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1 - INTRODUCTION 

In the présent paper a number of methods for the analysis of three-mode 

data is discussed. Before discussing thèse methods it seems useful to 

describe various types of three-mode data. Three-mode data are def ined hère 

as observations on éléments that are classified according to the "catégories" 

to which they belong of three différent "modes". Thèse modes can be a set of 

observation units (denoted as "objects"), a set of variables, a set of 

occasions, a set of judges, etc. In the sequel it will be assumed that the 

first mode refers to objects, the second mode refers to variables and the 

third mode refers to occasions. Three-mode data can be for instance 

longitudinal data (repeated observation of the same variables on the same set 

of objects). 

In the présent paper only two types of three-mode data will be 

considered. The first type of three-mode data is called "three-way data". 

Three-way data are def ined hère as a set of data consisting of observations 

of ail objects on ail variables at ail occasions. As a resuit, the data can 

be pictured by means of a completeîy filled three-way array, as in Figure 1. 

The second type of data to be treated hère is called "multiple sets data". 

Multiple sets data is defined hère as observations of différent sets of 

objects on the same set of variables. The différent sets of objects are 

assumed hère to be measured at différent occasions, but this assumption is 

merely made for convenience. The methods presented hère are in no way 

limited to this spécifie kind of multiple sets data. Because multiple sets 

data consist of observations on différent sets of objects, it is not possible 

to picture multiple sets data by means of a three-way array. A useful way of 

picturing multiple sets data is to collect the observations on each set of 

objects in a data matrix of objects by variables, and to collect the 

resulting data matrices in a supermatrix containing the data matrices for ail 

sets of objects below each other, as in Figure 1. 
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Figure 1. "Three-way data" and "Multiple sets data" 
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Before discussing methods for analyzing three-mode data, the notation 

that is to be used in the présent paper will be described. For the case of 

three-way data the following notation is used. Let the éléments xIJJfc dénote 

the éléments of the three-way array, where i = 1,..,71 is the subscript for 

the objects, j-1,..,7¾ is the subscript for the variables, and fc = l,..,p is 

the subscript for the occasions. Matrix Xk is defined as the n by m matrix 

containing the éléments of the fc"1 frontal slice of the three-way array. That 

is, Xk contains the observations of the n objects on the m variables at 

occasion k. 

The notation for multiple sets data is chosen such that it optimally 

corresponds to the notation for three-way data. That is, matrix Xk again 

dénotes a matrix of observations of a set of objects on the variables, at 

occasion k. However, because at différent occasions différent sets of 

objects, with possibly différent numbers of objects, are observed, the 

matrices Xk do not necessarily hâve the same orders. Let nk dénote the 

number of objects observed at occasion h, then the order of matrix Xk is nk 

bym. 

For both three-way data and multiple sets data, the matrix of sums of 

cross-products among the variables for occasion k is defined as Ck s XkXk. 

Obviously, when Xk is centered column-wise, Ck is proportional to a 

covariance matrix and when the columns of Xk are standardized, Ck is 

proportional to a corrélation matrix. 
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Above, only two types of three-way data hâve been described. Obviously, 

many other types of three-way data are conceivable. An example of such a 

type of three-mode data is data consisting of observations of one set of 

objects on différent sets of variables. However, this case can be treated in 

a way équivalent to the case of multiple sets data, when in applying a 

three-mode method the rôles of objects and variables are interchanged. 

During the last décades many methods hâve been developed for the 

analysis of three-mode data. In order to analyze one's data, a data analyst 

is facing the problem of choosing from the many différent three-mode methods 

available. Obviously, such a choice can only be made on the basis of 

comparisons of the différent three-mode methods. Various three-mode 

methods described in the anglo-saxon literature hâve been compared with each 

other on large scaie (Law, Snyder, Hattie & McDonald, 1984). However, the 

many three-mode methods developed in France hâve been mainly overlooked 

in anglo-saxon literature, and, conversely, thèse french methods seem to 

hâve been developed almost independently of their anglo-saxon counterparts. 

As a resuit, when confronted with choosing a three-mode method for analyzing 

one's data, a data analyst has hardly any basis for choosing between french 

and anglo-saxon methods. 

In the présent paper I will briefly describe a number of anglo-saxon 

three-mode methods, and a number of french three-mode methods. Thèse 

methods will be described in such a way that a global comparison of ail 

methods is immediately available. That is, I will describe ail methods as 

methods for minimizing certain loss functions, which in itself yields a 

straightforward basis for comparing the methods. In addition, some more 

spécifie relations between certain methods will be treated. Thèse comparisons 

are in no way exhaustive, but are meant especially for the purpose of 

comparing the french methods with the anglo-saxon methods. 

The discussions of the methods will be primarily technical. That is, the 

aim of the descriptions is to show briefly on what mathematical criteria the 

methods are based. For more détail on the methods, their interprétations, and 

computational aspects, the reader is referred to the sources to be mentioned 

below. The primary aim of the présent paper is to provide the reader with an 

overview of a number of french and anglo-saxon three-mode methods, and 

with some insight in the différences between thèse methods. 
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2 - DESCRIPTION OF SEVEN THREE-MODE METHODS 

In the présent section seven methods for the analysis of three-mode data 

will be described. Some of thèse are suitabie only for analyzing three-way 

data, while others are especially suitabie for analyzing multiple sets data. 

At this point it should be noted that techniques for the analysis of multiple 

sets data can always be applied also for analyzing three-way data, because 

three-way data can be seen as consisting of p différent matrices, Xu..tXpt 

of objects by variables, where the information that in the case of three-way 

data the observations are actually made on the same objects at ail occasions 

may be ignored. However, it might not be advisable to analyze three-way data 

as multiple sets data, because this does not use ail the information of the 

three-way data that is available. Conversely, multiple sets of data cannot be 

analyzed by means of techniques for analyzing three-way data. For every 

method it will be made clear for which type of data it is suitabie. 

2.1-TUCKALS-2 

The first method to be described is what is called TUCKALS-2 by 

Kroonenberg and De Leeuw (1980). This method is used for analyzing three-way 

data, and hence it is not applicable to multiple sets data. The model 

underlying the TUCKALS-2 method, the socalled Tucker-2 model, is derived 

from Tucker's original three-mode factor analysis model (Tucker, 1966). The 

Tucker-2 model can be described as 

Xk = AHkB' (1) 

for k = 1,..,?. In this model matrix Xk dénotes the model prédiction of Xk) 

the k frontal slice of the observed three-way data, matrix A is an n by r 

(r<n) matrix with component scores of the objects on r object-components 

("idealized objects"), matrix B is an m by s [s<m) matrix of variable 

loadings on the s variable-components ("idealized variables"), and matrix Hk 

is an r by s matrix reiating the idealized objects to the idealized variables 

for occasion k. 
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Equivalently, the model can be described element-wise as 

r 3 

*ijk = E E M J | . A B * • (2) 

where ait dénotes the loading of the z* object on the ll idealized object, 

bjt, dénotes the loading of the j t h variable on the l'th idealized variable, 

and hu,k dénotes the term relating the /' idealized object to the /*' 

idealized variable, at occasion k. 

The Tucker-2 model is fit to the data by minimizing the loss function 

ax (A%B,H^.,HV) = £ || Xk - AHrf' ||2, (3) 

where ||. || dénotes the squared Euclidean norm of the matrix concerned. 

Kroonenberg and De Leeuw (1980) hâve also described the more gênerai 

TUCKALS-3 method, which consista of fitting Tucker's original three-mode 

factor analysis model in the least squares sensé. This method is not 

described hère, because it differs essentially from the other methods 

considered in the présent paper. That is, it does not only reduce the number 

of objects and the number of variables to a smaller number of idealized 

objects and idealized variables, but it also reduces the number of occasions 

to a number of "idealized occasions". In this respect it does not only differ 

from the TUCKALS-2, but also from the other methods to be described hère. For 

a description of TUCKALS-31 refer to Kroonenberg and De Leeuw (1980) and for 

comparisons of this method with other methods the reader is referred to Ten 

Berge, De Leeuw and Kroonenberg (1987), who compare TUCKALS-3 and 

PARAFAC, and to Kiers (1988), who compares TUCKALS-3 with a number of 

french and anglo-saxon three-way methods by considering TUCKALS-3 as part 

of a hierarchy of three-way methods. 

2.2 - CANDECOMP/PARAFAC 

Carroll and Chang (1970) and Harshman (1970) independently developed a 

model which décomposes a three-way array in a very simple way. Harshman 

called his model PARAFAC (PARAllel FACtor analysis), whereas Carroll and 

Chang christened their method CANDECOMP (CANonical DECOMPosition). The 
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models are developed for three-way data, and are not suitable for multiple 

sets data. The CANDECOMP/PARAFAC model can be described as 

* * = AD&% (4) 

for A; = 1,.. , p, where matrices A and B are matrices of order n by r, and m by 

r, respectively, and matrix Dk is a diagonal matrix of order r. 

Clearly, the CANDECOMP/PARAFAC model is a spécial case of the 

TUCKALS-2 model. The important différence of the CANDECOMP/PARAFAC 

model with the Tucker-2 model is that in the CANDECOMP/PARAFAC model only 

one set of components is defined (instead of two, as for the TUCKALS-2 

model). That is, whereas in the TUCKALS-2 model components are defined for 

both variables and objects, with Hk containing the relations between thèse 

components, in PARAFAC r components are defined simultaneously for 

variables and objects. 

The CANDECOMP/PARAFAC model is based on a very simple rationale. The 

expression for one entry in the three-way data array is 

r 

*y* = E ûilMjd • ( 5 ) 

The éléments ath bjt and dkl are component coordinates of the objects, 

variables, and occasions, respectively, on the lth CANDECOMP/PARAFAC 

component. According to the model, there are only proportional différences 

between objects, variables and occasions with respect to each of the 

components, and thèse différences represent multiplicative effects. 

The CANDECOMP/PARAFAC model is fit to the data by minimizing the loss 

function 

a2 (A,B,Du..,Dp) = l \\Xk- ADk£' \\\ (6) 
Jt-i 

where Dk is a square diagonal matrix of order r, k = l,..,p. 

An important feature of the CANDECOMP/PARAFAC method is that it 

yields a solution with unique axes. That is, whereas, in gênerai, factor 

analytic solutions are determined only up to a rotation of axes, this model 

does not allow for such rotation of axes. Differently rotated axes will not, 

in gênerai, fit the data equally well. Hence, one has an empirical basis for 
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determining the orientation of the axes. The usefulness of this so called 

"unique axes property" lies in the fact that components can be interpreted in 

only one undebatable way, namely by interpreting the axes in the orientation 

found hère. 

2.3-Simultaneous Components Analysis 

Simultaneous Components Analysis (SCA) is a method for analyzing 

multiple sets data. It has been proposed by Millsap and Meredith (1988) as 

"Components Analysis in cross-sectional and longitudinal data", but I will 

dénote it by the name SCA, suggested by Kiers and Ten Berge (1988). The 

method is a straightforward generalization of Principal Components Analysis 

(PCA). In order to make this clear, PCA is described as the method that 

minimizes the loss function 

az(ByP) = || X - XBP'f , (7) 

where the m by r matrix B contains the component weights for constructing the 

matrix of component scores F = XBt and P {m by r) contains the weights for 

optimally reconstructing the scores in X from F. Hence, XBP\ the projection 

of X on the principal components space, contains the reconstruction of the 

original data, which is often called "the explained part" of X. Therefore, 

(X-XBF) contains the unexplained part of the data, and minimizing <r3 implies 

minimizing the unexplained inertia or equivalently, maximizing the proportion 

of explained inertia, which is a well-known interprétation of PCA. It can be 

verified that a solution for minimizing (7) consists of choosing B and P both 

equal to the matrix containing the first r eigenvectors of X'X. 

SCA is a generalization of PCA such that in SCA also the proportion of 

explained inertia is maximized, while the same component weights are applied 

to the variables at every occasion. Therefore, there is only one matrix B for 

every Xk. Hence, the components hâve the same meaning at every occasion. 

Matrix Pk contains the pattern scores, or projection coordinates for 

optimally reconstructing the scores in Xk from Fk = X^fi. SCA consists of 

minimizing the loss function 
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^ ( ^ 1 , . . ^ , ) = l IXk-XtBPrf, (8) 

which implies minimizing the sum of the amounts of unexplained inertia over p 

occasions. In this way the method yields one set of component weights that 

explain most inertia at ail occasions simultaneously. 

2.4 - LEVIN/TUCKER/JAFFRENNOU 

Like SCA, the method for simultaneous factor analysis proposed by Le vin 

(1966) is typically meant for the analysis of multiple sets data. His method 

can be described as PCA of the super matrix Y = (^ ' l . . \Xp')' • This is 

équivalent to one of the stages in Tucker's three-mode Principal Components 

Analysis (Tucker, 1966). As stated by Jaffrennou (1978), the latter in turn 

is équivalent to one of the stages of Jaffrennou's method for analyzing a 

three-mode array. Therefore, the method will be denoted as the 

Levin/Tucker/Jaffrennou method (L/T/J). 

Tucker and Jaffrennou both note that PCA of matrix Y does not yield the 

least squares solution to fitting the Tucker-2 model. Instead, it yields the 
p 

least squares solution for the problem of fitting £ XkXk to the model 
Jt-i 

P * . 
prédiction £ Xk'Xki where Xk = AHkB\ according to (1). Therefore, it has 

been considered to be a reasonable approximation of fitting the Tucker-2 

model in the least squares sensé. 

In order to align the L/T/J method with SCA described above, the L/T/J 

method is interpreted as PCA on the supermatrix Y, containing Xlt.. ,Xpi below 

each other. Using the description of PCA as given by (7), the L/T/J method 

can be described as the method minimizing the loss function 

<TS(B,P) = || Y - YBPf = l || Xk - **2?/>'||2, (9) 

where B dénotes a component weights matrix and P a component pattern (or 

loading) matrix containing weights for reconstructing the variables from the 

components, both matrices of order m by r. It foilows from the description of 
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PCA as minimizing loss function a3l that the minimum of <rs is attained when 

both matrix B and matrix P are chosen to be the principal r eigenvectors of 

E xk'Xk. 

2.5 - STATIS 

STATIS, developed by L'Hermier des Plantes (1976), is a method suitabie 

for the analysis of multiple sets data, but can usefully be applied for the 

analysis of other types of three-mode data as well. In the variant of STATIS 

that will be described hère, data sets are represented by their cross-product 

matrices, that is, Cu..yCp. For the purpose of simplification I will assume 

that the variable and individual metric matrices that may be used in STATIS 

are ail equal to identity matrices. This does not reduce generality, however, 

because thèse metric matrices may be assumed to hâve been built in into the 

data matrices Xk. 

STATIS consists of a three-step procédure. The first step is performing 

PCA on the set of Ck matrices, considered as variables. This step is 

essentially based on the corrélation measure, the RV-coefficient, proposed by 

Escoufier (1973) for describing the association between two data sets. STATIS 

starts by Computing the "corrélations" between ail pairs of cross-product 

matrices Ckl k = 1,..,^. On the resulting corrélation matrix a PCA is 

performed. This PCA yields weights for the p cross-product matrices on the 

components. The second step is defining the compromise matrix C as the first 

principal component of the Ck matrices. That is, assuming that otk gives the 

first component weight for matrix Cki k = ! , . . ,?, then the compromise C is 
p p 

givenbyC= E c*fcCfc = E « A ' 4 
Jt« i jfc=i 

The third step, and this is the only step I will consider hère, is PCA 

on the compromise matrix. In order to make this step better comparable to the 

methods described above, I will describe this method in terms of minimizing a 

loss function. It is readily verified that PCA on matrix C is équivalent to 

minimizing 

v6(ByP) = || 
V<XpXp VoipXp 

BP'f= l <*k \\ Xk - Xk8P'\\\(lO) 
Jfc«l 
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over matrices B and P, both of order m by r, where r is the number of 

principal components maintained in the solution. Although not used 

explicitly, the matrices B and P are implicitly used in STATIS as well. In 

the solution matrix B can again be chosen equal to P, the matrix of component 

loadings of the compromise variables, and matrix X)JB defines component 

scores of objects of occasion k. Finally, matrix XkXyJBA~^2
7 where A is the 

diagonal matrix with the eigenvalues corresponding to the principal 

components, gives coordinates for the variables for each of the occasions 

(cf. Lavit, 1985). 

2.6-Analyse Factorielle Multiple 

Escofier and Pages (1983,1984) developed Analyse Factorielle Multiple 

(AFM) for the simultaneous analysis of a number of data sets with the same 

objects and différent variables as an alternative to Generalized Canonical 

Analysis (CCA; Carroll, 1968), among others. However, AFM can just as well be 

used for analyzing multiple sets data (Escofier, personal communication). I 

will treat AFM only for the latter case, even though it does not seem to be 

the most usual way to describe the method. It should be noted, however, that, 

as has been mentioned in the introduction, the same technique can be used 

when the rôles of objects and variables are interchanged. 

AFM consists of two steps. In the first step the data sets Xu..7Xp are 

normalized such that their first principal components ail explain the same 

amount of inertia. This cornes down to using VfijcXkl instead of Xk, where /3k is 

the inverse of the largest eigenvalue of Ck. 

The second step consists of a (two-way) PCA on the total of ail sets of 

objects, considered as one set of objects with scores on the set of 

variables. It is readily verified that this PCA, and therefore also AFM, 

cornes down to minimizing the loss function 

°i(Bf) = il 
vppkp 

BP'f = ZPk\\Xk- XtfP'f, (11) 

over B and P (both of order m by r). 
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2.7 - LONGI 

Recently, Pernin (1987) proposed the method LONGI for the analysis of 

longitudinal data. Obviously, longitudinal data are a kind of three-way data. 

It should be noted that the method actually takes into account the "three-way 

nature" of the data, and that it cannot be applied to multiple sets data. 

One of the purposes of LONGI is to find linear combinations of the 

variables (called "indices de situations") that account maximally for the 

différences between the objects, while varying minimally within the objects 

over différent occasions. Like STATIS and AFM, LONGI can be applied in many 

différent ways. I will only describe a simplified case, in which there are no 

missing data. This simplified case can be described as follows. 

The matrices Xk are gathered in a supermatrix Y such that each 

column-supervector corresponds to one variable and contains the scores of ail 

object-occasion combinations for that variable. (Thèse variables are 

subsequently centered by substracting the means per occasion, but we assume 

that this transformation has already been carried out). Next, a discriminant 

analysis is performed such that discriminant functions (linear combinations 

of the variables) are found that maximally discriminate between the objects. 

This cornes down to performing a canonical corrélation analysis on the set of 

variables in Y and the set of indicator variables indicating the object to 

which each object-occasion combination refers. When Y contains ail matrices 

Xk below each other, this indicator matrix N contains p times the identity 

matrix below each other. This canonical analysis can be shown to minimize the 

loss function 

a8(fî,C) = || YB - NC ||2 = £ \\X£ - C ||2, (12) 

subject to C'C - / , where B contains weights for the variables for 

constructing the différent discriminant functions and C contains the weights 

for the objects. 

3 - GLOBAL COMPARISON OF THREE-MODE METHODS 

Above, seven three-mode methods hâve been described in terms of fitting 
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least squares loss functions. As has been announced above , this way of 
presenting the methods facilitâtes comparison of the methods. A summary of 
the différences between the methods is given by Table 1, which provides ail 
loss functions, and in addition dénotes what type of data the methods can 
handle. 

Table 1. The loss functions for seven three-mode methods 

method loss function data type 

TUCKALS-2 ax(A,B,Hx,..,Hp)=l \\ Xk - AH^'f three-way 
Jt=i 

CANDECOMP/ ^ ( / 1 , 5 , / ^ . . , / ) , ) = £ | Xk - AD^f three-way 
PARAFAC 

SCA 

fc=i 

^(B,PXi..7Pp) = £ | I f c - X#PkT multiple sets 
kml 

L/T/J <rs{B,P) = 

STATIS <r6(5,P) = 

AFM <Mfl,P) * 

LONGI a 8 (5 ,C) = 

E \\ Xk~ XffiFf multiple sets 

P s 

E afc || Xk - XffiFf multiple sets 

P , 
IPklXk- XkBP'f multiple sets 

E l * * * - cil three-way ! 

In the sequel, some more spécifie relations will be shown to exist among 

certain three-mode methods. Before describing thèse, however, some 

références will be given of papers that treat the comparison of certain of 

thèse methods. Table 2 shows what has been compared where, and which 

comparisons are to be made in the présent paper, in the next section. 
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Table 2. Références on comparisons of three-mode methods 

CANDECOMP L/T/J 
PARAFAC 

SCA STATIS/AFM LONGI 

TUCKALS-2 Kroonen- Kroonen- ? Kroonen
berg 1983 berg 1983 berg 1985 
Harshman & 
Lundy 1984 

CANDECOMP/ 
PARAFAC 
L/T/J 

SCA 

STATIS/AFM 

? this 
paper 

Kiers & Ten trivial 
Berge 1988 

this 
paper 

this 
paper 

Pernin 1987 

4 - SOME SPECIFIC COMPARISONS BETWEEN THREE-MODE METHODS 

4.1 - Comparison of CANDECOMP/PARAFAC and STATIS 

The first comparison that will be made is that between CANDECOMP/ 

PARAFAC and STATIS, when used for analyzing three-way data. This 

comparison is very similar to the comparison Kroonenberg (1985) 

made between TUCKALS-2 and STATIS. Suppose the CANDECOMP/ 

PARAFAC coordinate matrices are constrained to be orthonormal. When the 

data are perfectly fit by the model we hâve Xk = AD^fi' for A: = 1,..,y. Hence, 
P P P 2 

E ck = E Xk'Xk = E BDk B\ In other words, matrix B contains 
J c - l * * = 1 fc=l 

p 
the eigenvectors of matrix E Q- &1 c a s e t n e «-weights in STATIS are ail 

taken equal, matrix B also contains the variable loadings from PCA on the 

compromise matrix in STATIS. 

Obviously, this is only a limiting case. Usually the data will not 

perfectly fit the CANDECOMP/PARAFAC model, especially not when 
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orthonormality constraints are imposed. However, it can be conjectured that 

the CANDECOMP/PARAFAC and STATIS solutions will not dif f er very much when 

the data approximately fit the CANDECOMP/PARAFAC model with 

orthonormality constraints. 

4 .2 - Comparison of SCA and STATIS/AFM 

The methods SCA, and STATIS/AFM can easily be compared by considering 

the loss functions that are minimized by the methods: 

SCA ^ ( 5 , ^ , . . , / 0 = E \\ Xk - XJPkf, (8) 

p 

E 

p 

E 

STATIS <76(5,P) = E <*k II Xh - XtfFf, (10) 

AFM <r7(5,/>) = £ Pk II Xk - XifiFtf. (11) 

STATIS and AFM only differ with respect to the weights used in the loss 

functions. Therefore, comparison of AFM with SCA will yield similar results 

as comparison of STATIS with SCA. For this reason, only the latter comparison 

will be treated hère. 

The loss functions of SCA and STATIS differ in two respects: 1. the 

STATIS loss function is weighted by the weights afe; 2. the SCA loss function 

contains différent matrices Pk for each occasion, while in STATIS the same 

matrix P is used for each occasion (or population). The first différence can 

in fact easily be undone by assuming that the matrices Xk are the original 

matrices multiplied by Votk. (Then, in fact, STATIS is équivalent to the L/T/J 

method). The second différence cannot be undone. In fact , this différence is 

the same as that between the L/T/J method and SCA, which is discussed by 

Kiers and Ten Berge (1988). In fact, SCA has been developed precisely in 

order to find components for the matrices Xk that optimally explain each of 

the matrices Xkl instead of finding components that optimally explain the 

variables as if they hâve been measured in one large population containing 

ail subpopulations. The SCA method considers the sets as consisting of 

separate observations that are to be explained optimally within each of the 
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separate sets. 

4.3 - Comparisons of LONGI with other methods 

Finally,,, a few comparative remarks will be given pertaining to LONGI. 

Thèse are based on the spécifie description of LONGI as it has been given 

hère. From the LONGI loss function 

**{Bfi) = E \\XkB - C ||2, (12) 

it is clear that, as in SCA, components Fk = X*5 can be computed that are 
based on the same component weights at every occasion. However, thèse 
component weights are found in such a way that the components optimally 
resemble a postulated overall component matrix C, which is orthonormal. In 
this way LONGI fits a model completely différent from the SCA model. 

LONGI is clearly related to generalized canonical analysis (GCA) 
(Carroll, 1968; cf. Carlier, Lavit, Pages, Pernin k Turlot, 1988). In GCA the 
function 

**BklC) = E | * A -Cf (13) 

is minimized subject to C'C = /. The only différence between LONGI and GCA is 

that in LONGI the sets of variables ail contain the same variables and the 

"canonical variâtes" are computed from thèse variables by using the same set 

of weights,M each occasion (Carlier et al., 1988). Hence, LONGI can be 

considérée* as a fixed weights version of generalized canonical analysis. 

. Finafly, I would like to remark that the solution for matrix C in GCA is 
P . 

given by the first r eigenvectors of E Xk(XkXk) Xki which is équivalent 
fc-i 

to the solution of STATIS when STATIS is applied to projection operators, as 
proposed by Glaçon (1981, p.17), and the otk weights are taken equal. Hence, 

the relation between LONGI and STATIS applied to projection operators is 

practically the same as that between LONGI and GCA. 

file:////XkB
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