Conic sheaves on subanalytic sites and Laplace transform
Rendiconti del Seminario Matematico della Università di Padova, Volume 125 (2011), pp. 173-206.
@article{RSMUP_2011__125__173_0,
     author = {Prelli, Luca},
     title = {Conic sheaves on subanalytic sites and {Laplace} transform},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {173--206},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {125},
     year = {2011},
     mrnumber = {2866126},
     zbl = {1239.32009},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2011__125__173_0/}
}
TY  - JOUR
AU  - Prelli, Luca
TI  - Conic sheaves on subanalytic sites and Laplace transform
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2011
SP  - 173
EP  - 206
VL  - 125
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2011__125__173_0/
LA  - en
ID  - RSMUP_2011__125__173_0
ER  - 
%0 Journal Article
%A Prelli, Luca
%T Conic sheaves on subanalytic sites and Laplace transform
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2011
%P 173-206
%V 125
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2011__125__173_0/
%G en
%F RSMUP_2011__125__173_0
Prelli, Luca. Conic sheaves on subanalytic sites and Laplace transform. Rendiconti del Seminario Matematico della Università di Padova, Volume 125 (2011), pp. 173-206. http://www.numdam.org/item/RSMUP_2011__125__173_0/

[1] O. Berni, Laplace transform of temperate holomorphic functions; Compositio Mathematica, 129 (2001), pp. 183-201. | MR | Zbl

[2] E. Bierstone - D. Milmann, Semianalytic and subanalytic sets; Publ. I.H.E.S., 67 (1988), pp. 5-42. | Numdam | MR | Zbl

[3] J. E. Björk, Analytic 𝒟 -modules and applications; Mathematics and its Applications, 247, Kluwer Academic Publishers Group, Dordrecht (1993). | MR | Zbl

[4] M. Coste, An introduction to o-minimal geometry; Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa (2000).

[5] M. Edmundo - L. Prelli, Sheaves on 𝒯 -topologies, arXiv:1002.0690.

[6] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems; Publ RIMS, Kyoto Univ., 20 (1984), pp. 319-365. | MR | Zbl

[7] M. Kashiwara, 𝔻 -modules and microlocal calculus; Translations of Math. Monog., 217, Iwanami Series in Modern Math., American Math. Soc., Providence (2003). | MR

[8] M. Kashiwara - P. Schapira, Sheaves on manifolds; Grundlehren der Math., 292, Springer-Verlag, Berlin (1990). | MR | Zbl

[9] M. Kashiwara - P. Schapira, Moderate and formal cohomology associated with constructible sheaves; Mémoires Soc. Math. France, 64 (1996). | Numdam | MR | Zbl

[10] M. Kashiwara - P. Schapira, Integral transforms with exponential kernels and Laplace transform; Journal of the AMS, 4 vol. 10 (1997). | MR | Zbl

[11] M. Kashiwara - P. Schapira, Ind-sheaves; Astérisque, 271 (2001). | Numdam | MR | Zbl

[12] S. Łojaciewicz, Sur la géométrie semi- et sous-analytique; Ann. Inst. Fourier, 43 (1993), pp. 1575-1595. | Numdam | MR | Zbl

[13] S. Łojaciewicz, Sur le problème de la division; Studia Mathematica, 8 (1959), pp. 87-136. | Zbl

[14] B. Malgrange, Ideals of differentiable functions; Tata Institute, Oxford University Press (1967). | MR | Zbl

[15] B. Malgrange, Transformation de Fourier géométrique; Séminaire Bourbaki, 30, Exp. N. 692 (1987-1988). | Numdam | MR | Zbl

[16] L. Prelli, Sheaves on subanalytic sites; Rend. Sem. Mat. Univ. Padova, Vol. 120 (2008), pp. 167-216. | Numdam | MR | Zbl

[17] L. Prelli, Microlocalization of subanalytic sheaves; C. R. Acad. Sci. Paris Math., 345 (2007), pp. 127-132, arXiv:math.AG/0702459. | MR | Zbl

[18] G. Tamme, Introduction to étale cohomology; Universitext Springer-Verlag, Berlin (1994). | MR | Zbl

[19] L. Van Der Dries, Tame topology and o-minimal structures; London London Math. Society Lecture Notes Series, 248, Cambridge University Press, Cambridge (1998). | MR | Zbl

[20] A. J. Wilkie, Covering definable open sets by open cells; in M. Edmundo, D. Richardson, and A. Wilkie, editors, O-minimal Structures, Proceedings of the RAAG Summer School Lisbon 2003, Lecture Notes in Real Algebraic and Analytic Geometry, Cuvillier Verlag (2005).