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X.1

In this exposé we p.resent some results from a joint paper
with J. Bourgain P.G. Casazza and L. Tzafriri (in préparation). It

is a continuation of exposé no IV of this seminar [1] in which another

part of this paper was presented.

It is well known that 1 21 i1 and co are the only Banach
spaces which have up to equivalence a unique normalized unconditional

basis. If we consider spaces which have a unique normalized uncondi-

tional basis up to equivalence and a permutation we get a larger class

of spaces whose extent is not clear at present. Edelstein and Wojtaszczyk

proved in [21 that the spaces c , , c ® and c ®
lol2o2oj2

belong to this class. We shall present below (cf. Proposition 5) a

simple result concerning unconditional bases in direct sums oi two

Banach spaces which gives in particular a simple proof of the result

of Edelstein and Wojtaszczyk and allows us to handle also some other

direct sums which cannot be handled by the methods of E2].

The main purpose of this exposé is however to treat infinie

direct sums. If we consider the most simple infinie direct sums of

the three spaces and Y, 2 then there are up to duality three such
spaces namely (E ~ ~2) ’ (~ ® .~1)0’ and (~ 0153 £1)2. Surprisingly these

three spaces exhibit différent behaviour in connection vith the problem

of uniqueness of unconditional bases.

Theorem 1 : The space (¿ 0153 £2)0 has up to équivalence and permuta-
tion a unique normalized unconditional basis. More precisely : if

the natural unit vector basis of (E ® .~ ) and if 
i 1=1 2 o i i=1

is another normalized unconditional basis of this space with uncondi-

tionality constant ? then there is a permutation n of the integers

so that

for aIl choices of scalars , where i’x&#x3E; = cAn for some c &#x3E; 0

and integer n.
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Theorem 2 : The spaces (~ ® has up to equivalence and permu-

tation a unique normalized unconditional basis. However, in this case

any funetion for which (1) holds cannot be of polynomial growth.
. , . , 172The function has to e for some c &#x3E; 0,

Theorem 3 : The space (~ 0153 ~1)2 fails to have a unique normalized
unconditional basis up to equivalence and permutation.

Theorem 1 follows by a standard compactness argument from

the following proposition

Proposition 4 : There are constants c, &#x3E; 0 having the following

property. Let tX.} 1 be a finite normalized sequence in (£ É9 £ )
1 1=1 2 0

with unconditional constant ,. Let P be a projection from (£ Q9 £ )
onto Then there is a partition of i.l2,...,n) into disjoint

1 1=

sets ÎT t so that for all 
s S=l i 1=1

We present now the proof of proposition 4. It is similar

in spirit to the prooî of the main result in 

We can assume without loss of generality that each X.
m 1

has only a finite number of components i.e. X. = E X.. ; 1 ~ n
1 

j=l Ili

where for every i and j2

Consi.der now the vectors

where k = 1,2,...,2n are all the possible n-tuples of1’**" n 
k

signs + 1 and for fixed i each . x.. is considered as an element
- i 

of a different copy ° Obviousiy is 1-unconditional and

À equivalent to [X.} 1- Indeed
i i=1*
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Let the projection P be given by

where

A
Notice that 6. h sincei h i h

Therefore is a projection from

A direct vérification shows that

and

The sequence is 1-unconditional and
i i 1

On the other hand by (3) = 0 for i / h and
1 h

and thus
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Hence is 211QII equivalent to and

is a projection onto 1 v.]n with 2 IQil. ·
i 1= 

’

All these considerations show us that we could assume

from the beginning that for every i we have 1 if j E C1. and
n 

1

= 0 if j f C1.,that the ÎX )1 are exchangeable, and that À. = 1.
1,J 1 i i=1

We do this and return to the original notation of the vectors 
1 1=

and the projection P. We put p = 
i i=1

In order to obtain the partition required in Proposition 4

we introduce a notion of "friendship" between integers :

The integers i and h are friends if

where is a function of li to be determined later and X i 1 denote
1 h

We partition now the integers [1,2,...n} into disjoint -
f,..,. 1 t so that in each T there is a représentative s s=1 ou 411GL 4 s .1.0 CL .1.B0/

satisfying :

(a) Every, is a friend of i(s)
s

(b) For s1 / s , i is not a friend of i ( s2) ·

We claim that with this partition (2) holds.

Fix some 1 s t. Since are unconditional and
1 1’-T

s

their span complemented we get for some constant A

Hence, if we put } we get that
J 1
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Since

we deduce that

Since every i~i is a friend of i(s) it follows that
s

and hence

which is the left half of (2)

In order to prove the second inequality of (2) we put
for 1 s t, yi - Xi 1 ai . By the définition of the notion

s 1 

of friends we have X(y.) and by the assumption that the tx 3
1 1 i

are exchangeable in signs we get that Xi(yh) = 0 for i h. Hence

Consequently,

Where
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We shall show that if = p ’ then M  1/2 and this (in

view also of (4)) will establish the second part of (2).

Assume that M 2 1/2 Then there is a j o so that e.g.

= 1 for 1 : k ’ 1/2 Put for each such k
1K/)J J

and zk = 7- X i(k)13** By condition (b) of the choice of the T it
i6n J 

S

follows that the sets ~),? 1 ~ k ~ 1/2 are mutually disjoint and

hence Il E zkIl = 1. On the other hand
k 

"

and by exchangeability X!(k) (zae) = 0 for Hence
i(k)

On the other hand

1/2 
.,,i.e. 2 (2 (»-1/2 and this contradicts our choice 

From Proposition 4 we get actually the following stronger

version of Theorem 1.

Theorem 1’ : Every normalized unconditional basic sequence in (7-EDI 2)1
whose span is complemented is equivalent to a permutation of the unit

vector basis of one of the following 6 spaces

A similar statement is clearly true for the dual space
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Corollary : 
: The six spaces appearing in the statement of theorem 1’

and their duals have up to equivalence and permutation a unique nor-

malized unconditional basis.

The first statement in Theorem 2 is proved by showing an

analogue of Proposition 4. Inequality (2) takes now the form

where K = is a more complicated function of À. and JIPII than

the one appearing in Proposition 4.

The proof of the right hait of (6) is identical to the

proof we presented of the right hait of (2). The proof of the let

half of (2) shows also in the case of (L ® 1)o that1 o

The fact that actually the stronger statement, appearing in the left

half of (6), holds is the contents ot’ the exposé Of course also

in this case we get stronger statements namely the exact analogues

of Theorem 11 and its corollary.

The second statement of Theorem 2 follows immediately

from the fact, proved in C31, that for every n there is a subspace

x of (E ) s that d(X, 1 aen2) 2 and so that there is a projectionn 1 0 0 - n 2

on X n with norm 

We pass to the proof of Theorem 3. It depends only on

the following trivial remark. Let (ai)=1 be n independent finitei i 1

algebras ot’ subsets of LO,1J ( i. e. B) = (A) (B) for every
A E ’1, B E J., Let be the conditional expectation operators1 J 1 1=

corresponding to Then t’or every choice of functions t’. we
i i=1 1

have 
nn _

Indeed,
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For each integer n let now be independent algebras of subsets
1 1=1

of [,0,l] each having n with p,(A..) = 1/n for ail i and
IIJ i=1 i?J

j. Let denote the unit vectors in ïn and puti i 1 1

Clearly ~z..~n is a normalized 1-unconditional basic sequence
1,j 1,J=

in and by (7) there is a projection P with onto
2 1

X = C z .. ] . 1. Indeed put
n i, 1,3=1 

Clearly we may consider X n also as subspace of a space isometric to

a finite direct sum o’ the f orm (Z (D 1 n) in The sequence1 2 2 1

y = n-1/2 z 1 Sis n is 1 isometric -to the unite vector
1 

. 1 1,JJ=

basis in in and there is a projection o’ norm 1 from ’X onto Cy ]n 1 .

1 n i i=l
m

Hence, by the decomposition method x ) is isomorphic to (£ d9 1n
n=1 

n 2 
n 

1 "

The natural unit vector basis in e X )2 is however not equivalentn n 2

to unit vector hn1 in (D n to ( 
0153 

1’2- 
= from

n 
-n

the following observation. For n large the sets are mutually
1,J 

almost disjoint in a sense that given k and c &#x3E; 0 then for n n(k,s)

every k the vectors are 1 + E equivalent to the unit
1,J 

vector basis o’ 1k
We turn now to the proposition on unconditional bases

in direct sums two spaces mentioned in the beginning.

Proposition 5 : Let X and Y be Banach spaces and let 1 ~ p, r - ro .

Assume that 1s a ~ unconditional basic sequence in ~, ae Y on
i i=1

whose span there is a projection P. Then there exists a subset
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1 C C 
so that tz 13ic cy is M = equivalent to an Mind 

’

complemented 1 - unconditional sequence in 

is M-equivalent to a similar sequence in ... fl9 Y) . .
r

Thé proof is similar to the first step of the proof of

Proposition 4. Put zi - X i + yi and

A A

Let X be the sum of 2n copies of X and Y sum of 2n copies
p r

of Y. Put

. n 
.. , .. .

where is the collection of all n-tuples of signs, and p is

the adjoint exponent , p. The vectors and ^,_ are defined similarlythe adjoint exponent of p. The vectors yi and Y", are defined similarly
i 1

with p replaced by r.

Then , ^ n and + .n- are all ..Then X iii=l 1 i i=1 and i a. + Yi1 i=l are all 1-unconditional,
the Iatter one being iB-equivalent to (z. JI? 1 . . Put i; PX. 1/2j

. i=1 i 1

A simple computation similar to that done in the beginning of the

proof of Proposition 4 shows that is 2 À. Il pli equivalent to

E and that 
i i u

xi3,Ecr and that

n i !’
is a projection from X onto cJ 

of norm  2 X 

It follows e.g. from Theorems 1 and 2 and Proposition 5

that (~ 0153 ~2)1 has up to equivalence and permutation a
unique normalized unconditional basis. (The methods of C21 do not

apply here since C&#x3E;i and (~ ® ~ )1 are not totally incomparable).

The methods or this exposé and ~1~ seem to enable a complete
classification of those spaces obtainable from R by taking iterated

direct sums in the Î 1 le2and co sense, which have up to equivalence
and permutation a unique normalized unconditional basis. It is however

unclear at present whether there exist completely différent spaces
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(from those obtainable as co’ ae1 or 12 direct sums) which have a
unique normalized unconditional basis up to equivalence and permutation.
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