A Note on Posner's Theorem with Generalized Derivations on Lie Ideals

V. DE FILIPPIS (*) - M. S. TAMMAM EL-SAYIAD (**)

ABSTRACT - Let R be a prime ring of characteristic different from 2, Z(R) its center, U its Utumi quotient ring, C its extended centroid, G a non-zero generalized derivation of R, L a non-central Lie ideal of R. We prove that if $\lceil [G(u), u], G(u) \rceil \in Z(R)$ for all $u \in L$ then one of the following holds:

- 1. there exists $\alpha \in C$ such that $G(x) = \alpha x$, for all $x \in R$;
- 2. R satisfies the standard identity $s_4(x_1, \ldots, x_4)$ and there exist $a \in U$, $\alpha \in C$ such that $G(x) = ax + xa + \alpha x$, for all $x \in R$.

1. Introduction.

The motivation for this paper lies in an attempt to extend in some way the well known first Posner's Theorem contained in [15]: there Posner proved that if d is a derivation of a prime ring R such that [d(x), x] falls in the center of R, for all $x \in R$, then either d = 0 or R is a commutative ring. Recently in [3] Cheng studied derivations of prime rings that satisfy certain special Engel type conditions: he showed that if R is a prime ring of characteristic different from 2 and d a non-zero derivation of R which satisfies the condition [[d(x), x], d(x)] = 0 for all $x \in R$, then R must be commutative.

Our purpose here is to continue this line of investigation by studying the set $S = \{[[G(x), x], G(x)], x \in L\}$, where G is a generalized derivation

(*) Indirizzo dell'A.: DI.S.I.A., Faculty of Engineering University of Messina, Contrada di Dio, 98166, Messina, Italy.

E-mail: defilippis@unime.it

(**) Indirizzo dell'A.: Department of Mathematics, Faculty of Science Beni Suef University, Beni Suef, Egypt.

E-mail: m s tammam@yahoo.com

2000 Mathematics Subject Classification. 16N60, 16W25.

defined on R and L is a non-central Lie ideal of R. More specifically an additive map $G:R\longrightarrow R$ is said to be a generalized derivation if there is a derivation d of R such that, for all $x,y\in R$, G(xy)=G(x)y+xd(y). A significative example is a map of the form G(x)=ax+xb, for some $a,b\in R$; such generalized derivations are called inner. Our goal is to confirm that there is a relationship between the structure of the prime ring R and the behaviour of suitable additive mappings defined on R that satisfy certain special identities. We will show that if any element of S is central in R, then some informations about the form of the generalized derivation G and the structure of R can be obtained. More precisely we will prove the following:

THEOREM. Let R be a prime ring of characteristic different from 2, Z(R) its center, U its Utumi quotient ring, C its extended centroid, G a non-zero generalized derivation of R, L a non-central Lie ideal of R. We prove that if $[[G(u), u], G(u)] \in Z(R)$ for all $u \in L$ then one of the following holds:

- 1. there exists $\alpha \in C$ such that $G(x) = \alpha x$, for all $x \in R$;
- 2. R satisfies the standard identity $s_4(x_1, ..., x_4)$ and there exist $a \in U$, $\alpha \in C$ such that $G(x) = ax + xa + \alpha x$, for all $x \in R$.

For sake of clearness we premit the following:

- FACT 1. Denote by $T = U *_C C\{X\}$ the free product over C of the C-algebra U and the free C-algebra $C\{X\}$, with X a coutable set consisting of non-commuting indeterminates $\{x_1,\ldots,x_n,\ldots\}$. The elements of T are called generalized polynomial with coefficients in U. Moreover if I is a non-zero ideal of R, then I,R and U satisfy the same generalized polynomial identities with coefficients in U. For more details about these objects we refer the reader to [1] and [4].
- FACT 2. Let $a_1,\ldots,a_k\in U$ be linearly independent over C and $a_1g_1(x_1,\ldots,x_n)+\ldots+a_kg_k(x_1,\ldots,x_n)=0\in T$, for some $g_1,\ldots,g_k\in T=U*_CC\{X\}$. As a consequence of the result in [4], if for any $i,\ g_i(x_1,\ldots,x_n)=\sum\limits_{j=1}^n x_jh_j(x_1,\ldots,x_n)$ and $h_j(x_1,\ldots,x_n)\in T$, then $g_1(x_1,\ldots,x_n),\ldots,g_k(x_1,\ldots,x_n)$ are the zero element of T. The same conclusion holds if $g_1(x_1,\ldots,x_n)a_1+\ldots+g_k(x_1,\ldots,x_n)a_k=0\in T$, and $g_i(x_1,\ldots,x_n)=\sum\limits_{i=1}^n h_j(x_1,\ldots,x_n)x_j$ for some $h_j(x_1,\ldots,x_n)\in T$.

2. The case of Inner Generalized Derivations.

In this section we study the case when the generalized derivation G is inner defined as follows: G(x) = ax + xb for all $x \in R$, where a, b are fixed elements of U.

In all that follows we denote

$$\begin{split} P(x_1,x_2,x_3) &= \Big[\big[a[x_1,x_2] + [x_1,x_2]b, [x_1,x_2] \big], a[x_1,x_2] + [x_1,x_2]b \Big] x_3 \\ &- x_3 \Big[\big[a[x_1,x_2] + [x_1,x_2]b, [x_1,x_2] \big], a[x_1,x_2] + [x_1,x_2]b \Big] \end{split}$$

and assume that R satisfies the generalized identity $P(x_1, x_2, x_3)$.

LEMMA 1. If R does not satisfy any non trivial generalized polynomial identity, then $a, b \in C$ and $G(x) = \alpha x$, for all $x \in R$ and for $\alpha = a + b$.

PROOF. Denote by $T = U *_C C\{x_1, x_2, x_3\}$ the free product over C of the C-algebra U and the free C-algebra $C\{x_1, x_2, x_3\}$. Any element of T is a generalized polynomial with coefficients in U.

Suppose that R does not satisfy any non trivial generalized polynomial identity. Thus

$$\begin{split} P(x_1,x_2,x_3) &= \Big[a[x_1,x_2]^2 + [x_1,x_2](b-a)[x_1,x_2] - [x_1,x_2]^2b, a[x_1,x_2] + [x_1,x_2]b\Big]x_3 \\ &- x_3\Big[a[x_1,x_2]^2 + [x_1,x_2](b-a)[x_1,x_2] - [x_1,x_2]^2b, a[x_1,x_2] + [x_1,x_2]b\Big] \\ &= a\Big([x_1,x_2]^2a[x_1,x_2] + [x_1,x_2]^3b - [x_1,x_2]a[x_1,x_2]^2 \\ &- [x_1,x_2]^2(b-a)[x_1,x_2] + [x_1,x_2]^3b\Big)x_3 \\ &+ [x_1,x_2]\Big((b-a)[x_1,x_2]a[x_1,x_2] + (b-a)[x_1,x_2]^2b - [x_1,x_2]ba[x_1,x_2] \\ &- [x_1,x_2]b[x_1,x_2]b - ba[x_1,x_2]^2 - b[x_1,x_2](b-a)[x_1,x_2] + b[x_1,x_2]^2b\Big)x_3 \\ &- x_3\Big[a[x_1,x_2]^2 + [x_1,x_2](b-a)[x_1,x_2] - [x_1,x_2]^2b, a[x_1,x_2] + [x_1,x_2]b\Big] = 0 \in T. \end{split}$$

Suppose that $\{1, a\}$ are linearly *C*-independent. Since $P(x_1, x_2, x_3)$ is a trivial generalized polynomial identity for R, then

$$([x_1, x_2]^2 a[x_1, x_2] + [x_1, x_2]^3 b - [x_1, x_2] a[x_1, x_2]^2 - [x_1, x_2]^2 (b - a)[x_1, x_2]$$
$$+ [x_1, x_2]^3 b x_3 = 0 \in T$$

that is

$$[x_1, x_2]^2 a[x_1, x_2] + [x_1, x_2]^3 b - [x_1, x_2] a[x_1, x_2]^2$$
$$-[x_1, x_2]^2 (b - a)[x_1, x_2] + [x_1, x_2]^3 b = 0 \in T.$$

This implies that $\{1,b\}$ are linearly C-dependent. In fact, if not it follows that $[x_1,x_2]^3$ is an identity for R, a contradiction. Thus $b=\beta\in C$ and R satisfies

$$[x_1, x_2]^2 a[x_1, x_2] + \beta [x_1, x_2]^3 - [x_1, x_2] a[x_1, x_2]^2 + [x_1, x_2]^2 a[x_1, x_2]$$

which is a non-trivial generalized identity, since we suppose that $\{1,a\}$ are linearly C-independent. This contradiction says that $\{1,a\}$ are linearly C-dependent, that is $a=\alpha\in C$.

Therefore R satisfies the generalized identity

$$\begin{aligned}
& \left[[x_1, x_2](b+\alpha)[x_1, x_2] - [x_1, x_2]^2(b+\alpha), [x_1, x_2](b+\alpha) \right] x_3 \\
& - x_3 \left[[x_1, x_2](b+\alpha)[x_1, x_2] - [x_1, x_2]^2(b+\alpha), [x_1, x_2](b+\alpha) \right]
\end{aligned}$$

that is

$$0 = \left([x_1, x_2]b'[x_1, x_2]^2b' - [x_1, x_2]^2b'[x_1, x_2]b' - [x_1, x_2]b'[x_1, x_2]b'[x_1, x_2] \right.$$

$$+ [x_1, x_2]b'[x_1, x_2]^2b' \right) x_3$$

$$- x_3 \left([x_1, x_2]b'[x_1, x_2]^2b' - [x_1, x_2]^2b'[x_1, x_2]b' - [x_1, x_2]b'[x_1, x_2]b'[x_1, x_2] \right.$$

$$+ [x_1, x_2]b'[x_1, x_2]^2b' \right)$$

$$= \left([x_1, x_2]b'[x_1, x_2]^2b' - [x_1, x_2]^2b'[x_1, x_2]b' - [x_1, x_2]b'[x_1, x_2]b'[x_1, x_2] \right.$$

$$+ [x_1, x_2]b'[x_1, x_2]^2b' \right) x_3$$

$$- x_3[x_1, x_2]b'[x_1, x_2]b'[x_1, x_2] - x_3 \left(2[x_1, x_2]b'[x_1, x_2]^2 - [x_1, x_2]^2b'[x_1, x_2] \right) b'$$

where $b' = b + \alpha$. If $\{1, b'\}$ are linearly C-independent, then

$$-x_3\Big(2[x_1,x_2]b'[x_1,x_2]^2-[x_1,x_2]^2b'[x_1,x_2]\Big)$$

is a non-trivial generalized identity for R, a contradiction. Then $\{1, b'\}$ are linearly C-dependent, that is $b' \in C$ as well as b, and we are done. \square

LEMMA 2. Let $R = M_m(F)$ be the ring of $m \times m$ matrices over the field F of characteristic different from 2, with m > 1, a, b elements of R such that

$$[[au + ub, u], au + ub] \in Z(R)$$

for all $u \in [R, R]$. Then one of the following holds:

- 1) $a, b \in Z(R)$;
- 2) $a b \in Z(R)$ and m = 2.

PROOF. The first aim is to prove that a-b is a diagonal matrix. Say $a=\sum_{ij}a_{ij}e_{ij},\ b=\sum_{ij}b_{ij}e_{ij}$, where $a_{ij},b_{ij}\in F$, and e_{ij} are the usual matrix units. Let $u=[r_1,r_2]=[e_{ii},e_{ij}]=e_{ij}$, for any $i\neq j$. Thus

$$[[ae_{ij} + e_{ij}b, e_{ij}], ae_{ij} + e_{ij}b] = (b_{ji} - a_{ji})(a_{ji} - b_{ji})e_{ij} \in Z(R)$$

that is all the off-diagonal entries of the matrix a - b are zeros.

Let now $\chi \in Aut_F(R)$ with $\chi(x) = (1 + e_{ji})x(1 - e_{ji})$. Of course $\left[\left[\chi(a)u + u\chi(b), u \right], \chi(a)u + u\chi(b) \right] \in Z(R)$, for all $u \in [R, R]$. By calculation we have that

$$\chi(a) = a + e_{ji}a - ae_{ji} - e_{ji}ae_{ji}$$

$$\chi(b) = b + e_{ji}b - be_{ji} - e_{ji}be_{ji}$$

and by the previous argument we also have that $\chi(a-b)$ is a diagonal matrix. In particular the (j,i)-entry of $\chi(a-b)$ is zero, that is $a_{ii}-b_{ii}=a_{jj}-b_{jj}$. By the arbitrariness of $i\neq j$, we have that $a-b=\alpha$ is a central matrix in R and $[[au+ua+\alpha u,u],au+ua+\alpha u]\in Z(R)$, for all $u\in [R,R]$, that is R satisfies

$$\left[\left[a[x_1,x_2]^2-[x_1,x_2]^2a,a[x_1,x_2]+[x_1,x_2]a+\alpha[x_1,x_2]\right],x_3\right].$$

In case m=2 we are done. Thus assume that $m\geq 3$. Suppose that a is not a diagonal matrix, for example let $a_{ji}\neq 0$ for $i\neq j$. Let now $v=[e_{ii},e_{ij}+e_{ji}]=e_{ij}-e_{ji}$. Thus

$$X = \left[av^2 - v^2a, av + va + \alpha v\right] \in Z(R)$$

hence for any $k \neq i, j$, the (k, i)-entry X_{ki} of the matrix X is zero. By calculations we have that

(1)
$$X_{ki} = a_{ki}(a_{ij} - a_{ji}) + a_{kj}(a_{jj} + a_{ii} + \alpha) = 0$$

On the other hand for $w = [e_{ii}, e_{ij} - e_{ii}] = e_{ij} + e_{ii}$ we have

$$Y = [aw^2 - w^2a, aw + wa + \alpha w] \in Z(R) = 0.$$

Again the (k, i)-entry Y_{ki} of the matrix Y is zero, that is

(2)
$$Y_{ki} = a_{ki}(a_{ij} + a_{ji}) + a_{kj}(a_{ij} + a_{ii} + \alpha) = 0$$

By (1) and (2) it follows that

$$-2a_{ki}a_{ii} = 0$$

Therefore we have that if $a_{ji} \neq 0$, then $a_{ki} = 0$ for all $k \neq i,j$. Let $\varphi \in Aut_F(R)$ defined as $\varphi(x) = (1 + e_{kj})x(1 - e_{kj})$. Of course for all $u \in [R,R]$, $\left[\varphi(a)u^2 - u^2\varphi(a), \varphi(a)u + u\varphi(a) + \alpha u\right] \in Z(R)$ Since the (k,i)-entry of the matrix $\varphi(a)$ is equal to $a_{ji} \neq 0$, then by the argument in (3) we have that the (j,i)-entry a'_{ji} of the matrix $\varphi(a)$ is zero. By calculations it follows $0 = a'_{ji} = a_{ji}$, a contradiction. Therefore a must be a diagonal matrix in R. As above, for all $r \neq s$, let $\chi \in Aut_F(R)$ with $\chi(x) = (1 + e_{sr})x(1 - e_{sr})$. Hence also $\chi(a) = a + e_{sr}a - ae_{sr} - e_{sr}ae_{sr}$ must be a diagonal matrix. In particular the (s,r)-entry of $\chi(a)$ is zero, that is $a_{rr} = a_{ss}$. By the arbitrariness of $i \neq j$, we have that a is a central matrix in R, and we are done again.

PROPOSITION 1. Let R be a prime ring of characteristic different from 2. Suppose that a, b are elements of U such that $[[au+ub, u], au+bu] \in Z(R)$, for all $u \in [R, R]$. Then one of the following holds:

- 1) $a, b \in C$;
- 2) $a b \in C$ and R satisfies the standard identity $s_4(x_1, \ldots, x_4)$.

PROOF. By Lemma 1 we may assume that R satisfies the non-trivial generalized polynomial identity

$$P(x_1, x_2, x_3) = \left[a[x_1, x_2]^2 + [x_1, x_2](b - a)[x_1, x_2] - [x_1, x_2]^2 b, a[x_1, x_2] + [x_1, x_2] b \right] x_3$$
$$- x_3 \left[a[x_1, x_2]^2 + [x_1, x_2](b - a)[x_1, x_2] - [x_1, x_2]^2 b, a[x_1, x_2] + [x_1, x_2] b \right].$$

By a theorem due to Beidar (Theorem 2 in [1]) this generalized polynomial identity is also satisfied by U. In case C is infinite, we have $P(r_1, r_2, r_3) \in C$ for all $r_1, r_2, r_3 \in U \bigotimes_C \overline{C}$, where \overline{C} is the algebraic closure of C. Since both U and $U \bigotimes_C \overline{C}$ are centrally closed ([6], Theorems 2.5 and 3.5), we may replace R by U or $U \bigotimes_C \overline{C}$ according as C is finite or infinite. Thus we may assume that R is centrally closed over C which is either finite or algebraically closed. By Martindale's theorem [14], R is a primitive ring having a non-zero socle H with C as the associated division ring. In light of Jacobson's theorem ([10], pag 75) R is isomorphic to a dense ring of linear transformations on some vector space V over C.

Assume first that V is finite-dimensional over C. Then the density of R on V implies that $R \cong M_k(C)$, the ring of all $k \times k$ matrices over C. Since R is not commutative we assume $k \geq 2$. In this case the conclusion follows by Lemma 2.

Assume next that V is infinite-dimensional over C. As in lemma 2 in [16], the set [R,R] is dense on R and so from $P(r_1,r_2,r_3)\in Z(R)$, for all $r_1,r_2,r_3\in R$, we have $\left[[ar+rb,r],ar+rb\right]\in Z(R)$, for all $r\in R$. Due to the infinity-dimensionality, R cannot satisfies any polynomial identity. In particular the non-zero ideal H cannot satisfies $s_4(x_1,\ldots,x_4)$. Suppose that either $a\notin C$ or $b\notin C$, then at least one of them doesn't centralize the non zero ideal H of R, and we will prove that this leads to a contradiction.

Hence we are supposing that there exist $h_1, h_2 \in H$ such that either $[a, h_1] \neq 0$ or $[b, h_2] \neq 0$ and there exist $h_3, h_4, h_5, h_6 \in H$ such that $s_4(h_3, \ldots, h_6) \neq 0$.

Let $e^2=e$ any non-trivial idempotent element of H. For r=exe, with any $x\in R$, we have that $[[aexe+exeb,exe],aexe+bexe]\in Z(R)$. By commuting with (1-e) and then right multiplying by (1-e) it follows $2(1-e)a(exe)^3b(1-e)=0$. Since $char(R)\neq 2$, we have that either (1-e)ae=0 or eb(1-e)=0. If (1-e)ae=0 then ae=eae and bae=beae. On the other hand, in case eb(1-e)=0, we get eb=ebe, and so eba=abea. In any case we notice that the ring eRe satisfies the generalized identity $\Big[\big[[(eae)X+X(ebe),X],(eae)X+X(ebe) \big],Y \Big]$.

By Litoff's theorem in [7] there exists $e^2 = e \in H$ such that $h_1, h_2, h_3, h_4, h_5, h_6 \in eRe$, moreover eRe is a central simple algebra finite dimensional over its center. Since $s_4(h_3, \ldots, h_6) \neq 0$, then $eRe \cong M_t(C)$, for $t \geq 3$. By the finite dimensional case, we have that $eae, ebe \in Z(eRe)$, but this contradicts with the choices of h_1, h_2 in eRe.

3. The proof of the Theorem.

In this final section we will make use of the result of Kharchenko [11] about the differential identities on a prime ring R. We refer to Chapter 7 in [2] for a complete and detailed description of the theory of generalized polynomial identities involving derivations.

It is well known that any derivation of a prime ring R can be uniquely extended to a derivation of its Utumi quotients ring U, and so any derivation of R can be defined on the whole U ([2], pg. 87).

Now, we denote by $\operatorname{Der}(Q)$ the set of all derivations on Q. By a derivation word we mean an additive map Δ of the form $\Delta = d_1 d_2 \dots d_m$, with each $d_i \in \operatorname{Der}(Q)$. Then a differential polynomial is a generalized polynomial, with coefficients in Q, of the form $\Phi(\Delta_j(x_i))$ involving noncommutative indeterminates x_i on which the derivations words Δ_j act as

unary operations. The differential polynomial $\Phi(\Delta_j(x_i))$ is said a differential identity on a subset T of Q if it vanishes for any assignment of values from T to its indeterminates x_i .

Let $D_{\rm int}$ be the C-subspace of ${\rm Der}(Q)$ consisting of all inner derivations on Q and let d and δ be two non-zero derivations on R. As a particular case of Theorem 2 in [11] we have the following result (see also Theorem 1 in [13]):

FACT 3. If d is a non-zero derivation on R and $\Phi(x_1, \ldots, x_n, d(x_1), \ldots, d(x_n))$ is a differential identity on R, then one of the following holds:

- 1) either $d \in D_{int}$;
- 2) or R satisfies the generalized polynomial identity

$$\Phi(x_1,\ldots,x_n,y_1,\ldots,y_n,).$$

Now we are ready to prove our main result:

THEOREM. Let R be a prime ring of characteristic different from 2, Z(R) its center, U its Utumi quotient ring, C its extended centroid, G a non-zero generalized derivation of R, L a non-central Lie ideal of R. We prove that if $[[G(u), u], G(u)] \in Z(R)$ for all $u \in L$ then one of the following holds:

- 1) there exists $\alpha \in C$ such that $G(x) = \alpha x$, for all $x \in R$;
- 2) R satisfies the standard identity $s_4(x_1,...,x_4)$ and there exist $a \in U$, $\alpha \in C$ such that $G(x) = ax + xa + \alpha x$, for all $x \in R$.

PROOF. By Theorem 3 in [12] every generalized derivation g on a dense right ideal of R can be uniquely extended to the Utumi quotient ring U of R, and thus we can think of any generalized derivation of R to be defined on the whole U and to be of the form g(x) = ax + d(x) for some $a \in U$ and d a derivation on U. Thus we will assume in all that follows that there exist $a \in U$ and d derivation on U such that G(x) = ax + d(x). We note that we may assume that R is not commutative, since L is not central. Moreover, since $char(R) \neq 2$, there exists a non-central two-sided ideal I of R such that $[I,I] \subseteq L$ (see p. 4-5 in [8]; Lemma 2 and Proposition 1 in [5]). Therefore $[[G(u),u],G(u)] \in Z(R)$ for all $u \in [I,I]$. Moreover by [13] R and I satisfy the same differential polynomial identities, that is $[[G(u),u],G(u)] \in Z(R)$ for all $u \in [R,R]$.

By assumption R satisfies the differential identity

$$(4) \quad \left[[a[x_1, x_2] + [d(x_1), x_2] + [x_1, d(x_2)], [x_1, x_2]], a[x_1, x_2] + [d(x_1), x_2] + [x_1, d(x_2)] \right] x_3$$

$$- x_3 \left[[a[x_1, x_2] + [d(x_1), x_2] + [x_1, d(x_2)], [x_1, x_2]], a[x_1, x_2] + [d(x_1), x_2] + [x_1, d(x_2)] \right]$$

First suppose that d is not an inner derivation on U. By Kharchenko's theorem [11] R satisfies the polynomial identity

(5)
$$\left[\left[a[x_1, x_2] + [y_1, x_2] + [x_1, y_2], [x_1, x_2] \right], a[x_1, x_2] + [y_1, x_2] + [x_1, y_2] \right] x_3$$
$$- x_3 \left[\left[a[x_1, x_2] + [y_1, x_2] + [x_1, y_2], [x_1, x_2] \right], a[x_1, x_2] + [y_1, x_2] + [x_1, y_2] \right]$$

in particular R satisfies any blended component

$$\Big[\Big[a[x_1, x_2], [x_1, x_2] \Big], a[x_1, x_2] \Big] x_3 - x_3 \Big[\Big[a[x_1, x_2], [x_1, x_2] \Big], a[x_1, x_2] \Big]$$

that is

$$\left[\left[a[x_1, x_2], [x_1, x_2] \right], a[x_1, x_2] \right] \in Z(R)$$

and by Proposition 1 we have that $a = \alpha \in C$. Thus from (5), it follows that R satisfies the polynomial identity

$$\left[\left[[y_1, x_2] + [x_1, y_2], [x_1, x_2] \right], \alpha[x_1, x_2] + [y_1, x_2] + [x_1, y_2] \right] x_3 \\
- x_3 \left[\left[[y_1, x_2] + [x_1, y_2], [x_1, x_2] \right], \alpha[x_1, x_2] + [y_1, x_2] + [x_1, y_2] \right].$$

Since R satisfies a polynomial identity, there exists $M_k(F)$, the ring of all matrices over a suitable field F, such that R and $M_k(F)$ satisfy the same polynomial identities (see [9], Theorem 2 p.54 and Lemma 1 p.89). For $x_1 = e_{22}$, $x_2 = e_{21}$, $y_1 = e_{21}$ and $y_2 = e_{12}$ we obtain

$$[y_1, x_2] = 0, \quad [x_1, y_2] = -e_{12}, \quad [x_1, x_2] = e_{21}$$

and it follows the contradiction

$$\left[\left[-e_{12},e_{21}\right], \alpha e_{21}-e_{12}\right] = 2e_{12} + 2\alpha e_{21} \notin Z(R).$$

Now consider the case when d is an inner derivation induced by the element $b \in U$. Since G(x) = ax + [b,x] = ax + bx - xb = (a+b)x + x(-b) and by Proposition 1, we have that either $a,b \in C$ or $a+2b \in C$ and R satisfies $s_4(x_1,\ldots,x_4)$. In the first case we conclude that G(x) = ax, for $a \in C$; in the second one $G(x) = a'x + xa' + \alpha x$, where a' = -b.

REFERENCES

- K. I. BEIDAR, Rings with generalized identities, Moscow Univ. Math. Bull., 33, n. 4 (1978), pp. 53-58.
- [2] K. I. Beidar W. S. Martindale III V. Mikhalev, Rings with generalized identities, Pure and Applied Math. (Dekker, New York 1996).
- [3] H. CHENG, Some results about derivations of prime rings, J. Math. Res. Expo., 25, n. 4 (2005), pp. 625-633.
- [4] C. L. CHUANG, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., vol. 103, n. 3 (1988), pp. 723–728.
- [5] O. M. DI VINCENZO, On the n-th centralizer of a Lie ideal, Boll. UMI (7)3-A (1989), pp. 77-85.
- [6] T. S. ERICKSON W. S. MARTINDALE III J. M. OSBORN, *Prime nonassociative algebras*, Pacific J. Math., **60** (1975), pp. 49–63.
- [7] C. FAITH Y. UTUMI, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung., 14 (1963), pp. 369–371.
- [8] I. N. HERSTEIN, Topics in ring theory, Univ. of Chicago Press, 1969.
- [9] N. JACOBSON, PI-Algebras, Lecture Notes in Math., vol. 441 (Springer Verlag, New York, 1975).
- [10] N. Jacobson, Structure of rings, Amer. Math. Soc., Providence, RI, 1964.
- [11] V. K. KHARCHENKO, Differential identities of prime rings, Algebra and Logic, 17 (1978), pp. 155–168.
- [12] T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27, n. 8 (1999), pp. 4057–4073.
- [13] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Acad. Sinica, 20, n. 1 (1992), pp. 27–38.
- [14] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), pp. 576-584.
- [15] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1975), pp. 1093-1100.
- [16] T. L. Wong, Derivations with power-central values on multilinear polynomials, Algebra Coll. (4), 3 (1996), pp. 369–378.

Manoscritto pervenuto in redazione il 9 giugno 2008.