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A note on Grayson's theorem
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ABSTRACT - In this note we show a variational proof of Matthew Grayson's con-
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1. Introduction

Let g : S1 � [0;T)! R2 be the curvature flow of a simple smooth closed

curve in the Euclidean plane, that is, satisfying @tg � kn, such that T is the

maximal time of smooth existence. In this paper we give a new proof of the

following result.
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THEOREM 1.1 (Grayson's Theorem [11]). At some time the evolving

curve becomes convex.

REMARK 1.2. After the curve has become convex, the work of Gage

and Hamilton [8, 9, 10] shows that it remains convex and it shrinks to a

point of R2 in finite time, becoming asymptotically circular.

We borrow some ideas and techniques from the work of Ilmanen [16],

Stone [20] and White [21]. The main line of the proof is quite standard, as

we study the asymptotic behavior of the flow in presence of a singularity,

which (as it follows from the comparison principle) must happen in finite

time. This kind of analysis is usually performed by means of a parabolic

blow-up of the flow by a dilation factor (at every time) which diverges with

the same order as the maximum of the curvature. This allows one to extract

from the rescaled flow a sequence of curves with bounded curvature, and to

get `̀ easily'' a subsequence converging to some limit curve containing the

information on the asymptotic shape. Accordingly to the blow-up rate of

the maximum of the curvature as t approaches the singular time T, the

possible singularities are then subdivided into in the so-called type I and

type II classes. Precisely, if there exists a constant C such that

max
gt

k2 � C

2(T ÿ t)
8t 2 [0;T) ;

then the singularity is called of type I, if such constant does not exist, the

singularity is called of type II.

Our analysis differs from the usual one insofar as we rescale the flow by

the dilating factor 1=2(T ÿ t) (which is the `̀ natural'' one for type I singu-

larities), no matter what the rate of blow-up of the curvature is. Although

this procedure gives no control on the maximum of the curvature along the

blow-up, it allows to fully exploit Huisken's monotonicity formula [13]

(Theorem 2.3) to get an L2
loc-estimate on the curvature of a sequence of

rescaled curves of the flow. This latter estimate implies the C1
loc-con-

vergence of a subsequence either to a straight line through the origin of R2

or to an embedded, closed, convex curve with positive curvature (actually

to the unit circle in R2). We will prove that, either by a theorem of

White [21] (Theorem 4.6) or as a consequence of an application of the in-

terior estimates of Ecker and Huisken [6] (Theorem 2.4), the convergence

to the straight line is not possible. On the other hand, if the sequence of

dilated curves converges to the unit circle in R2, we will be able to exhibit

a further sequence of curves in the rescaled flow which converges in the
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C2-topology to an embedded, closed, convex curve with positive curvature,

hence, such curves are definitely convex, thus proving Theorem 1.1.

We underline that the key fact, which allows us to pursue this `̀ unitary''

line of analysis without distinguishing the singularities into two types, is

that in dimension one the uniform L2
loc-control on the curvature implies

the C1
loc-subconvergence of the curves to some limit curve which, by a

bootstrap argument starting from its C1-regularity, can then be shown to

be smooth.

The lack of such functional embedding (and thus the lack of the pos-

sibility to infer the smoothness of the limit along this line) is the main

reason why our analysis is difficult to be pursued in higher dimensions,

where the control of the mean curvature in L2
loc is not strong enough to

give the C1
loc-convergence of a subsequence of hypersurfaces to a limit.

Nevertheless, very interesting results in this direction have been obtained

by Ilmanen in dimension two [16] (which is, in some sense, the critical

case). In particular, assuming the mean convexity of the surfaces, Ilmanen

shows that it is possible to get a smooth limit for a suitable sequence of

rescaled surfaces of the flow.

REMARK 1.3. Several techniques of this paper have been used by the

authors, in collaboration with M. Novaga, also in the case of a network of

three curves, concurrent at a triple point, moving by curvature to show that

singularities cannot develop, see [18].

2. Analytical and Geometrical Facts

For any smooth, embedded, closed curve g : S1 ! R2 in the Euclidean

plane, we will denote with s its arclength parameter and with n its inner

unit normal vector field. The curvature of the curve will be k �
D d2g

ds2
; n
E

,

where h� ; �i is the Euclidean scalar product of R2.

DEFINITION 2.1. Let T > 0 and g : S1 � [0;T)! R2 be a smooth one-

parameter family of closed and embedded curves. We say that g is a cur-

vature flow of the initial curve g0 � g(� ; 0) if for any time t 2 [0;T) and

a 2 S1 there holds

@tg(a; t) � k(a; t)n(a; t) :

For every t 2 [0;T), we will use the notation gt : S1 ! R2 for the curve given

by gt(x) � g(x; t), that is, the evolving curve at time t 2 [0;T).
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In this section we collect some well known results about the curvature

flow g of an initial closed and embedded curve g0 in R2 (see [19], for in-

stance, for more details and proofs).

PROPOSITION 2.2. If the initial curve g0 is smooth, the curvature flow

problem has a unique smooth solution defined on a maximal time

interval [0;T) with T < �1 and, at every time t 2 [0;T), the curve gt is

a smooth embedding of S1 in R2.

The following evolution equations hold

@tds � ÿk2ds ;

@tk � kss � k3

and

@tks � ksss � 4k2ks :

Moreover, there holds

max
gt

k2 � 1

2(T ÿ t)
8t 2 [0;T) :(2:1)

Huisken's monotonicity formula [13] holds.

THEOREM 2.3. For every x0 2 R2 we have

d

dt

Z
gt

eÿ
jxÿx0 j2
4(Tÿt)�������������������

4p(T ÿ t)
p ds � ÿ

Z
gt

eÿ
jxÿx0 j2
4(Tÿt)�������������������

4p(T ÿ t)
p k� hxÿ x0 j ni

2(T ÿ t)

���� ����2 ds(2:2)

for any t 2 [0;T).

The following interior estimates were proven by Ecker and Huisken

in [6], see also [14].

THEOREM 2.4. Let e1 and e2 be an orthonormal basis of R2 with respect

to the standard Euclidean scalar product, let he1i � spanfe1g and

he2i � spanfe2g. For x0 2 R2 and R > 0, suppose that in a ball B2R(x0) the

curve gt, for t 2 [0; t), is a graph of a function over he1i and let

v � hn j e2iÿ1 > 0 at time t � 0.

� Setting W(x; t) � R2 ÿ jxÿ x0j2 ÿ 2t, if W� denotes the positive part of

W, we have

v(x; t)W�(x; t) � sup
x2g0

v(x; 0)W�(x; 0)(2:3)
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for every t 2 [0; t) and x 2 gt, as long as v(x; t) is defined everywhere

on the support of W�.

� For arbitrary u 2 [0; 1) we have the estimate

sup
gt\BuR(x0)

k2 � C(1ÿ u)ÿ2 1

R2
� 1

t

� �
sup

BR(x0)�[0;t)
v4(2:4)

for all t 2 [0; t), where the constant C is independent of t and gt.

Finally, we state a geometric result.

THEOREM 2.5 (Huisken's embeddedness measure [15]). For every

t 2 [0;T), let Lt be the length of the curve gt . We consider the function

Ft : gt � gt ! R given by

Ft(x; y) �
pjxÿ yj

Lt
=sin

pdt(x; y)

Lt
if x 6� y;

1 if x � y;

8<:
where dt(x; y) is the geodesic distance between x and y along gt .

Then, we define the following infimum, which, in the case of closed

curves, is actually a minimum:

E(t) � inf
x;y2gt

Ft(x; y) :

If the initial closed curve g0 is embedded, the function E(t) is uniformly

bounded below by a positive constant depending only on g0 , for every

t 2 [0;T).

Since the function E(t) is positive if and only if gt is embedded, an

initial embedded and closed curve remains embedded during all the

flow.

3. The Density Function

As in Stone [20], we consider the following Gaussian density function.

For every x0 2 R2, we define

u(x0; t) �
Z
gt

eÿ
jxÿx0 j2
4(Tÿt)�������������������

4p(T ÿ t)
p ds :
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By Huisken's monotonicity formula (2.2), we have

@

@t
u(x0; t) � ÿ

Z
gt

eÿ
jxÿx0 j2
4(Tÿt)�������������������

4p(T ÿ t)
p k� hxÿ x0 j ni

2(T ÿ t)

���� ����2 ds � 0

for every t 2 [0;T). Hence, the limit U(x0)� lim
t!T

u(x0; t) exists for every

x0 2 R2 and, integrating, we get

u(x0; 0)ÿ U(x0) �
ZT

0

Z
gt

eÿ
jxÿx0 j2
4(Tÿt)�������������������

4p(T ÿ t)
p k� hxÿ x0 j ni

2(T ÿ t)

���� ����2 ds dt :(3:1)

Letting m(t) � sup
x02R2

u(x0; t), we can see that, as gt is compact, this su-

premum is actually a maximum for any t 2 [0;T). Moreover, being a maxi-

mum of a family of positive and monotone nonincreasing functions, m(t) is

also monotone nonincreasing and positive. By looking at the right side of the

monotonicity formula (2.2), we can finally notice that the functions u(x0; � )
are uniformly locally Lipschitz in time and we can conclude that the function

m is locally Lipschitz as well, hence differentiable at almost every t 2 [0;T).

Since m is monotone, we can define S � lim
t!T

m(t) 2 R�, which clearly

satisfies S � U(x0) for every x0 2 R2.

For every t 2 [0;T) let xt 2 R2 be a point at which

m(t) �
Z
gt

eÿ
jxÿxt j2
4(Tÿt)�������������������

4p(T ÿ t)
p ds

that is, xt is a maximum point for the function u(� ; t) : R2 ! R�. We

now make use of the following lemma to compute the derivative of the

function m.

LEMMA 3.1 (Hamilton's Trick [12]). Let M a Riemannian manifold

and u : M � (0;T)! R be a C1 function such that for every time t, there

exists a value d > 0 and a compact subset K �M n @M such that at every

time t0 2 (tÿ d; t� d) the maximum umax(t0) � max
p2M

u(p; t0) is attained at

least at one point of K.

Then, umax is a locally Lipschitz function in (0;T) and at every dif-

ferentiability time t 2 (0;T) we have

dumax(t)

dt
� @u(p; t)

@t

where p 2M is any inner point such that u(�; t) gets its maximum at p.
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PROPOSITION 3.2. For every t 2 [0;T), let xt 2 R2 be as above, then

m0(t) � ÿ
Z
gt

eÿ
jxÿxt j2
4(Tÿt)�������������������

4p(T ÿ t)
p k� hxÿ xt j ni

2(T ÿ t)

���� ����2 ds(3:2)

at almost every t 2 [0;T). Moreover,

m(0)ÿ S �
ZT

0

Z
gt

eÿ
jxÿxt j2
4(Tÿt)�������������������

4p(T ÿ t)
p k� hxÿ xt j ni

2(T ÿ t)

���� ����2 ds dt :

PROOF. Being u(x; t) a C1 function, Hamilton's trick applies. Hence, at

every differentiability time t 2 [0;T), by formula (2.2) we have

m0(t) � ÿ
Z
gt

eÿ
jxÿxt j2
4(Tÿt)�������������������

4p(T ÿ t)
p k� hxÿ xt j ni

2(T ÿ t)

���� ����2 ds :

As the function m is locally Lipschitz, we can integrate its derivative (which

exists at almost every time) on every closed interval [0;T ÿ e] and sending e
to zero we get the second equality. p

4. Blowing-Up at a Singularity - The Proof of Grayson's Theorem

As remarked in the introduction, we now rescale the curvature flow

g : S1 � [0;T)! R2 in its maximal time interval [0;T) without distin-

guishing between different types of singularities.

DEFINITION 4.1. We define the rescaled flow as follows,

eg(a; r) � g(a; t(r))ÿ xt(r)����������������������
2(T ÿ t(r))
p r � r(t) � ÿ 1

2
log (T ÿ t) ;

obtaining a smooth flow of embedded, closed curves egr : S1 ! R2, defined

for r 2
h
ÿ 1

2
log T;�1

�
.

We rescale also formula (3.2) in order to get information on these

curves. At almost every r 2
h
ÿ 1

2
log T;�1

�
it holds
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d

dr
m(t(r)) � m0(t(r))2(T ÿ t(r))

� ÿ
Z
gt(r)

eÿ
jxÿxt(r) j2
4(Tÿt(r))������������������������

4p(T ÿ t(r))
p k

����������������������
2(T ÿ t(r))

p
� hxÿ xt(r) j ni����������������������

2(T ÿ t(r))
p

���� ����2 ds

� ÿ 1�����
2p
p

Z
~gr

eÿ
jyj2

2 ek� hy jeni��� ���2 ds � 0 :

Hence, integrating as before on
h
ÿ 1

2
log T;�1

�
, we get

m(0)ÿ S � 1�����
2p
p

Z
~gÿ 1

2
log T

eÿ
jyj2

2 dsÿ lim
r!�1

1�����
2p
p

Z
~gr

eÿ
jyj2

2 ds(4:1)

� 1�����
2p
p

Z�1
ÿ 1

2 log T

Z
~gr

eÿ
jyj2

2 ek� hy jeni��� ���2 ds dr < �1 :

REMARK 4.2. Thanks to inequality (4.1), for every family of disjoint

intervals (ai; bi) �
h
ÿ 1

2
log T;�1

�
such that

P
i2N

(bi ÿ ai) � �1, we can

find a sequence ri 2 (ai; bi) such that

lim
i!1

1�����
2p
p

Z
~gri

eÿ
jyj2

2 ek� hy jeni��� ���2 ds � 0(4:2)

and

lim
i!1

1�����
2p
p

Z
~gri

eÿ
jyj2

2 ds � lim
i!1

m(t(ri)) � S :(4:3)

Clearly, the sequence ri is monotone increasing and diverges to �1.

We now state a technical lemma due to Stone which is crucial in order to

commute limits and integrals.

LEMMA 4.3 (Stone [20]). Let BR a ball of radius R > 0 in R2, then the

following estimates hold uniformly in r for the family of curves

fegrgr2 [ÿ 1
2 log T;�1).

1) There exist a constant C independent of BR such thatH1(egr \ BR) �
CeR2=2 where H1 is the one-dimensional Hausdorff measure in R2.
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2) For any e > 0 there exists a radius R � R(e;Length(g0);T) such thatZ
~grnBR(0)

eÿ
jyj2

2 ds � e:

PROPOSITION 4.4. Let ri be a sequence as in Remark 4.2. Then, either

for every R > 0 the curves gri
definitely stay outside of the ball BR , or there

exists a smooth, complete, embedded curveeg1 (either closed or unbounded)

satisfying ek� heg1 jeni � 0, such that for a subsequence of ri (which we do

not relabel) there holds gri
! eg1 in the C1

loc-topology.

PROOF. Assume that we are in the second case. From the limit (4.2)

and the estimate on the local length of the previous lemma, it follows that

the sequence of curves egri
has curvatures locally equibounded in L2, as the

term hy jenij j2 is clearly bounded in every ball of R2. Hence, we can extract a

subsequence (not relabelled) that, after a possible reparametrization (in a

constant multiple of the arclength of every curve), converges in C1
loc to a

complete limit curve eg1. Such curve satisfies ek� heg1 jeni � 0, as the in-

tegral
R
~g

eÿ
jyj2

2

���ek� hy jeni���2 ds is lower semicontinuous under the C1
loc-con-

vergence. The smoothness on the curveeg1 follows by a bootstrap argument

applied to such relation.

Finally, the curve eg1 is embedded as the Huisken's embeddedness

measure E in Theorem 2.5 is scaling invariant and upper semicontinuous

under the C1
loc-convergence of curves, hence, such quantity is bounded

below by a positive constant also for the limit curveeg1 , which then must be

embedded. p

By the classification result of Abresch-Langer and Epstein-Weinstein

(see [1] and [7] or [17, 19]), the limit curve eg1 can be either a line through

the origin or the unit circle centered in the origin of R2. Actually, for our

purposes, we only need the weaker conclusion that the limit curve is either

a line through the origin or a closed, convex curve with positive curvature.

LEMMA 4.5. Any smooth, complete, embedded curve s in R2 satisfying

k� hs j ni � 0 is either a line through the origin of R2 or a closed, convex

curve with positive curvature.

PROOF. The relation k � ÿhs j ni implies that the curvature satisfies

the ODE ks � khs j ti, where t � @ss is a unit tangent vector. Suppose that
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at some point it holds k � 0. By the ODE, at the same point holds also ks � 0

and hence, by the uniqueness theorem for ODE's, we conclude that k is

identically zero and we are dealing with a line L which, as hx j ni � 0 for

every x 2 L, must contain the origin of R2.

We can now suppose that k is always different from zero and, possibly

after a reversion of the orientation of the curve, we can assume that k > 0

at every point and thus that the curve is strictly convex.

The derivative of jsj2 with respect to the arclength parameter it is easily

computed to be

@sjsj2 � 2hs j ti � 2ks=k � 2@s log k :

Thus we get k � Cejsj
2=2, for some constant C > 0 and it follows that k is

bounded from below by C > 0.

We now consider a new coordinate a � arccos he1 j ni which, by the

convexity of the curve, is a good global parametrization (obviously, as for

the arclength parameter s, the function a is only locally continuous since it

`̀ jumps'' after a complete round).

Differentiating with respect to the arclength parameter we have

@sa � k and

ka � ks=k � hs j ti kaa � @ska

k
� 1� khs j ni

k
� 1

k
ÿ k :

Multiplying both sides of the last equation by 2ka we get

@a[k
2
a � k2 ÿ log k2] � 0, which means that the quantity k2

a � k2 ÿ log k2 is

equal to some constant Z along all the curve. Notice that such quantity Z

cannot be less than 1 and that, if Z � 1, then k must be constant and equal

to one along the curve, which consequently must be the unit circle cen-

tered at the origin of R2.

If Z > 1, it follows that k is uniformly bounded from above. Hence,

recalling that k � Cejsj
2=2, the image of the curve is contained in a ball of R2

and, by the embeddedness and completeness hypotheses, the curve must

be closed, simple and strictly convex, as k > 0 at every point. p

Since the second point of Lemma 4.3 implies that

lim
i!1

1�����
2p
p

Z
~gri

eÿ
jyj2

2 ds � 1�����
2p
p

Z
~g1

eÿ
jyj2

2 ds ;

and, by equation (4.3), the left hand side is equal to S, we deduce that if we

have a non empty limit curve then S � 1 and, by direct computation, we
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conclude that if S > 1 theneg1 cannot be a line through the origin and hence

it must be a closed, simple curve with positive curvature.

We now see that S must be larger than one. To this aim we start with

defining the set of reachable points of the curvature flow g by

S � fx 2 R2 j 9 ti % T and ai 2 S1 such that gti
(ai)! xg :

It is easy to see that S is non empty and compact. Moreover, if x0 62 S, the

flow is clearly definitely far from x0. If instead x0 2 S, for every t 2 [0;T)

the closed ball of radius
�����������������
2(T ÿ t)
p

and center x0 intersects gt . Indeed, let

dt � mina2S1 jW(a; t)ÿ x0j, that is, the Euclidean distance from x0 to the

curve gt.

The function dt : [0;T)! R is obviously locally Lipschitz and at a dif-

ferentiability time with dt > 0, by Hamilton's trick, we have

d0t(x) � @

@t
jgt(b)ÿ x0j � k(b; t)hn(b; t) j gt(b)ÿ x0i

jgt(b)ÿ x0j

for any b 2 S1 such that dt � jgt(b)ÿ x0j.
By minimality, the closed ball Bdt

(x0) intersects the curve gt only on its

boundary and the vector
gt(b)ÿ x0

jgt(b; t)ÿ x0j is parallel to the normal n(b; t). An

easy geometric argument shows then that

k(q; t)hn(q; t) j gt(b)ÿ x0i
jgt(b)ÿ x0j � ÿ1=dt :

Thus we conclude that, for almost every time t 2 [0;T) and if dt 6� 0, we

have
d0t(x) � ÿ1=dt :

Integrating this differential inequality on the time interval [t; t] we get

d2
t ÿ d2

t � 2(t ÿ t) and, by the hypothesis on x0, we have d2
ti
! 0, hence

d2
t � lim

i!1
d2

t ÿ d2
ti
� lim

i!1
2(ti ÿ t) � 2(T ÿ t) ;

which proves our claim.

Chosen x0 2 S, we rescale the flow as follows, this time around the fixed

point x0 ,

g(a; r) � g(a; t(z))ÿ x0����������������������
2(T ÿ t(z))
p z � z(t) � ÿ 1

2
log (T ÿ t) ;
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obtaining a smooth flow of embedded, closed curves gz : S1 ! R2, defined

for z 2
h
ÿ 1

2
log T;�1

�
. Notice that, by the above discussion, all these

curves intersect the unit closed ball of R2.

Rescaling also formula (3.1), we have

u(x0; 0)ÿ U(x0) � 1�����
2p
p

Z�1
ÿ 1

2 log T

Z
gz

eÿ
jyj2

2 k� hy j ni�� ��2 ds dz < �1 :

Then, repeating the arguments in Remark 4.2 and Proposition 4.4, there

exists a subsequence of zi (which we do not relabel) such that the curves gzi

converge in the C1
loc-topology to a smooth, complete, embedded curve g1,

which is not empty (the limit curve also must intersect the unit closed ball of

R2), satisfies k� hg1 j ni � 0 and

1�����
2p
p

Z
g1

eÿ
jyj2

2 ds � lim
i!1

1�����
2p
p

Z
gzi

eÿ
jyj2

2 ds � U(x0) :

Hence, by Lemma 4.5 and a direct computation, it follows that U(x0) � 1,

hence S � 1. Moreover, if we assume that S � 1 we conclude that U(x0) � 1

for every x0 2 S and the subsequence of rescaled curves gzi
converges in the

C1
loc-topology to a line through the origin of R2.

The following general local regularity theorem of White [21] (holding

for the mean curvature flow in any dimension) can now be applied.

THEOREM 4.6. There exists a constant e > 0 such that if a point x0 2 S
satisfies U(x0) < 1� e, then there exists a radius R > 0 such that in

BR(x0)� [0;T) � R2 �R the curvature is uniformly bounded.

Clearly, this theorem contradicts the assumption S � 1, as (by a com-

pactness argument on the set S) it implies that the curvature is uniformly

bounded when t! T and this is impossible since estimate (2.1) holds.

In the special case of simple curves, the exclusion of the case S � 1 can

be actually deduced as follows also by means of the interior estimates of

Ecker and Huisken (Theorem 2.4).

Chosen any x0 2 S, by the C1
loc-convergence of the rescaled curvesegzi

to

a line through the origin of R2, for every R > 2 there is a sequence of times

ti % T and a line L passing for x0 such that every curve gti
is a graph over L

in the ball B
R
�����������
2(Tÿti)
p (x0).
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Supposing that x0 � 0 and that L is he1i in R2, the pieces of curves

gt \ B
R
�����������
2(Tÿti)
p can be represented, at least for small times after ti, as a

graphs of a time dependent function. Moreover, choosing i large enough,

for every x 2 gti
\ B

R
�����������
2(Tÿti)
p , the quantity v(x; t) � hn(x; t) j e2iÿ1 is arbi-

trarily close to one at time t � ti.

As the circle @B ���������������
2(T� eÿt)
p is moving by curvature and, choosing e > 0

small enough, at time t � ti it is contained in the ball B
R
�����������
2(Tÿti)
p , by the

Sturmian theorem of Angenent in [4, Proposition 1.2] and [3, Section 2]

(see [2] for the proof), we have that the number of intersections (which is

two at time ti) between the curve gt and the circle @B ��������������
2(T�eÿt)
p cannot in-

crease in time. On the other hand, the number of intersections can also not

decrease, otherwise the whole curve gt would be definitely contained inside

B ��������������
2(T�eÿt)
p , in contradiction with the fact that the limit of the rescaled

curves egzi
is the unbounded line L. This argument shows that it is not

possible that other parts of the moving curve gt `̀ get into'' the ball

B ��������������
2(T�eÿt)
p at some time t > ti . Consequently, the only reason for which

gt \ B ��������������
2(T�eÿt)
p can possibly stop being a graph is that the tangent vector to

such graph becomes vertical at some time, or, equivalently, that the

function v is not bounded.

Inequality (2.3) excludes this fact if the quantity v at time ti is small

enough. Hence, with a suitable choice of one of the times ti, by esti-

mate (2.4), the curvature of gt for t 2 [ti;T) is bounded in the ball

B ��������������
2(T�eÿt)
p , in particular it is bounded in B ���

2e
p � B ��������������

2(T�eÿt)
p for every

t 2 [ti;T).

By the same argument above, this implies that the curvature is uni-

formly bounded as t! T, contradicting inequality (2.1).

REMARK 4.7. We underline that the key point in getting a bound on

the curvature by means of this argument is the C1
loc-convergence of the

rescaled curves to a line (by the L2 bound on the curvature), which does not

follow in higher dimensions.

Once established that S > 1, getting back to the original rescaling as in

Proposition 4.4, we can assume that the sequence of rescaled curves egri

converges in C1
loc to a closed, convex curveeg1 in R2 with positive curvature.

Hence, as the curve eg1 is compact, the convergence is actually in C1 with

equibounded curvatures in L2.
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Grayson's Theorem is then a consequence of the following proposition,

which clearly implies that the curves gt(qi)
definitively have positive cur-

vature and hence are convex.

PROPOSITION 4.8. There exists a sequence qi % �1 such that the

rescaled curves egqi
converge in the C2-topology to a closed, convex curve

with positive curvature.

PROOF. Fixing i 2 N and letting r � r ÿ ri < 1, as r � ÿ 1

2
log (T ÿ t),

we compute

d

dr

Z
~gr

(ek2�rek2
s) ds� 2(T ÿ t)

d

dt

Z
gt

�����������������
2(T ÿ t)

p
k2 ds�

Z
~gr

ek2
s ds

� 2(T ÿ t)r
d

dt

Z
gt

(
�����������������
2(T ÿ t)

p
)3 k2

s ds

� ÿ
�����������������
2(T ÿ t)

p Z
gt

k2 ds� (
�����������������
2(T ÿ t)

p
)3

Z
gt

(2kkss � k4) ds

�
Z
~gr

ek2
s dsÿ 3(

�����������������
2(T ÿ t)

p
)
3
r

Z
gt

k2
s ds

� (
�����������������
2(T ÿ t)

p
)
5
r

Z
gt

(2ksksss � 7k2k2
s ) ds

�
Z
~gr

h
ÿek2 � 2ekekss� ek4 � ek2

sÿ 3rek2
s�2reks

eksss�7rek2ek2
s

i
ds;

where we used the formulas in Proposition 2.2.

Integrating by parts and by Peter-Paul inequality, we haveZ
~gr

ek2ek2
s ds � 1

3

Z
~gr

@s(ek3)eks ds � ÿ 1

3

Z
~gr

ek3ekss ds � 1

6

Z
~gr

ek6 � ek2
ss ds

and

d

dr

Z
~gr

(ek2 � rek2
s) ds �

Z
~gr

h
ÿek2

s � ek4 ÿ ek2 ÿ 3rek2
s ÿ 2rek2

ss � 7r(ek6 � ek2
ss)=6

i
ds

�
Z
~gr

(ÿ ek2
s � ek4 � 3rek6) ds :
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Thus, the following interpolation inequalities, holding for any closed curve

of length L in the plane (see Aubin [5, page 93]),

kekk4
L4 �CkekskL2kekk3

L2� C

L
kekk4

L2 and kekk6
L6 �Ckeksk2

L2kekk4
L2 � C

L2
kekk6

L2 ;

imply (also by means of the Young inequality)Z
~gr

ek4 ds � 1

2

Z
~gr

ek2
s ds� 1

2

 Z
~gr

ek2 ds

!3

�
 Z

~gr

ek2 ds

!3

� C

L3(egr)

and

3r

Z
~gr

ek6 ds �
 
r

Z
~gr

ek2
s ds

!3

� 2

 Z
~gr

ek2 ds

!3

� C

L2(egr)

 Z
~gr

ek2 ds

!3

:

Hence, as we know that L(egr) � R
~gr

eÿ
jyj2

2 ds � �����
2p
p

and r < 1, we conclude

d

dr

Z
~gr

(ek2 � rek2
s ) ds �

Z
~gr

(ÿ ek2
s � ek2

s=2) ds� C

 Z
~gr

ek2 ds

!3

� C

�
 
r

Z
~gr

ek2
s ds

!3

� C

 Z
~gr

ek2 ds

!3

�C

 Z
~gr

ek2 ds

!3

�
�
r

Z
~gr

ek2
s ds

!3

� C

�C

 Z
~gr

(ek2 � rek2
s) ds

!3

� C ;

for a constant C independent of r � ri and i 2 N.

Integrating this differential inequality for the quantity Qi(r) �R
~gr

(ek2 � (r ÿ ri)ek2
s) ds over the interval [ri; ri � 2d], it is easy to see that

if d > 0 is small enough, we have

Qi(r) � C(d;Qi(ri)) � C

 
d;

Z
~gri

ek2 ds

!
� C(d) ;
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for every r 2 [ri; ri � 2d], as the curves egri
have uniformly bounded curva-

ture in L2. Hence, if r 2 [ri � d; ri � 2d] we have the estimateZ
~gr

(ek2 � dek2
s) ds �

Z
~gr

(ek2 � (r ÿ ri)ek2
s) ds � C(d)

which implies Z
~gr

(ek2 � ek2
s) ds � C(d)� C(d)

d
;

for every r 2 [ri � d; ri � 2d] and a constant C(d) independent of i 2 N.

We can now find as before, using again Remark 4.2, a sequence of

values qi 2 [ri � d; ri � 2d] such that

lim
i!1

1�����
2p
p

Z
~gqi

eÿ
jyj2

2 ek� hy jeni��� ���2 ds � 0 :

and

lim
i!1

1�����
2p
p

Z
~gqi

eÿ
jyj2

2 ds � lim
i!1

m(t(qi)) � S > 1 :

As this new sequence of rescaled curves egqi
satisfies the local length es-

timate of Lemma 4.3 and ek and eks are uniformly bounded in L2, arguing

as in Proposition 4.4 and in the subsequent discussion, we can extract a

subsequence (not relabelled) that converges in C2 to a limit curve which

cannot be a line and hence, by Lemma 4.5, must be a closed curve with

positive curvature. p
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