@article{RSMUP_2015__134__239_0, author = {Iovita, Adrian and Marmora, Adriano}, title = {On the continuity of the finite {Bloch-Kato} cohomology}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {239--272}, publisher = {Seminario Matematico of the University of Padua}, volume = {134}, year = {2015}, mrnumber = {3428419}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2015__134__239_0/} }
TY - JOUR AU - Iovita, Adrian AU - Marmora, Adriano TI - On the continuity of the finite Bloch-Kato cohomology JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2015 SP - 239 EP - 272 VL - 134 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2015__134__239_0/ LA - en ID - RSMUP_2015__134__239_0 ER -
%0 Journal Article %A Iovita, Adrian %A Marmora, Adriano %T On the continuity of the finite Bloch-Kato cohomology %J Rendiconti del Seminario Matematico della Università di Padova %D 2015 %P 239-272 %V 134 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2015__134__239_0/ %G en %F RSMUP_2015__134__239_0
Iovita, Adrian; Marmora, Adriano. On the continuity of the finite Bloch-Kato cohomology. Rendiconti del Seminario Matematico della Università di Padova, Volume 134 (2015), pp. 239-272. http://www.numdam.org/item/RSMUP_2015__134__239_0/
[1] -functions and Tamagawa numbers of motives, in: The Grothendieck Festschrift, Vol. I, Progr. Math. 86, Birkhäuser, Boston 1990, P. Cartier, et al., eds., pp. 333–400. | MR | Zbl
– ,[2] Représentations -adiques semi-stables et transversalité de Griffiths, Math. Ann., 307, 1997, pp. 191–224. | MR | Zbl
,[3] Constructions de représentations -adiques semistables, Ann. sci. E.N.S. série, tome 31, n. 3, 1998, pp. 281–327. | Numdam | MR | Zbl
,[4] Représentations semi-stables et modules fortement divisibles, Invent. Math., 136, 1999, pp. 89–122. | MR | Zbl
,[5] Integral -adic Hodge theory, Advanced Studies in Pure Math., 36, 2002, pp. 51–80. | MR | Zbl
,[6] Torsion étale and crystalline cohomologies, in: Cohomologies -adiques et applications arithmétiques (II)b Astérisque, 279, Soc. Math. de France, Paris 2002, pp. 81–124. | Numdam | MR | Zbl
– ,[7] Quasi-semi-stable representations, Bull. Soc. Math. France, 137, 2009, n. 2, pp. 185–223. | Numdam | MR | Zbl
– ,[8] Représentations semi-stables de torsion dans le cas , J. reine angew. Math., 594, 2006, pp. 35–92. | MR | Zbl
,[9] Kummer theory for abelian varieties over local fields, Invent. Math., 124, 1996, pp. 129–174. | MR | Zbl
– ,[10] Integral crystalline cohomology over very ramified valuation rings, J.A.M.S., Volume 12, n. 1, 1999, pp. 117–144. | MR | Zbl
,[11] Le corps de périodes -adiques, avec une appendice par Pierre Colmez, in: Périodes -adiques, Astérisque, 223, Soc. Math. de France, Paris 1994, pp. 59–111. | Numdam | MR | Zbl
,[12] Construction de représentations -adiques, Ann. sci. E.N.S. 4ème série, tome 15, n. 4, 1982, pp. 547–608. | Numdam | MR | Zbl
– ,[13] On Iwasawa Invariants of Elliptic Curves at Supersingular Primes, preprint.
– – ,[14] On the Iwasawa invariants of elliptic curves, Invent. Math., 142, 2000, pp. 17–63. | MR | Zbl
– ,[15] Semi-stable reduction and -adic étale cohomology, in: Périodes -adiques, Astérisque, 223, Soc. Math. de France, Paris 1994, pp. 269–293. | Numdam | MR | Zbl
,[16] Crystalline representations and -crystals, in Algebraic Geometry and Number Theory, Drinfeld 50th Birthday volume, Progress in mathematics, vol. 253, Birkhäuser, Boston, MA, 2006, pp. 459–496. | MR | Zbl
,[17] On lattices in semi-stable representations: a proof of a conjecture of Breuil, Comp. Math., 144, 2008, pp. 61–88. | MR | Zbl
,[18] Level raising and Selmer groups for Hilbert modular forms of weight two, to appear in Canadian J. Math. (published online), 81 pages. | MR | Zbl
,[19] Continuous Cohomology and -adic Galois Representations, Invent. Math., 62, 1980, pp. 89–116. | MR | Zbl
,[20] Corps Locaux, Quatrième édition corrigée, Hermann, Paris. | MR
,[21] Représentations cristallines de torsion, Comp. Math., 108, 2, 1997, pp. 185–240. | MR | Zbl
,