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A product property of Sobolev spaces

with application to elliptic estimates

HENRY C. SIMPSON (*) - SCOTT J. SPECTOR (**)

ABSTRACT - In this paper a Sobolev inequality, which generalizes the ordinary Ba-
nach algebra property of such spaces, is established; for p 2 [1;1), n;m 2 Z�,
and m � 2 that satisfy m > n=p,

kfckm;p;V � K sup
Vs

jfj
 !

kckm;p;V �
�
kckmÿ1;q;V � kckmÿ1;p;V

�
kfkm;p;V

" #
for all f;c 2 Wm;p(V) that satisfy sptc � Vs � V and domains V � Rn that are
nonempty, open, and satisfy the cone condition. Here q � p if p > n,
q 2 (n=�; pn=(nÿ p)] if n > p, q 2 (n=�;1) if p � n, K � K(n; p;m; q; C),
where C is the cone from the cone condition, and � :� [[ n=p ]], the largest
integer less than or equal to n=p.
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1. Introduction; Sobolev Spaces

A standard classical methodology used to obtain a priori estimates for

elliptic systems of partial differential equations is to first prove the re-

quired estimate when the system has constant coefficients and the region

has smooth boundary and then use a partition of unity to extend the es-
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timate to coefficients that depend on position and regions that are less

regular. For example, Agmon, Douglis, and Nirenberg [3, 4] first establish

the estimate (in the notation from Elasticity): for all u 2 C1(V; Rn) that

satisfy u � 0 in a neighborhood of D :� @VnS,

kukm�1;p;V � N
Div C[ru]


mÿ1;p;V

� C[ru]n


mÿ1
p;p;S
� kukp;V

� �
;�1:1�

where C : Mn�n ! Mn�n is a constant linear mapping of the n� n matrices

Mn�n and V is a ball with S � [ or V is a half-ball and S is the flat portion

of the boundary of V. Here m 2 Z�, p 2 (1;1), n is the outward unit

normal to the boundary @V,

kukp
p;V :�

Z
V

ju(x)jpdx; (ru)i :� @u

@xi
;

kukp
m;p;V :�

X
jaj�m

kDaukp
p;V ; (Div M)i :�

Xn

j�1

@Mij

@xj
;

and a � (a1; . . . ; an) is a multi-index with jaj � a1 � � � � � an and

Da � @a1
x1

. . . @an
xn

.

For a general bounded open region V � Rn, a suitable open covering of

V and @V, respectively, by balls and half-balls, together with a partition of

unity can then be used (see [3]) to prove (1.1) for C(x) : Mn�n ! Mn�n

whose components are m-times continuously differentiable on V. More

generally, if one wants to establish1 (1.1) for C 2 Wm;p(V), then one can

make use of Moser's [7, pp. 273-274] tame inequality (see Klainerman and

Majda [6, pp. 516-517] for a nice proof): If 1 � p <1 and k 2 Z�, then

there exists a constant C � C(n; p; k) > 0 such that

Cÿ1kfckk;p;Rn � kfk1;Rnkckk;p;Rn � kck1;Rnkfkk;p;Rn�1:2�

for all f;c 2 Wk;p(Rn) \ L1(Rn).

However, (1.2) is an inequality for Sobolev functions defined on all of

Rn, while in practice one must make use of this inequality for Sobolev

functions defined on a bounded open region V � Rn. This presents no

difficulties when the boundary of V is sufficiently smooth since one can

(1) See, e.g., [12] for a proof of (1.1) when C is a Sobolev function. See, e.g.,
Ragusa [11] and the references therein for interior regularity when C is
discontinuous.
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then use standard extension results to obtain a version of (1.2) for such

domains. When the boundary of the region is not smooth there are some

unresolved difficulties.2

The main purpose of this paper is to provide a partial resolution of these

difficulties by proving an inequality, which is similar to (1.2) and which is

also useful for elliptic estimates, for regions that satisfy (only) a cone

condition. In particular we show that if V � Rn is nonempty, open, and

satisfies the cone condition and if p 2 [1;1), n;m 2 Z�, m � 2, and

p 2 (n=m;n), then for any q 2 (n=[[ n
p ]]; pn=(nÿ p)] there is a constant

K � K(n; p;m; q; C) such that

�1:3� kf1f2km;p;V �

K sup
Vs

jf1j
 !

kf2km;p;V �
�
kf2kmÿ1;q;V � kf2kmÿ1;p;V

�
kf1km;p;V

" #

for all f1; f2 2Wm;p(V) that satisfy spt f2 � Vs � V. Here C is the cone

from the cone condition3 and [[ x ]] is the largest integer less than or equal

to x.

We note that our inequality, unlike (1.2), has the interesting feature that

its dependence on the supremum of the first function is limited to the region

that supports the second function. Our initial motivation for studying such

inequalities originated in problems of global bifurcation4 for the strongly-

elliptic system that governs the equilibrium of elastic materials. In this

context inequality (1.3) extends results of Valent [13, pp. 22-27] that are

used to improve estimates in [3, 4] in order to apply them to elasticity. Our

proof makes use of the following special cases of the usual Sobolev in-

equalities.

PROPOSITION (See, e.g., [2, pp. 85-86]). Let V � Rn, n � 1, be a non-

empty open region that satisfies the cone condition. Suppose 1 � p <1,

k 2 Z�, and j 2 N. Define pk :� pn=(nÿ kp) if n > kp and pk :� 1
otherwise. Then there exists a constant K � K(n; p; k; j; q; C), where C is

the cone from the cone condition, that has the following properties.

(2) See Maz0ya and Shaposhnikova [8, Chapter 7] for regions whose boundary
can be parametrized by an appropriate Sobolev function. See, also, NecÆas [10].

(3) That is, every x 2 V is the vertex of cone that is contained in V and is a rigid
deformation of C. See, e.g., [1, p. 66] or [2, p. 82].

(4) See, e.g., [5, 9].
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I. (Sobolev Imbedding Theorem) If k > n=p then Wk;p(V) � CB(V) with

sup
V
jfj � Kkfkk;p;V for all f 2Wk;p(V):

II. (Gagliardo-Nirenberg-Sobolev Inequality) If k�n=p then Wk�j;p(V)�
Wj;q(V) with

kfkj;q;V � Kkfkk�j;p;V for all f 2Wk�j;p(V)

and q 2 [ p; pk] if pk <1 and q 2 [ p;1) otherwise.

Here,

CB(V) :� ff 2 C(V) : f 2 L1(V)g;

which is a Banach space under the L1-norm.

2. The Product Property

For a Sobolev function c 2 Wk;p(V), k 2 N, p 2 [1;1), we define the

support of c by

sptc :� V n fx 2 V : c(z) � 0 for a.e. z in some open neighborhood of xg:
Thus, since the complement of sptc is an open set, Dac � 0 a.e. on

Vn(sptc) for jaj � k. Consequently, if f;c 2Wk;p(V), k > n=p, and

sptc � Vs then f(Dgc) 2 Lp(V) for jgj � k and

kf(Dgc)kp;V � sup
Vs

jfj
 !

kDgckp;V :�2:1�

The main result of this paper is the following theorem, which gen-

eralizes the usual Banach algebra property of Wm;p, m > n=p. See Valent

[13, pp. 22-27] for similar results.

THEOREM. Let V � Rn, n 2 Z�, be a nonempty open region that

satisfies the cone condition. Suppose 1 � p <1, m 2 Z� with m > n=p,

and Vs � V is measurable. Then for every q 2 ( n
� ;np=(nÿ p)] , if n > p,

and for every q 2 ( n
� ;1), if p � n, there exists a constant K �

K(n; p;m; q; C) > 0, where C is the cone from the cone condition for V and

� :� [[ n
p ]] , such that the following are satisfied.
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(a) If m � 1 then for all f;c 2W1;p(V) that satisfy sptc � Vs � V

kfck1;p;V � 2 sup
Vs

jfj
 !

kck1;p;V � sup
V
jcj

� �
kfk1;p;V

" #
:�2:2�

(b) If m � 2 and n � p then for all f;c 2 Wm;p(V) that satisfy

sptc � Vs � V

�2:3� kfckm;p;V �K sup
Vs

jfj
 !

kckm;p;V� kckmÿ1;q;V�kckmÿ1;p;V

� �
kfkm;p;V

" #
:

(c) If m � 2 and p > n then for all f;c 2 Wm;p(V) that satisfy

sptc � Vs � V

kfckm;p;V � K sup
Vs

jfj
 !

kckm;p;V � kckmÿ1;p;Vkfkm;p;V

" #
:�2:4�

REMARK. Note that the constant K is independent of Vs. When V has

finite volume one can combine the term kckmÿ1;p;V with its upper bound

kckmÿ1;q;V in (2.3), however, the constant K will then depend on the volume

of V.

PROOF of (2.2). To simplify the notation we drop the V, but leave the Vs,

on the appropriate norms. To prove (2.2) we first note that, since p > n,

without loss of generality we may assume, by the Sobolev imbedding the-

orem, that f;c 2W1;p(V) \ CB(V). Next, kfck1;p�kfck0;p�kr(fc)k0;p

and, in view of (2.1),

kfck0;p � sup
Vs

jfj
 !

kck1;p:

However, r(fc) � frc � crf so that, with the aid of (2.1),

kr(fc)k0;p �kfrck0;p � kcrfk0;p

� sup
Vs

jfj
 !

kck1;p � sup
V
jcj

� �
kfk1;p;

which proves (2.2). p

PROOF of (2.3) when [[ n
p ]] � mÿ 1 and m � 2 . Note that n � p. Let

q 2 ( n
mÿ1 ;

np
nÿp ] if n > p and q 2 ( n

mÿ1 ;1) if n � p. To prove (2.3) when
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[[ n
p ]] � mÿ 1 we first note for future reference that

q > p; q(mÿ 1) > n;�2:5�
and if m > 2 then n > p and

np

nÿ p
� n

mÿ 2
:�2:6�

Now, let f;c 2 Wm;p(V). Then, since mp > n, f;c 2 CB(V) by the So-

bolev imbedding theorem, while q 2 [ p; p1] (or q 2 [ p;1)) yields

c 2Wmÿ1;q(V) by the Gagliardo-Nirenberg-Sobolev inequality. Next,

kfckm;p �
X
jaj�m

kDa(fc)k0;p

�
X
jaj�m

 X
jbj�jj�jaj

c
b

(Dbf)(Dgc)


0;p

� K
X
jaj�m

X
jbj�jj�jaj

k(Dbf)(Dgc)k0;p;

�2:7�

where K :� max c
b

only depends on n and m.

If jbj � 0 then jgj � m and hence by (2.1)

kf(Dgc)k0;p � kfk1;Vs
kDgck0;p � kfk1;Vs

kckm;p:�2:8�
If jbj � m then jgj � 0 and hence by the Sobolev imbedding theorem

and (2.5)2

k(Dbf)ck0;p � kDbfk0;pkck1 � Kkfkm;pkckmÿ1;q:�2:9�
If jgj � mÿ 1 (and jbj 6� 0) then jbj � 1. Define q0 so that 1

q� 1
q0 � 1

p and

pmÿ1 :� pn=(nÿ (mÿ 1)p) if n > (mÿ 1)p and pmÿ1 :� 1 otherwise.

Then, by (2.5)2, q0 2 (p; pmÿ1) and hence by HoÈlder's inequality and the

Gagliardo-Nirenberg-Sobolev inequality (k � mÿ 1)

�2:10� k(Dbf)(Dgc)k0;p � kDbfk0;q0
Dgc


0;q
�

kfk1;q0 kckmÿ1;q � Kkfkm;pkckmÿ1;q:

Finally, if 2 � jbj � mÿ 1 then jgj � mÿ 2. Note jbj � jgj � m, m � 3,

and n 6� p (since n=p � mÿ 1 � 2). Thus, by HoÈlder's inequality,

k(Dbf)(Dgc)k0;p �kDbfk0; pn
nÿ(mÿj bj)p

kDgck0; pn
(mÿj bj)p

�kfkjbj; pn
nÿ(mÿj bj)p

kckmÿj bj; pn
(mÿj bj)p

:�2:11�
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Then, in view of the Gagliardo-Nirenberg-Sobolev inequality

(k � mÿ jbj and k � jbj ÿ 1),

kfkjbj; pn
nÿ(mÿj bj)p

� Kkfkm;p; kckmÿj bj; n
mÿj bj
� Kkckmÿ1;q;�2:12�

since q 2 ( n
mÿ1 ;

n
mÿ2 ] by (2.6) and the definition of q. The desired result, (2.3),

now follows in the case when [[ n
p ]] � mÿ 1 from (2.7)-(2.12). p

PROOF of (2.3) when 1 � [[ n
p ]] < mÿ 1. We prove (2.3) by induction on

m. Note that n � p. Define bm :� �� 1 � [[ n
p ]]� 1. Then bm > n=p �bmÿ 1 and bm � 2. The induction starts at m � bm. Then, as we have just

proven, (2.3) is valid for m � bm and any q in the appropriate interval. To

continue the induction we assume (2.3) is valid, for some m � bm and q, and

show it is valid for m� 1 and the same q.

Let f;c 2Wm�1;p(V). Then q 2 ( n
� ;

np
nÿp ] if n > p and q 2 ( n

� ;1) if

n � p; consequently c 2 Wm;q(V) by the Gagliardo-Nirenberg-Sobolev

inequality. We again note r(fc) � crf� frc and hence

kfckm�1;p �kfckm;p � kr(fc)km;p

�kfckm;p � kcrfkm;p � kfrckm;p:
�2:13�

However, by the induction hypothesis

kfckm;p � K sup
Vs

jfj
 !

kckm;p � kckmÿ1;q � kckmÿ1;p

� �
kfkm;p

" #

� K sup
Vs

jfj
 !

kckm�1;p � kckm;q � kckm;p

� �
kfkm�1;p

" #
;

�2:14�

and, similarly,

�2:15� kfrckm;p � K sup
Vs

jfj
 !

kckm�1;p � kckm;q � kckm;p

� �
kfkm�1;p

" #
;

�2:16� kcrfkm;p � K sup
V
jrfj

� �
kckm;p � kckm;q � kckm;p

� �
kfkm�1;p

� �
;

since Vs � V, while by the Sobolev imbedding theorem (k � m)

sup
V
jrfj � Kkfkm�1;p:�2:17�
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Inequality (2.3) with m replaced by m� 1, now follows from (2.13)-

(2.17). p

PROOF of (2.4). Note that p > n. First we prove (2.4) for m � 2. Let

f;c 2W2;p(V). Then (2.13) with m � 1 is valid, however, (2.14)-(2.16) must

be replaced by (see (2.2))

kfck1;p �2 sup
Vs

jfj
 !

kck1;p � sup
V
jcj

� �
kfk1;p

" #
;

kcrfk1;p �2 sup
V
jrfj

� �
kck1;p � sup

V
jcj

� �
krfk1;p

� �
;

�2:18�

and an appropriate estimate for kfrck1;p. Clearly, k � k1;p � k � k2;p and

since p > n the Sobolev imbedding theorem (k � 1) yields

sup
V
jcj � Kkck1;p; sup

V
jrfj � Kkrfk1;p � Kkfk2;p:�2:19�

Thus, we need only estimate the term kfrck1;p, which replaces (2.15),

to finish the proof when m � 2.

We note r(frc) � frrc �rc 
rf and hence

kfrck1;p �kfrck0;p � kr(frc)k0;p

�kfrck0;p � kfrrck0;p � krc 
rfk0;p:
�2:20�

In view of (2.1) the first two terms on the right-hand side of (2.20) satisfy

kfrck0;p � sup
Vs

jfj
 !

kck2;p; kfrrck0;p � sup
Vs

jfj
 !

kck2;p;�2:21�

while the last term on the right-hand side of (2.20) satisfies

krc 
rfk0;p � sup
V
jrfj

� �
kck1;p:�2:22�

Inequality (2.4) with m � 2 now follows from (2.13) with m � 1 and

(2.18)-(2.22).

To complete the proof we note that (2.4) can be obtained by induction on

m for m > 2. However, the required steps are identical to those in the

proof of (2.3), when 1 � [[ n
p ]] < mÿ 1, with the terms kckm;q and kckmÿ1;q

deleted. p
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REMARK. If n � p � 1, m � bm � �� 1 :� [[ n
p ]]� 1 � 2, and Vs � V

is open then one can show that, for all f;c 2 Wm;p(V) that satisfy

sptc � Vs � V and for every q 2 ( n
� ;np=(nÿ p)], if n > p, and for every

q 2 ( n
� ;1), if p � n, there exists a constant K � K(n; p;m; q; C) > 0 such

that

kfckm;p;V � K
Xmÿbm
k�0

kfkCk
B

(Vs)kckmÿk;p;V

h i
� kckmÿ1;q;Vkfkm;p;V

0@ 1A;�2:23�

where

kfkCk
B

(Vs) :�
X
jaj�k

sup
x2Vs

jDaf(x)j:

Inequality (2.23) is obtained by induction on m. The initial step is the

above proof of (2.3) when [[ n
p ]] � mÿ 1. The induction is then similar to

that presented above in the proof of (2.3) when 1 � [[ n
p ]] < mÿ 1. The

only significant difference is that one does not use the estimate (2.17), but

instead leaves the appropriate version of (2.16) as it is, since each step in

the induction argument will now add an additional derivative to the f term

that multiplies kckmÿk;p.
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