direct verification shows that ||Q| < AllP||. Put, for 1 < i < n,

- {3 . [ |
o, =i llxi,jlt2 1/2 llali}
and
n
2
V.=Z- Z el.(X.. .
: j€o, k=1 1o
The sequence {Vi}2=1 is 1-unconditional and
n A n Kk
= z
A L SN
n k 'n |
2 sup || a, ei X H2 |z a, Vlh .
k,j 1i=1 ! i=1
j€o,

A
On the other hand by (3) X?(vh) = 0 for i # h and

A AL A hoy A | 1
b1 - - "~ - = - - 2 -
XE(v )= 1= x50y - v) =1 - iy vil! >
and thus
n A n A A n n
2 a, %, =2 2a, xX¥(v)x.ll =20l Z a, o(v)i<2lalll £ a. v.ll.
jo1 b7 PEPRE T D joq 1 i’! joq 4 i



A an . Al . n
Hence {Xx;1]_; is 2llall equivalent to {v }7_, and

~

n X, (u)
s 1

A v i
i=1 Xi(vi)

with [|[R] = 2 ||q]

. . . n
is a projection onto [Vi]i=1

All these considerations show us that we could assume

from the beginning that for every i we have HXi j“ =1 if j € di and
9
”Xi j” = 0 if j ¢ di,that the {Xi}?—l are exchangeable, and that A = 1.
’ =
We do this and return to the original notation of the vectors {Xi}g

|

=1

and the projection P. We put u = HP

In order to obtain the partition required in Proposition 4

we introduce a notion of '"friendship" between integers :
The integers i and h are friends if

Xﬁ(xilch) 2 ¢(p) and xﬁ(x z P(u)

hlo.’
1

where ?(p) is a function of p to be determined later and Xild denotes
h
PX X .o
€ 149]
J Uh
We partition now the integers {1,2,...n} into disjoint -

subsets {‘5}2—1 so that in each t_ there is a representative i(s)
satisfying :

(a) Every i € © is a friend of i(s)
s

(b) For sy # S5 1(si) is not a friend of 1(52)-

We claim that with this partition (2) holds.
Fix some 1 = s = t. 5ince {Xi}iﬁr are unconditional and

their span complemented we get for some constant A

1/2 '
(4) A-lu—lﬂ 2 oa, x. = |l(= la, X.|2) <Al Z a, x|
iers o1 i€t 1 icg 1t
s

Hence, if we put 6j = {i;j S di] we get that
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1/
A28 a2z sull (Xl ok D = sup 2 la |2,
i€t j i€t Ns, t 123 2 j i€t o
S s J
Since

o= ||x¥# =X f
H i(s )'I j= 1“ Xl(s),J“
we deduce that

m
N I
i€t : j=1

: oy 120ty
T °;

= I |a, 12 2 ety ol =z la, | 2ilx%
IETS 'Eol i(s),j"2 iér (s)ld

Since every i€TS is a friend of i(s) it follows that

(5) 12 a. x.22a2u oz |a.|?
i€t . i€t 1
S

and hence

n
12 a; w0l 2 maxl = a, xill = 4 w2 02 nax( = 1a,1%2
=1 s I&Ts s iers

which is the left half of (2)

In order to prove the second inequality of (2) we put

for iers, 1< g<4, yi = Xild . By the definition of the notion

i(s)
of friends we have x?(yi) 2 ¢(p) and by the assumption that the {Xi}
are exchangeable in signs we get that X?(yh) = 0 for i # h. Hence

n n n n
”iflai X llen) < Hi§1ai Xﬁ(yi)XiH=Hi§1P aiyi“ < u“iflai yi“

Consequently,

"
Y
[N
A

M
fv[V1
®
Pl

n -1
| = a, Xi“ < p 9(p) “sup ||
=1 ,] S

jeo'i(s)

-1 -1
< u 9(p) M sup supﬂz:::: a; X; 3“2 S p P(p)”M supl| = a, Xih,
i s i€TS ! s i€t
S
3595 (s)
Where

M = max cardinality {1 <s<4; Jc< Gi(s)}
J
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2/9

We shall show that if @(p) = p~ then M < 1/2 ¢(p) and this (in

view also of (4)) will establish the second part or (2).

v

Assume that M

=1 tor 1 =k

1/2 9(p). Then there is a j, so that e.g.
1/2 ®(p). Put ror each such k

A

Hxi(k),joﬂz

T = 93007 Y iy 81T S V200 X K fa )7

and z, = & X,

k " n M0, By condition (b) of the choice of the ©_ it
k

follows that the sets ﬂk, 1 <k =< 1/2 ¢(u) are mutually disjoint and

hence || = zk“ = 1. On the other hand
k

xﬁ(k)(zk) 21 - 9(p) (1/2 o(p)) = 1/2
and by exchangeability x?(k)(zﬂ) = 0 for k#4. Hence
S | |
“i X5 ol = 2l Z (1) () X; ol = 2llP > zll < 2u.

On the olher hand

|I1/2<P(u) H o H
| z X. = sup X .
k=1 i(k) 5194 k k "i(k),j"2
> = e I, = -1/2
0 =+1 'Jy
k —
-1/2

i.e. 2 p 2 (2 @(n)) and this contradicts our choice of 9¢{(n).
From Proposition 4 we get actually the following stronger

version of Theorem 1.

[Theorem 1' : Every normalized unconditional basic sequence in (2@”@2)1
whose span is complemented is equivalent to a permutation orf the unit

vector basis of one of the following 6 spaces

8

™

n
)
n=1 2 0 n=1

[e o)
L Ca‘ezaco@zga(z S

LMy @4 pIC:)
o ® 2)0 5 ( 22)0

A similar statement is clearly true for the dual space

(& 22)1 .
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Corollary : The six spaces appearing in the statement of theorem 1'
and their duals have up to equivalence and permutation a unique nor-

malized unconditional basis.

The first statement in Theorem 2 is proved by showing an
analogue of Proposition 4. Inequality (2) takes now the form

n
(6) K-l max ZT ]ail < H'Z a; XiH < K max & lail

s i€ i=1 s i€t
s
where K = K(X,HP“) is a more complicated function of A and ”P” than

the one appearing in Proposition 4.

The proof of the right halr of (6) is identical to the
proof we presented of the right half of (2). The proof of the left

half of (2) shows also in the case or (& © 4 )0 that

MB =

5 1/2

sup( X la. <) <K || 2 a, x|l -

s € 1 o . 1 1
s 1itT i=1
s

The fact that actually the stronger statement, appearing in the left
half of (6), holds is the contents of the exposé (1]. of course also
in this case we get stronger statements namely the exact analogues

of Theorem 1' and its corollary.

The second statement of Theorem 2 follows immediately
from the fact, proved in (3], that for every n there is a subspace
X of (Z® £,) s that d(x , 4™) < 2 and so that there is a projection
n 1’0 "o n 2
on X with norm =< Vlg .

We pass to the prooif of Theorem 3. It depends only on
n

i=1
algebras of subsets of (0,1]) (i.e. (A N B) = n(A) u(B) for every

AE3,BET, 4. Let (e},

the following trivial remark. Let {3i} be n independent rinite

1 be the conditional expectation operators

corresponding to {3132— . Then for every choice of functions fi we

1
have n
. 1/2 L .
(7) ”i§1lEiIil”2 < 27/9z] e L,
Indeed,
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— . |2 " . noo2 T .
= ? flEi Iil +.Z.JIEiIiIIIEjfjl < f “11H2 + Z ”11H1“fjh1

i#] itj

A

< 5 12 - 2 | P
I ; ltild2 + “Zlfilnl 2”§IIiIH2

be independent algebras of subsets

with u(Ai J.) = 1/n for all i and
9

For each integer n let now {Ei}g—l

of [0,1] each having n atoms {a, ‘]9
i, j3=1

j. Let {ei}?—l denote the unit vectors in E? and put

_ o ; ® € 2y,
Zi,j n :LA. ‘ e, L2([O,1], 1)
isj
Clearly {zi j}2 j=1 is a normalized l1-unconditional basic sequence
, 1Jd—

in L2([O,1],£2) and by (7) there is a projection P with lip|| < JE onto

x. =Lz, .17 . .. Indeed put
n i, 1i,3=1

Clearly we may consider Xn also as subspace of a space isometric to

a finite direct sum or the rform (£ © 22)2 in L2([O,1],22)- The sequence
n

- 2
j=1

y; = i3 1 < i=nis 1 isometric to the unite vector
9

basis in 22 and there is a projection orf norm 1 from xn onto [yi]?_1 .
[ee]

Hence, by the decomposition method ( & © Xn)z is isomorphic to (X & ﬂ?)o-
n=1 n =

The natural unit vector basis in (§ ® Xn)2 is however not equivalent

to the unit vector basis in (£ © ﬂ?)z‘ This rollows immediately from

n

the following observation. For n large the sets {Ai i ? j=1 are mutually
b 1J~
almost disjoint in a sense that given k and € > O then for n 2 n(k,¢)

every k of the vectors {z, n

N are 1 + € equivalent to the unit
i,J i, j=1

vector basis or ﬂg-

We turn now to the proposition on unconditional bases

in direct sums of two spaces mentioned in the beginning.

Proposition 5 : Let X and Y be Banach spaces and let 1 =< p, r < » .

Assume that {21}2_1 is a A unconditional basic sequence in X ® Y on

whose span there is a projection P. Then there exists a subset
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g < {1,2,---,n} so that {Zi}ieo is M= M(HP“,X) equivalent to an M
complemented 1 - unconditional sequence in (X@%X$."<QX)P and {Zi}i%d
is M-equivalent to a similar sequence in (Y@ Y® ".an)r.

The proof is similar to the rfirst step of the proof of

Proposition 4. Put z; = X; * Y and

)

ey O Xk @ YR L
1 y%l X

[
[N

n
Pz = & z%(z) z; s zE =

N N
Let X be the ﬂp sum of 2" copies of X and Y the ﬁr sum of 2" copies

orf Y. Put

n A
1
(81 x,/2" P, .. ,0% x /2VP) €,

n
' '
X* - (ei X? /2n/p 9-"’9? Xi/2n/p ) € Q%

S ¢
where {63}§_1 is the collection of all n-tuples of signs, and p' is

the adjoint exponent of p. The vectors §i and y#%

T are defined similarly

with p replaced by r.

A an N n A A A n PO
Then {Xi}izl ’ {yi}izl and {zi—Xi + yi}izl are all 1-unconditional,
the latter one being A-equivalent to {21}2—1 . Put o = {i; Z? PX; z 1/2}.
A simple computation similar to that done in the beginning of the
proof of Proposition 4 shows that {%i}itd is 2 A HPH equivalent to

{%.1 nd that
iti€q 2

N A
Ao XE(X)
QX =2 X

. A A i
i€o Xi(xi)

N N I
is a projection from X onto [xi]ied of norm = 2 A HP“.

It follows e.g. from Theorems 1 and 2 and Proposition 5
that (2 © co)l ® (2 £2)1 has up to equivalence and permutation a
unique normalized unconditional basis. (The methods of (2] do not

apply here since (2 @ co)1 and (2 & £2)1 are not totally incomparable).

The methods or this exposé and (1] seem to enable a complete
classitfication or those spaces obtainable rrom R by taking iterated

direct sums in the % and c, sense, which have up to equivalence

£
1 2
and permutation a unique normalized unconditional basis. It is however

unclear at present whether there exist completely dirferent spaces
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(from those obtainable as c, £1 or £_ direct sums) which have a

2

unique normalized unconditional basis up to equivalence and permutation.
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