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1. Introduction.

In [7] we determined all finite groups with planar subgroup lattices and
also those with planar Hasse graphs. Here a finite lattice L is called planar
(see [4]) if it is possible to draw its Hasse diagram in the plane in such a way
that no two line segments intersect; the Hasse graph L* of L is its Hasse
diagram considered as an undirected graph in the usual way (see §2) and
for a finite group G, the Hasse graph L(G)" of its subgroup lattice L(G) is
also called the Hasse graph of G.

By Kuratowski’s theorem, a finite graph is planar if and only if it does not
contain a subdivision of the complete graph K5 or the complete bipartite
graph K33 as a subgraph (see [2, p. 24]). Figure 1 shows the graphs K5 and
K3 3; asubdivision is obtained from a graph by subdividing some of the edges,

Ks K3

Figure 1
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that is, by replacing the edges by paths having at most their endvertices in
common. We were able to showin [7] that the Hasse graph of a finite groupis
planar if and only if it contains no subdivision of K3 3 as a subgraph.

The aim of the present paper is to determine all finite groups whose
Hasse graph contains no subdivision of K5 as a subgraph; we shall call such
a graph Kjs-free, for short. For p-groups, we obtain the following results.

THEOREM A. Let |G| =p™ where 2 < peP and 5 <neN. Then L(G)"
is Ks-free if and only if G is metacyclic of exponent at least p" 2.

THEOREM B. Let |G| = 2" where 6 <n € N. Then L(G)" is Ks-free if
and only if G is lattice-isomorphic to an abelian group of type (2),
2"1,2), or (22,4), or G is one of the following two groups

G=(a,bla*=b"" =1, =a™!),

G=(a,b|a®=1,0""=a*ab =a ).

The assumption » > 5is needed in Theorem A since for every odd prime p,
there are two groups of order p* with Ks-free Hasse graph which are not
metacyclic. Theorem B holds for n < 5 if one includes in the list the qua-
ternion group Qs of order 2° and all metacyclic groups of order at most 2*
(see Remarks 3.8 and 3.11).

It might be interesting to note that only rather few of these K;-free p-
groups have planar (or Kss-free) Hasse graphs. In fact, we showed in [7]
that for p > 2, a group of order p” has this property if and only if it is either
cyclic or lattice-isomorphic to an abelian group of type (p" 1, p). For p = 2,
the same groups and, in addition, only the dihedral group of order 8, the
quaternion groups Qg and @16, and the semidihedral group of order 16 have
planar Hasse graphs. This latter group is the unique p-group with planar
Hasse graph and non-planar subgroup lattice.

In [7, Lemma 3.2] we showed that the Hasse graph of a cyclic group
C; of order k is Ks-free if and only if it is planar, and that C; has this
property if and only if k is of the form p”, p"q¢™, or p"qr where n,m € N
and p,q,r are primes; here the groups C,» and Cp.g» even have planar
subgroup lattices whereas L(C,,,) is non-planar. Therefore the following
two theorems complete the determination of all finite groups with Ks-
free Hasse graph.

THEOREM C. Let G be a finite nilpotent group which is not cyclic and
not of prime power order. Then L(G)" is Ks-free if and only if G ~ C), x Qs
where 2 < p € P or G ~ C, x Cy x Cq with different primes p and q.
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THEOREM D. Let G be a finite group which is not nilpotent. Then L(G)*
18 Ks-free if and only if G = PK where P< G and K is cyclic, and one of the
Sfollowing holds (where p, q,r are pairwise different primes and n € IN).

(@) |P|=p,|K|=q"and |K : Cx(P)| < ¢.

(b) 1P| = p and |K| = qr.

(¢) |P| = p? Pis cyclic, |K| = q" and |K : Cx(P)| = q.

(d) |P| = p? P is elementary abelian, |K|=q", |K : Cx(P)| < ¢,
|Ck(P)| < q, and QK /Ck(P)) operates irreducibly on P.

(e) |P|=p? Pis elementary abelian, |K| = qr and both minimal
subgroups of K operate irreducibly on P.

® |P| = p?, P is nonabelian of exponent p, |K| = q and K operates
wreductbly on P/®(P).

(g P~Qs, |K|=80r9 G/Cg(P) ~SL(Z2,3).

(h) |P| = p*, P is abelian of type 0, p?), |K| = q and K operates
wrreducibly on P/®D(P).

Again, by [7], only few of these groups have planar Hasse graphs, namely
thosein (a) of Theorem D for which |K : Cx(P)| = q and those in (d) for which
|K| = q. These groups, in fact, also have planar subgroup lattices whereas for
all other groups in Theorems C and D, the Hasse graph is non-planar.

2. Notation and Preliminary Remarks.

In the whole paper, G is a finite group and p, q are primes. We denote by
L(G) the subgroup lattice of G; so L(G) = {X | X < G} with the set-theo-
retical inclusion as relation and we write X NY for the intersection and
X UY for the join of the subgroups X, Y of G. Further we write X< Y if X
is a maximal subgroup of Y.

For n € N and a p-group G, we let

QG =xecG|x" =1)
U,(G) = @ |x € @)
and we denote by
C,, the cyclic group of order n
Dy the dihedral group of order 2" (n > 2)

Q2 the quaternion group of order 2" (n > 3)
Son the semidihedral group of order 2" (n > 4).

Further notation is standard (see [3] and [5]).
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All graphs considered are undirected graphs. In particular, we define
the Hasse graph L* of a finite lattice L to be the (undirected) graph with
vertex set L in which the unordered pair {«x,y} of elements of L is an edge
if and only if one of «,y is a lower neighbour of the other. The degree of a
vertex is the number of edges in which it is contained. For a group G, the
Hasse graph L(G)" of its subgroup lattice L(G) is also called the Hasse
graph of G.

A path y (of length ») from u to v in L* is a sequence of elements
X0, %1, . .., %y, of L such that xy =u, x, = v and for all ¢ there is an edge
between x; and ;1 in L*, that is, x; is a lower or upper neighbour of «;_ ;.
We usually write y = (x, . .., 2,) for such a path and call the vertices dif-
ferent from xy and «x, the internal vertices of y. Finally, a collection
{715+, 7} of paths is called internally disjoint if each internal vertex of
7 @=1,...,m) lies on no y; (j # ).

If Q is a subgraph of L* which is a subdivision of K5, then there
exist 5 points x1,...,25 € Q and an internally disjoint set of 10 paths
Vij from x; to x; (1 <4 <j <5)in @, and hence in L*. Conversely, every
subset I' = {x1,...,25} of L with |I'| =5 together with an internally
disjoint set of paths y; from x; to x; 1 <i<j<5) in L* yields a
subgraph Q of L* which is a subdivision of K;. We shall call such a set
I’ a K5-set in L* and the members of I are called the Ks-points of Q.
They are uniquely determined by Q since all the other vertices of Q
have degree 2 in Q.

If we want to show, for a certain group G, that L(G)* has such a sub-
graph Q, we usually only give a Ks-set I" and describe the nontrivial paths
7i; between the members of I'; the trivial ones being edges or, for example,
one of the p + 1 possible paths of length 2 between the bottom and the top
of an elementary abelian section of order p? in G.

Finally, as mentioned in the introduction, we call a graph Ks-free if it
contains no subdivision of K5 as a subgraph.

3. p-Groups and Subdivisions of K.
In this section we shall determine all finite p-groups whose Hasse
graphs are Kj-free. We start with the following trivial, but fundamental,

result.

LEmMA 3.1.  If G is elementary abelian of order p?, then L(G)" contains
a subdivision of Ks.
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Proor. Let G = (a) x (b) x (c) where o(a) = 0(b) = o(c) = p and let
I :={1,(b),(a,b),(b,c),G}. There are five edges between these points in
L(G)" and the other five paths needed are (1, {abd), (a,b)), (1, (bc), (b, c)),
1, (abe), (ab,c), G), (b, (b,ac),G), and ({a,b), (a), {a,c),(c),(b,c)). So I
together with these paths yields a subdivision of K5 in L(G)". O

REMARK 3.2. By [7, Theorem A, all other groups of order p* have
planar subgroup lattices except the nonabelian group H of exponent
p (p > 2). Since all subgroups of order p different from Z(H) have degree 2
in the graph L(H)", it is easy to see that L(H)" is Ks-free. So the ele-
mentary abelian group is the unique group of order p® whose Hasse graph
contains a subdivision of Kj. O

Lemma 3.1 shows that if G is a p-group with K5-free Hasse graph, then
every subgroup of G is generated by two elements. Groups with this
property were studied by Blackburn [1]; most of them are metacyclic.

Lemma 3.3. Let |G| = p", n > 5. If L(G)" is Ks-free, then G is meta-
cyclic and has exponent at least p" 2.

Proor. We show first that G is metacyclic. By Lemma 3.1 and [1, The-
orems 4.1 and 5.1], this is true except possibly when G is a 3-group of maximal
class. (Blackburn has a weaker assumption in his Theorem 4.1, so he gets a
further possibility for p > 2, namely a group G of order p® in which Q(G) is
nonabelian of order p* and exponent p and G/Q(G) is cyclic. However, if we
take x € G such that G = (x)Q(G) and a maximal subgroup S of G contain-
ing x, then ®(S) is a cyclic normal subgroup of order p? in G and so
D(S)QAG)/D(S) N 2(G) is elementary abelian of order p3.) So suppose, for a
contradiction, that G is a3-group of maximal class. Then G has afactor group of
order 3° which is also of maximal class. We show that the Hasse graph of such a
group contains a subdivision of K5; this will be the desired contradiction.

So let Gy be of order 3° and class 4. Then it is well-known [3, pp. 370-371]
that Gy has normal subgroups G; with Gy > G; > G2 > G3 > G4 > 1 such
that G is metacyclic, G3 = Q(G1) = ®(G1) and G2 = (Gy)' is abelian. Let M
be a maximal subgroup of Gy such that M # G7. Then M has maximal class
[3, p. 374] and so &(M) = G3 since Gy has only one normal subgroup of
order 32. Similarly, &(G2) = G4 = Z(Gy). If M /G4 would contain a cyclic
subgroup H/G, of order 32, then H would be abelian and hence
H NGy < Z(M), acontradiction since M has maximal class. Thus M /G4 has
exponent 3. Now we claim that I' := {M,G;,G2,G3,G4} is a Kjz-set in
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L(Go)*. Here we use 3 nontrivial paths, namely (M, Gy, G1), M, M1, Mz, G4)
with maximal subgroups M; # Gz of M and Mz # G3 of My (which exist
since M /G4 has exponent 3), and (G1,S®(G1), S, 2(S),1,G4) where S is a
eyclic subgroup of order 32 of G not contained in Gz and not containing G4
(which exists since Q(G1) = &(Gy)). In addition, 4 paths are edges and in
the elementary abelian factors M /Gs,G1/Gs, and Gg/G4 there are inter-
mediate subgroups not yet used. So we get a subdivision of K5 in L(Gy)”
and this completes the proof that G is metacyclic.

It remains to be shown that expG > p" 2. So suppose, for a contra-
diction, that exp G < p"~3. Since G is metacyclic, G = NX where N < G and
N and X are cyclic. Then [IN:NNX|=|G:X|>p® and | X: NnX|=
=|G:N|>p® So G/NNX contains a subgroup isomorphic to a semi-
direct product of a eyclic group N; of order p? by a cyclic group X; of order
p3. For p > 2, such a group has modular subgroup lattice and is therefore
lattice-isomorphic to an abelian group of type (p°, p?) [5, 2.3.1 and 2.5.9].
Forp =2, AutCs is elementary abelian of order 4 and hence X; induces an
automorphism of order at most 2 in Ny. So to get a contradiction, we show
that the Hasse graph of a semidirect product H = (a)(b), where (a)< H,
o(a) = o(b) = p* and b” € Cy(a), contains a subdivision of K5. For this let
I':={H,,...,Hs} where H;=(a""), H,= (a” b"), Hs= (a?,b"),
Hy = (a?,b") and H5 = (a, b"). Clearly, H; is abelian of type (p*, p*) and we
have 4 edges {H;, H;.1}, 2 nondiagonal paths (Hi, (a?), (a), (a,b""), H5)
and (Hs, (a”,bP), Hy), 3 diagonal paths (Hy, (a?b""), Hs), (Hs, (ab?), Hs)
and  (Hy, 1, (a”'b7), (aPbP), (a”’,aPbP),Hy), and finally the path
(Hz, (b7°), (bP), (b, (aP”,b), (a?, b), H, H5). So L(H)" contains a subdivision
of Ks. But L(G)" has a subgraph isomorphic to such an L(H)", a contra-
diction. Thus exp G > p"~2. O

For p > 2, the converse of Lemma 3.3 also holds. To prove this, we need
some preliminaries which will also be used in the case p = 2.

DEFINITION 3.4. Let G be a group.
(a) We denote by Ls(G) the set of all subgroups H of G for which
there exists a Kxs-set I in L(G)* such that H € I".
(b) For every subset £ of L(G) containing L5;(G) we define the graph
L in the following way: the set of vertices of £ is £ and a two element subset
{H, K} of L is an edge if and only if there exists a path (X, ..., X,) in L(G)"
such that Xo = H, X, = Kand X; e L(G)\ Lforalli=1,...,r — 1.

Then we have the following trivial result.
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LEMMA 3.5. Ifet Ls(G) C L CL(G). If I is a Ks-set in L(G)", then it is
also a Ks-set in L.

Proor. Let I'={Hi,...,Hs}. Since L5(G) C L, clearly I C L. Fur-
thermore there exist internally disjoint paths y; from H; to H; in
LG 1 <i<j<5b). If we remove in these paths all the elements
)A( € L(G)" \ L, we get intgrnally disjoint paths };; from H; to H; in the graph
L. Thus I' is a Ks-set in L. O

LEMMA 3.6. Letp € P, 2 <m € Nand G = {a) x (b) where o(a) = p™
and o(b) = p?. Then L(G)" is Ks-free.

Proor. Let A:=(a),B:=(b) and L:={A; x B;|0<i<m, 0<j<2}
where A; := (a”" ') is the subgroup of order p’ of A and B; := (b”" ') is the
subgroup of order p’ of B. We want to apply Lemma 8.5 with this lattice £ and
therefore have to show that Ls(G) C L.

For this let H € L3(G) and suppose first that G/H is cyclic. Since every
element of L5(G) clearly has degree at least 4 in the graph L(G)", it follows
that H is not cyclic. Suppose, for a contradiction, that H has type (p*, p) for
some k > 1. If k = 1, then H = Q(G) and G/H would not be cyclic. Thus
k > 2 and H has exactly one noncyclic and p cyclic maximal subgroups.
There are 4 internally disjoint paths from H to the other K5-points of a K-
set in L(G)". Since G/H is cyclic, at least two of these paths have to use
cyclic maximal subgroups of H, at most one of these can go on to @(H). So
at least one path has to stop at a maximal cyclic subgroup X of H or to go on
to a subgroup Y # H covering X. In the first case, X € L5(G) and again
there exists Y # H covering X. Clearly, Y is cyclic; otherwise Q(G) <
<YNH =X, a contradiction. Hence X = &(Y) < &(G) (see [3, p. 269])
and so H = XQ(G) < &(G); but this contradicts the fact that G/H is cyclic.
Thus H cannot have type (p*, p) and since G is abelian of type (™, p?), the
type of H must be (p*, p?) for some k > 2. Therefore H contains the unique
subgroup Q2:(G) of type (p%,p?) of G. We have shown:

(1) If H € L5(G) and G/H is cyclic, then Q:(G) < H.

It follows that H = A; x B for some ¢ > 2 and so H € L. Since L(G) is
self-dual [5, p. 454], (1) also implies that a cyclic subgroup K in L5(G) is
contained in O2(G) and hence K = A; € £ (where ¢ < m — 2). Finally, if
neither H nor G/H is cyclic, then Q(G) <H < &(G) and hence
H=A; x By € L (where 1 <1t <m —1). So we have shown that

(@) Ls(G) C L.
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We now determine £. By Definition 3.4, every edge in L(G)" between
two elements of £ is also an edge in £. Furthermore, every elementary
abelian section A;,; x Bj;1/A; x Bj (0 <1< m, 0 <j < 2)yields an edge
between A; x Bj and A; 1 x Bj,1. Finally, there is an edge between A; and
A; 2 x B(0 <17 <m —2) since there is a diagonal path in the factor group
Ai+2 X B/z4Z ~ Cp2 X sz given by

(<apm,—i>’ <apm—i—1 bp>7 <ap

m—i—2 m—i—2

by, (@b, b7, (@) x (b)).
We claim that there are no more edges in £:

(3) The edges {AZ X BjaAi-H X BJ} @ < m), {AZ X Bj,Ai X Bj+1}
(j < 2), {Al X Bj,AiJrl X Bj+1} (Z <m, Aj < 2), and {Ai;Ai+2 X B}
(t < m — 2) are all the edges of the graph L.

For this, let H, K be in £ with H # K and let (H, X3, ..., X,, K) be apath
in L(G@)" such that X; € L(G) \ £ for all i (so that {H, K} is an edge in L).
Clearly, we may assume that » > 1 and we suppose first that H = A;, for
some k. Then k <m —1; and if k=m —1, it follows that » =1 and
K =A,, x By, so that {H,K} is one of the edges in (3). Therefore let
k < m — 2. Then we prove by induction on ¢ that for i =1,... 7,

() H< X; <ApoxB=:1,
() AnX; =H=HBnX; if X; is cyclic, and
() X;< L if X; is not cyclic.

This is clear for ¢+ = 1. So suppose it holds for some ¢ < » and consider
first the case that X; is cyclic. If X;,1< X;, then by («), H < X;,1 and since
X1 € L, we have that H < X; ;. Since L(X;) is a chain, () holds for X; ;.
If X;< X;;1 and X4 is cyclic, then again X; ; satisfies (f) since X; does;
furthermore, X;,; < Ay, x B since o(b) = p?. Finally, if X;< X;,; and
X;;1 is not cyclic, then X;,1 =X;Q2(G) <L. Furthermore, since
X1 # A1 x By, we have |X; : H| = p? and so X;,;< L. Now suppose
that X; is not cyclic. Then Q(G) < X; and since X; ¢ £, we have
(@) £ X; and X; £ &(G); in particular, G/X; is cyclic. So if X;< X;,4, it
follows that X; 11 < X;@2:(G) < L. By (), X;<L and so X;;; =L, a con-
tradiction. Thus X;, ;< X;< L. Since Aj,2 X By # X; # A1 X B, every
cyclic maximal subgroup of X; satisfies (f) and the only noncyclic maximal
subgroup of X; is @(L) = Ay,1 x By € L. So we have shown that () - (y)
hold. If X, is cyclic and |X, : H| = p?, then (B) shows that neither &(X,.)
nor X, Q(G) belong to £. Thus | X, : H| = p and K = X,Q(G) = A1 X B;.
If X, is not cyclic, then by (y), X, is one of the p — 1 maximal subgroups
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different from Ay o x By and Ay,; x B of L. Then G/X, is cyclic and it
follows that K = L or K = &(L) = Ap1 X By. In all cases, {H, K} is one
of the edges in (3).

Since L(G) is self-dual, the above argument also covers the case that
H = A, x Bforsome k. It remains to consider the case that H = A;, x B; for
some k. Here,if k =0ork =m,thenr=1and K =A; x Bor K = A,,_1,
respectively. So suppose that 1 <k < m — 1. Again using the duality of
L(G), we may assume that X is a cyclic maximal subgroup of A;, x By. Then
d(X7) = Aj_1 and so either K = A;,_; or (A;_1,X1,...,X,, K) is one of the
paths considered above. In the latter case, K is one of the groups Ay,
A1 X By, Ar1 X B, as we have shown; so {H, K} is one of the edges in (3).

We finally show that the graph

@) Lis planar.

For this we just map the element A; x B; of £ to the point (j,7) in RE.
Then we connect pairs of points of the form {(r,s),(r,s+ 1)},
{(r,s),(r +1,8)}and {(r,s), (* + 1, s + 1)} in the obvious way by straight line
segments. Finally we have to connect the points (0, s) with (2, s + 2) and we
can do this using the straight line segment from (0,s) to (— 2s — 2, —s — 2)
together with the lower half of the circle with center ( — s,0) and radius
(s + 2)v/2. Since these circles do not intersect, thisis a planar representation
of the graph £; a similar one is shown in Figure 2 for m = 4.

Figure 2
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It is obvious that Lemma 3.6 follows from (4) and Lengma 3.5. For, if
L(G)" would contain a subdivision of K5, then so would £; but a planar
graph contains no subdivision of K. O

Now we prove Theorem A; we also determine the occurring groups.

THEOREM 3.7. Let |G| = p" where2 <p € Pand5 <n € N. Then the
following properties are equivalent.

(@) L(G)" is Ks-free.

(b) G is metacyclic and expG > p

(¢) G iseither abelian of type (p"), ("1, p), or (p
of the following nonabelian groups:

(c4) G={a,b|a? fbpzl, a’ = al*

n—2

"2 p?), or G is one

n—1 n -2

o

n—2 n

(c5) G={a,b]|a? *bpzl,a—a )
(c6) G=(a,b|a? " =b" =1, a® = a'™"™"),
c?) G=(a, b|ap2 b =1, ab —a1+p>

€8 G=(a,b|a” =1, 0" =a”, ab = alt?).

Proor. By Lemma 3.3, (a) implies (b), and that (c¢) implies (b) is ob-
vious. So suppose that (b) holds. Then again by Iwasawa’s and Baer’s the-
orems [5, 2.3.1 and 2.5.9], since p > 2, L(G) is modular and therefore is
isomorphic to the subgroup lattice of an abelian p-group which clearly also
has exponent at least p” 2. Thus (a) follows from Lemma 3.6 and [7, The-
orem A]. Furthermore, G is one of the groups in (c) if expG > p*~ L. If
exp G = p" 2 and G has a cyclic normal subgroup (a) of order p"~2, then by
[5,2.3.11], (@) has a complement (b) in G and G is abelian or the group in (cb)
or (c6). Finally, suppose that expG = p” 2 and G has no cyclic normal
subgroup of order p” 2. By [5, 2.3.18] there are an abelian normal subgroup
A, an element b of order p"2 in G and s € N such that G = A(b) and
a’ = a'*?" for all a € A. Then |A:AN ()| =|G: (b)| =p*> and since
G' £ (b), it follows that s = 1 and A/A N (b) is eyclic. So x = x® = x'*? for
() = AN (b) and hence |A N (b)| < p. It follows easily that G is the group in
(c7) or (c8). O

For p > 2, Theorem 3.7 gives the groups of order p" with Ks-free Hasse
graphs if n > 5. Of course, it is not difficult to determine also the groups of
order p* with this property. We give the result without proof.

REMARK 3.8. Let |G| = p*, p > 2. Then L(G)" is Ks-free if and only if
G is metacyclic or one of the following groups:
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@ G={(x,yz|al=yP= P =1=1y,z],y" =yl 2" = 2Y),

0) G=(u,y.z|a0 =y =2 =1=[y,2,y" = yzP,2" = zy)
where p > 5 and s is a quadratic nonresidue modulo p,

(© G=(x,y,z |y =2"=1=[y,2],2° =22, 94 =yz73,2" = zy).

We turn to the case |G| = 2". Here, for simplicity, we shall prove our
main result only for » > 6. But for this, we first have to study certain
groups of order 2°.

LemMa 3.9.  If G is a dihkedral or semidihedral group of order 2° or if
G = (a,b|a®=0b*=1,a" = a™1), then L(G)" contains a subdivision of K.

Proor. Suppose first that G ~ Dss or G ~ S3. Then in both cases, G
has exactly three maximal subgroups A, D, M such that A = (a) is cyclic,
D ~ Dy and M is quaternion or dihedral; furthermore Z(G) = (a®) and
G/Z(G) ~ Dss. Let I := {Z(G), (a*),U,V,D} where U and V are the two
dihedral subgroups of order 8 of D. Since U NV = (a*), we see that there
are 5 edges in L(G)" between members of I'. Further obvious paths are
((a*), (a?),D) and (D,G,M,M;,M>,Z(GF)) with noncyclic M;< M and
(a*) # My< M. Since U/Z(G) and V/Z(G) are elementary abelian of or-
der 4, there are trivial paths (Z(G),U;,U) and (Z(G),V1,V) with
U, # (a*) # V1 and there are further noneyelic maximal subgroups Us of U
and V2 of V. So we finally get a path (U,U;,X,1,Y,V,, V) with
|X| =1Y| =2and X # Z(G) # Y. All these paths are internally disjoint and
so I' is a Ks-set in L(G)".

Now let G = (a,b|a® =b*=1,a® =a'). Then Z(G) = (a*,b?) and
G/(b*) ~ D14. Furthermore G has three maximal subgroups M = (a) x (b?)
and My, My for which M;/(b?) ~ Dg (i = 1,2). Clearly &(G) = M; N My =
= (a?,b?) and we let I" := {M1, M3, &(G), Z(G), (b?)}. This time there are 4
edges between members of I, two trivial paths from M; to Z(G) and a third
noneyelic maximal subgroup H; in M; which yields a path from M; to (b?) for
i = 1,2. The final two paths are (M1, G, M) and ((b%), 1, (a*), (a?), D(G)). So
I is a Ks-set in L(G)". O

LeEmMA 3.10. Let 6 <n € N and suppose that G is a nonabelian group
of order 2" such that L(G)* is Ks-free. Then G is one of the following groups.

@ G=(ab|a® =02 =1,a" = a2
) G={a,b|a® " =bt=1a° =a 2"
© G={(a,b|a?” =b*=1,ab = a*2")
d G=(a,b|a*=b*"=1,a> =a™)

€ G={(a,b|a®=1,0""=a*ab =a?)
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PROOF. By Lemma 3.3, G is metacyclic and has exponent at least 22
If exp G = 2”71, then either G is the group with modular subgroup lattice in
(a) or G is dihedral, quaternion, or semidihedral [3, p. 90]. In the latter three
cases, G/Z(G) ~ Dy, which is impossible by Lemma 3.9 since n > 6. Thus
G satisfies (a).

So let exp G = 2" 2. Since G is metacyclic, there exists N < G such that
N = (a) is cyclic and G = N (x) for some x € G. Consider first the case that
no such N has order 2" 2 and let H = N(x?). Since a” =a’ with
r = 1(mod 4), L(H) is modular [5, 2.3.4] and since H is generated by two
elements of order at most 2”3, it follows from [5, 2.3.5] that exp H < 2"3.
Hence there exists b € G\ H such that o(b) = 2"~2. Then G = N(b) and
IN:NN ()| =|G: (b)| =4. Clearly, a® =a' for some t€ N and if
t = 1(mod 4), then [a, b] € (b) and (b) < G which would contradict our as-
sumption in this case. So ¢ # 1(mod4) and it follows that |[N N (b)| < 2.
Thus either |[N| = 4 and G is the group in (d) or [N| =8, v = a* and
a’ = a1 or a® = a3. In the latter case, (ab? ")’ = a302"" = (@b? )" and
we may replace a by ab®" to obtain the group in (e).

It is left to consider the case that G = N(x) where N = (a)< G and
o(a) = 2"2, Again a® = o' for some t € N and if ¢ = 1(mod 4), then by [5,
2.3.4], L(G) is modular. Since expG > 2%, G is not hamiltonian; then [5,
2.3.11] implies that N has a complement (b) in G. Thus G is one of the
groups in (b) or (c).

Solet t £ 1(mod 4). Then again [N N (x)| < 2 and we show that this case
cannot occur. If x induces an automorphism of order 2 in N, then a® = a~!
or a* = 2" and so G/(x2) is a dihedral or semidihedral group of order
21 or 2" 2, This contradicts Lemma 3.9 except when n =6 and
NN {(x) # 1. But in this case, G/(a®) is the third group of order 2° in
Lemma 3.9, again a contradiction. Thus & induces an automorphism of
order 4 in N. Since AutN has only two cyclic subgroups of order 4 [3,
p. 84] and ¢ # 1(mod 4), it follows that a® = ¢ 1*2"" for b=w or b = 2~ 1.
Then (ab)! = a2 " b%; s0if N N (b) # 1, we have (ab)* = 1 and can replace b
by ab. Thus we may assume that N N (b) = 1. Then G/(a?" ", b%) is semi-
dihedral of order 2" 2 and Lemma 3.9 implies that n=6. So
G={(a,b|a®=b*=1,a" =a®) and G has the following maximal sub-
groups: H := (a,b®) has modular subgroup lattice, S := (a?,b) and
T := (a?,ab). Put W := Q(H) = (a*,b?) and Z := Z(G) = (a®) and let
I :={Z,W,®(G),S,T}. There are 3 edges (connecting &(G) to W, S, T)
and 4 obvious paths (S,G,T),(Z, Z({b?),W),(Z,(a*), (a?),d(G)) and
(Z,1,(b%), (b), (a®,b), (a*,b),S). Since G/W ~ Dg, there are trivial paths
(S,S1,W) and (T, Ty, W) with T} # &(G) # S1 # (a*,b). Finally, (ab)* =
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= 0'2b? and so if X = ((ab)*), then T/X ~ Dg and Z< X. Thus there exists
a noncyclic subgroup T2/X of order 4 with Ty #T; and a path
(T, Ts,T3,X,7Z) so that all the paths considered are internally disjoint. So
L(G)" contains a subdivision of K, a contradiction. O

Proor orF THEOREM B. Let |G| = 2" where 6 <n € N. Again by [5,
2,3.1 and 2.5.9], the groups in (a) — (¢) of Lemma 3.10 have modular sub-
group lattice and are therefore lattice-isomorphic to the abelian groups
mentioned in Theorem B. So if L(G)* is Ks-free, then by Lemmas 3.3 and
3.10, G is one of the groups given in this theorem. Conversely, if G is lat-
tice-isomorphic to an abelian group of type (2"), (2"1,2), or (2"~2,4), then
by Lemma 3.6 and [7, Theorem A], G is Ks-free.

So, finally, let G be one of the other two groups given in Theorem B.
Then in both cases, v* € Z(G); let (b?) =: Z and H := (a,b?). Then H is
abelian of exponent 2”3 and hence there exists a complement (c) to Z in H;
so H = Z x (c) with o(c) = 4.

Clearly, G/Z ~ Dg. So every x € G \ H satisfies #* € Z and (a)(x) = G
since H is the unique maximal subgroup of G containing (a). Then
H = (a)(H N (x)) = (a)(x?) and since x* € Z, it follows that (x?) = Z. Since
every subgroup of G not contained in H contains an element x € G \ H, it
follows that L(G) consists of the subgroups of H, four cyclic subgroups
Xi,...,Xy containing Z as a maximal subgroup, two maximal subgroups
M, and M, different from H, and G.

Now it is easy to see that L;(G) C L(H). For, these cyclic sub-
groups X; have degree 2 in L(G)", G has degree 3, and both M; have
degree 4; however, also M; cannot be a member of a K5-set since two
of the four paths from M; to the other members would have to start
with a cyclic maximal subgroup of M; and then use @(M;), which is
impossible.

Now suppose, for a contradiction, that I is a Ks-set in L(G)". Then by
Lemma 3.5, it is also a Ks-set in £ where £ = L(H). Clearly, L contains
L(H)" and a further edge can only connect two of the three groups
Z,7 x (c?), H since no other subgroup of H is covered by an element of
L(G) \ L(H). Since there are already edges from Z x <02> to Z and to H in
L(H)", the only additional edge is {Z, H}. Let Z be a cyclic 2-group con-
taining Z as a maximal subgroup and consider H = Z x (c) as a subgroup
of index 2 in G := Z x (c). In the subdivision of K5 given by I in L, we
replace the edge {Z,H} — if it appears in one of the paths — by the path
(Z,Z,Z x (¢?),G,H). Then we get a subdivision of K5 in L(G)*; but this
contradicts Lemma 3.6. O
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Asin the case p > 2 it is not difficult to determine the 2-groups of order
less than 26 with Ks-free Hasse graph. Again we give the result without
proof.

REMARK 3.11. Let |G| = 2",n < 5. Then L(G)" is Ks-free if and only if
one of the following holds:
(a) n» <4 and G is metacyclic,
(b) G is one of the groups in Theorem B for n = 5,
(@) G~ Qse.

4. Proof of Theorem C.

It remains to determine the nonprimary finite groups with Ks-free
Hasse graphs. For this, we first look at direct products of lattices.

LEmMa 4.1, Let L = Ly x Ly with finite lattices L;. Then L* contains a
subdivision of K if one of the following holds.

(@) L1 contains L(Cq x Cy) as a sublattice and |Lg| > 3.
(b) L; contains L(Cy x C2) as a sublattice and |Lg| > 2.

Proor. (a) We may assume that L; = L(H) = {1,M,, M2, M3, H}
where |H| =4 and |M;| =2for¢=1,2,3 and that LyisachainA < B < C
of length 2. Then

I' ={H xA,1xB,M; xB,M; x B,H x B}

is a Ks-set in L* since there are 5 trivial paths between members of 1" in the
interval [H x B/1 x B], furthermore 4 obvious paths from H x Ato K x B
via K x A, and finally the path (M; x B,M; x C,H x C,Ms x C,Ms x B).

(b) Here we may assume that L; = L(H) where H = (a) x (b) with
o(a) =4, o(b) = 2 and that Ly, = {0,1} is a chain of length 1. Then

I :={1x0,(a®) x0,(a?0b) x0,(a?®) xI,{a®b) x I}

is a Ks-set in L* since there are 5 edges between members of I” and we
have the further paths (1x0,(a?b)x0, (a? b) x0),(1x0,1x1I,(a®) x1I),
(1 %0, (b)x0, (byxI, (a? b)xI), ((a?)x0,(ab)x0, (ab)xI,HxI, (a?,b)xI),
and ((a?,b) x0, Hx0, (a)x0, (a)xI, (a®) xI). O

There is a similar result for the Hasse graph of a semidirect product of
two groups. This graph contains a subdivision of K5 if a certain smaller
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configuration occurs in the Hasse graph of the complement. We first give
this configuration a name.

DEFINITION 4.2. A (3,6)-gon in a graph is a set of 3 distinet points B, S, T'
together with an internally disjoint set of 6 paths between them, one be-
tween R and S, two between S and T, and three between R and 7.

Since at most one path between two points can be an edge, there are
intermediate points in one of the paths between S and T' and in two of the
paths between R and T (see Figure 3).

LEMMA 4.3. Let G = NK where 1 # N<G and NNK =1. If L(K)*
contains a (3,6)-gon, then L(G)" contains a subdivision of K.

Proor. Let R,S,T be the points of a (3,6)-gon in L(K)*, let
g, 01,02, py1, Po, Py be the appropriate paths from R to S, Sto T, and R to T’
with interior points U,V,W of ds,ps,ps, respectively. For every path
y=(Xy,...,X,), welet y! := (X,,...,Xp) be the path with the same end-
points in opposite direction. The isomorphism theorem for groups implies
that if all the X; are subgroups of K, then § := (NXj, ..., NX,) is a path in
L(G)" and that the set {&, 01, 02, py, po, g} is internally disjoint. Finally, for
every subgroup X of K, we let y(X) = (Xy,X1,...,X,) be a fixed path in
L(®" from X to NX such that X;< X;,; for all i. By Dedekind’s law,
X;=(NnNX;)X and hence X;NK =X for all . This shows that for
X #£Y < K, the paths p(X) and y(Y) are disjoint.

S

Figure 3
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We now let I' := {R,S,T,NR,NT}. There are obvious paths ¢, 1, p;
between R, S, T, y(R) between R and NR, y(T) between T and NT, and p,
between NR and NT. Furthermore, y(S) and ¢! yield a path from S to
NR (via NS), and we get a path from S to NT using ds from S to U, then
»(U), and finally 5 from NU to NT. Similarly we get paths from R to
NT via py, p(V), p, and from 7' to NR via p3 1, y(W), p3 1. Thus I is a K;-set
in L(G)". O

We shall need the following result on groups without (3,6)-gons.

PROPOSITION 4.4. Let K be a group such that L(K)* contains no (3,6)-
gon. Then K has one of the following properties (where p and q are primes
and 2 <n & N).

(a) K 1is cyclic.

() K 1is abelian of type (2",2) or lattice-isomorphic to this group.
(¢) K is elementary abelian of order p* or nonabelian of order pq.
(d) K is isomorphic to Qg, Cy x Cy, or C, x Ca x Cz where p > 2.

ProoF. Let K be a minimal counterexample and suppose first that K isa
2-group. The trivial subgroup 7" and the two noncyclic subgroups R, S of order
4 clearly yield a (3,6)-gon in L(Dg)*. So Dg cannot be involved in K and [5, 2.3.3]
shows that L(K) is modular. Since L(Dg)" is a subgraph of L(Cy x Cs x Cs)*,
K is generated by two elements and so, again by [5, 2.3.1 and 2.5.9], either
K ~ Qg or L(K) ~ L(H)where H is abelian of type (2") or (2", 2"). However,
if Cg X C4 ~ Ho < H, then R = Qz(Ho), T= .Q(Ho),s = 62(H0) would yleld
a(3,6)-gon in L(H)*, a contradiction. It follows that K ~ H ~ C4 x C4 or that
m = 1.Inevery case, K is one of the groupsin (a) — (d), a contradiction. So K is
not a 2-group.

Now suppose, for a contradiction, that there are subgroups A< P < K
such that P/A is elementary abelian of order p? p > 2, or nonabelian of
order pq,p > ¢, p and q primes. Suppose first that P = K. Then since K is a
counterexample, A # 1. Let A < S < K. If S would have a maximal sub-
group B # A, then R = K, T = A and S would yield a (3,6)-gon in L(K)"
with 5 paths inside [K/A] and the sixth connecting S to T via B and 7' N B.
This contradiction shows that all subgroups strictly between A and K are
cyclic of prime power order; since A # 1, it follows that K is a p-group all of
whose maximal subgroups are cyclic. Hence K ~ Qg (see [3, p. 311]), a
contradiction since p > 2.

Thus P < K and the minimality of K implies that A = 1 and that P is a
maximal subgroup of K. Let x € K\ P . If P* =P and x normalizes a
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minimal subgroup M of P, then R =1, T = P together with S = P N (x) if
Pn{x) #1and S = Mif PN {x) = 1yield a (3,6)-gon in L(K)* with 5 paths
inside [P/1], the sixth path being (S, (x), K, T) or (S,S(x), K, T), respec-
tively. This is a contradiction; so if P* = P, then x operates irreducibly on
P. In particular, (x) NP =1;now R=P, T =1 and S = K yield a (3,6)-
gon, again a contradiction. It follows that P* # P. If PN P* # 1, again
R=1 T=P and S =PNP" would yield a (3,6)-gon with sixth path
S, P*,K,T). So, finally, PNP*=1 for all x € K\ P; but then again
R =P, T=1andS = K yield a (3,6)-gon. This is the desired contradiction
which shows that for p > 2, neither C, x C, nor a nonabelian group of
order pq (p > q € P) are involved in K.

It follows that Sylow p-subgroups are cyclic; moreover, Burnside’s
theorem [3, p. 419] implies that K has a normal p-complement. The in-
tersection of all these normal p-complements (2 < p € P)is a normal Sylow
2-subgroup H of K with cyclic factor group. The minimality of K implies
that H is one of the groups in (a) — (d) and K = HC with cyclic group C of
odd order. If C would operate nontrivially on H, then it would also operate
nontrivially on H/®(H) (see [3, p. 275]). So |H/®(H)| =4 and it would
follow that the alternating group A4 would be involved in K. But L(A,)" has
a (3,6)-gon given by R = A4, T =1 and the subgroup S of order 4. This
contradiction shows that K = H x C.

Since K is not a 2-group, C # 1; since K is a counterexample, H is not
cyclic. So |H: ®(H)| =4 and if &(H) #1, then R=H, T = ¢(H) and
S =T x C would yield a (3,6)-gon in L(K)", a contradiction. Thus |H| = 4.
Since K is a counterexample, C' contains a subgroup D ~ C, x C; or
E ~Cp, p and g primes. However, in L(H x D)" we get a (3,6)-gon
R=H, S=D and T = 1 with obvious paths. In L(H x E)" we may take
R=E S=QF)and T = H x S; here, if A, B, C are the three subgroups
of order 2 of H, we have the paths (S,1,A,H,T),(S,A xS,T) and
RAXxR HxRT),R,BxR,BxST),R,CxR,CxS,T) to get a
(3,6)-gon. This is a final contradiction. O

Since one of the three points of a (3,6)-gon has degree at least 5 in
the graph, it is easy to see that the Hasse graphs of the groups in (b) -
(d) of Proposition 4.4 contain no (3,6)-gon and that the cyclic groups
with this property are those with planar subgroup lattice and those
whose order is the product of 4 pairwise different primes. We shall not
need this.

An immediate consequence of 4.1 — 4.4 is the following result on co-
prime direct products which we shall use quite often. First of all, it com-
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pletes the determination of nilpotent groups with K;5-free Hasse graphs,
that is, it implies Theorem C.

LEMMA4.5. Let G = A x Bwhere A # 1 # Band (|A|,|B|) = 1. If L(G)"
is Ks-free, then either G is cyclic or G = P x K where |P| =p and K is
isomorphic to Qg or elementary abelian of order g* or nonabelian of order
qr with pairwise different primes p,q,7.

ProoF. Suppose that G is not cyclic. Then one of the two factors A and
B, say B, is not cyclic. By [6, Theorem 1.1], L(B) contains L(Cs x C3) as a
sublattice. By [5, 1.6.4], L(G) ~ L(A) x L(B) and so Lemma 4.1, (a) shows
that |L(A)| < 2. Thus |A| = p for some prime p and now Lemma 4.1, (b)
yields that L(B) does not contain L(Cy x C) as a sublattice. By Lemma 4.3,
L(B)" contains no (3,6)-gon and so Proposition 4.4 implies that G is one of
the groups in Lemma 4.5 or B ~ C; x Cz x Cz with q # 2 # p. But in this
case, G ~ (C, x Cy) x (Cz x C2) which would contradict Lemma 4.1,(a). O

Proor oF THEOREM C. If L(G)" is K;s-free, then by Lemma 4.5, G is one
of the groups given in the theorem. Conversely, if G = P x Q with |P| = p
is one of these groups, then L(G)* contains only four points of degree at
least 4, namely Z(Q), Q, P x Z(Q),Gif Q@ ~ Qgand 1,Q,P,Gif Q ~ Cy x C,.
Hence there is no Ks-set in L(G)". O

5. Proof of Theorem D.

LEmma 5.1.  Allthe groupsin (a) — (h) of Theorem D have Ks-free Hasse
graphs.

ProOF. In most cases this is rather obvious; in some cases it even
follows already from the fact that there do not exist 5 subgroups of G with
degree at least 4 in L(G)". This, for example, holds if G satisfies (a). For,
then Ck(P) and the subgroups properly containing P x Ck(P) have degree
p+ 1 or p + 2, whereas all other subgroups have degree at most 3; since
|K : Cx(P)| < ¢, there are at most 4 subgroups of degree at least 4. And if G
satisfies (b), then G has precisely 4 subgroups of degree at least 4. If G
satisfies (d), then in addition to Cx(P) and the subgroups properly con-
taining P x Cg(P), also 1,P, and P x Ckg(P) have degree at least 4. But
every path between one of the groups 1, P, or Cx(P) and one of the groups
containing P x Ck(P) has to use Cx(P) or P x Cg(P). Since we would need
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at least 4 paths of this type for a Ks-set, it follows that L(G)" is Ks-free.
Similarly, if G satisfies (e), then the only subgroups of degree at least 4 are
1,P,PQ, PR, G where K = QR with |Q| = q and |R| = r; however, there is
no path from P to G which does not use PQ, PR, or 1. Finally, if G satisfies
(f), then ¢ fp — 1 since K is irreducible on P/®(P). Hence K centralizes
@(P) and it follows that 1, &(P), P, G are the only subgroups of degree at
least 4 in L(G)".

Now suppose that G satisfies (c). Then subgroups of order ¢" have degree
2 and subgroups of order pg” of G have degree p + 2 in L(G)*; however, all
but 2 of the paths from such a subgroup to the other members of a K;5-set
would have to start with a eyclic subgroup of order ¢ and then use Cx(P),
which is impossible. So if we let H := P x Cg(P), it follows that L5(G) C
C L(H)U{G} =: L. Since Ck(P) < (x) for every x € G \ H, the edges of
L are the edges of L(H)" together with {H,Cx(P)},{H,G},{Ck(P),G}
and {Q(P) x Cx(P),G}. Thus L is planar and by Lemma 3.5, L(G)" is
Ky-free.

Now let G be the group in (¢g) with |K| = 9. Then there are only 6
subgroups of degree at least 4, namely &(P),P,Cg(P), d(P) x Ck(P),
P x Cx(P), and G. So L5(G) C £ where L is the set of these 6 subgroups. It
is easy to see that P, Cx(P) and G have degree 3 in L. By Lemma 3.5, L(G)*
is Ks-free. The other group in (g) is isomorphic to G/Cg(P).

Finally, suppose that G satisfies (h). Then every maximal subgroup M
of P has degree p + 2; however, all but 2 of the paths from M to a member
of a K5-set would have to start with a cyclic maximal subgroup of M and
then use @(M). This is impossible. Since K is also irreducible on &(P) =
= Q(P), a dual argument shows that also @(M) cannot be a member of a K-
set. Furthermore, @(P)K has degree p? + 2, but again all but 2 paths would
start with cyeclic subgroups of order ¢ and contain 1, which is impossible.
This leaves only 1, &(P), P, G as possible members of L;(G). So there is no
Ks-set in L(G)". O

We now prove in a couple of steps that every nonnilpotent finite group
with Ks-free Hasse graph is one of the groups in (a) — (h) of Theorem D.
First we study groups with a normal Sylow p-subgroup. For this we need
two simple results on small groups.

LEmmA 5.2. Let p,q € P such that p # q and suppose that G = PQ
where P is an elementary abelian normal subgroup of order p?, |Q| = q and
[P, Q] # 1. If L(G)* is K5-free, then Q operates irreducibly on P.
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Proor. If not, then by Maschke’s theorem, P = Py x P; where
P;<G (1=1,2) and P:Q, say, is nonabelian of order pq. Then
I' .= {1,Ps, P, P1Q,G} is a K5-set in L(G)"; here 7 paths are trivial in the
sense of §2 and since p > q, there are further paths (P,P;,P1Q),
(P2, P2Q,Q, P1Q) and (1, Q*, P2Q", G) for some x € P. This contradicts our
assumption. O

LEMMA 5.3. Let G = PK where P< G, |P| = p or p? p does not divide
|K| and Cx(P) = 1. If L(G)" is Ks-free, then |L(K)| < 4.

PrOOF. Suppose, for a contradiction, that |L(K)| > 5. If P is cyclic, we
may assume that |P| = p. Then K is cyclic, so |K| > 8 and hence |P| > 10. If
Pis not cyclic, then by Lemma 5.2, every nontrivial subgroup of K operates
irreducibly on P. Hence |K| is odd and |L(K)| > 5 implies that |P| > 10. In
both cases, Nqo(K) = K; so there are at least 10 complements to P in G and
any two of them intersect trivially (see [5, 4.1.1]).

By assumption, there are pairwise different subgroups H; satisfying
P<H; <G@=1,...,4); let H; =1. We choose 10 pairwise different
complements K; (1 <i<j<5)to Pin G and paths d; in L(Ky)" from
H; N K;j to H; N K;; via the join of the two groups. Then the set of paths
(H;, 04, H;) for 1 <1<y <4 and (H;,0;5) for 1 <1 <4 is internally dis-
joint. So {Hy,...,Hs} is a Ks-set in L(G)", a contradiction. O

LEmMA 5.4.  Let G = PK where P is a normal p-subgroup, p a prime, K
a p'-group and [P,K] # 1. If L(G)" is Ks-free, then there are primes q,r
such that either

(a) K is a cyclic g-group and |K : Cx(P)| < ¢, or
(b) K is cyclic of order qr.
ProoF. Let G be aminimal counterexample. Since then also G/®(P) is
a counterexample [3, p. 275], @(P) = 1 and Lemma 3.1 implies that

(1) |P| = p or P is elementary abelian of order p?.

Let Ky := Cx(P). By Lemma 5.3, |L(K/Kj)| < 4. Since the subgroup
lattice of every noncyclic group contains L(Cs x C3) as a sublattice [6,
Theorem 1.1], it follows that K/Kj is cyclic and that there are primes q,r
such that

(2) K/K, is cyclic of order qr or q" where 1 <k < 3.
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Finally, by Lemma 4.3,
(8) L(K)" contains no (3,6)-gon.

Now suppose first that K/Kj is cyclic of order qr, g # r. Since G is a
counterexample, Ky # 1. By Proposition 4.4, K is cyclic; otherwise
K ~CyxCyxCy and PH with Cy x Co ~ H < K would be a counter-
example of order less than |G|. Let @ and R be the subgroups between K
and K such that |Q : Ky| = ¢ and |R : K| = r. The minimality of G implies
that @ and R satisfy (a) or (b) of the lemma; since K, # 1, it follows that | K|
is a prime and |Ky| # r, say. Lemma 4.3, applied with N = K, yields that
L(PR)" contains no (3,6)-gon; by Proposition 4.4, |P| = p. We claim that
I .= {1,K,,PQ,PR,G} is a Ks-set in L(G)". Here only 3 of the requir-
ed paths are trivial, but, in addition, there are 3 obvious paths
1,P,P x Ky, PQ), (Ky,Q,PQ) and (K, R,PR). Since p > 5, there exist
a,b,c,d € Psuch that K, K* K° K¢, K? are pairwise different. So if we let
S be the subgroup of order r in K, we have 4 further paths
1,8 PS,PR), (1,8°, KyS*, K", G), (Ky,Q°,K°,G) and (PQ,PQNK? K?,
PR N K%, PR). Since any two different conjugates of K intersect in Ky, the
set of these paths is internally disjoint. So I is a K5-set, a contradiction.

It follows that K /K is cyclic of order ¢" where 1 < k < 3. We claim that
k=1and

(4) K is elementary abelian of order ¢* or nonabelian of order ¢t
with ¢ <t € IP.

For this, suppose first that K is a g-group. If £ > 2, then every maximal
subgroup of K would operate nontrivially on P and hence would be cyclic
by the minimality of G. So K would be isomorphic to C; x C; or Qs [3,
p. 311], which would be impossible since k¥ > 2. Thus k¥ =1 and hence
P(K) < Ky. So &(K) < G and the minimality of G implies that ®(K) = 1. By
Lemma 3.1, (4) holds. — Now suppose that K is not a g-group. f K =S x T
with S ~ Cs x Cy and |T'| € P, then the minimality of G would imply that
t=¢q;s0S = Kj and G = PT x S, contradicting Lemma 4.5. Thus Propo-
sition 4.4 implies that (4) holds or that K is cyclic. In the latter case, let Q be
the Sylow g-subgroup of K. Then Lemma 4.3, applied with a ¢g-complement
N in K, yields that L(PQ)" contains no (3,6)-gon; by Proposition 4.4,
|PQ| = pq. It follows that £ = 1 and G = PQ x Kj. Now Lemma 4.5 implies
that |Ky| is a prime; but this is impossible since G is a counterexample.
Thus (4) holds in all cases.

Let @ < K such that |Q| = q and Q # K. By Lemma 4.3, applied with
N =Ky, L(PQ)" contains no (3,6)-gon and Proposition 4.4 implies



120 Roland Schmidt

that |P|=p and PQ is nonabelian of order pg. We claim that
I':={1,P,Ky,K,G} is a Ks-set in L(G)". Since G/K,, G/P and K are
nonabelian of order pq or gt or elementary abelian of order ¢2, 7 of the
required 10 paths are trivial. Furthermore we have paths (P, P x Ky, Ky),
(P,PQ,Q,K) and (even if p = 3 and q¢ = 2, so that G ~ D;2) we may choose
a conjugate K # K to get the final path (1, @, K, G) internally disjoint to
all the trivial paths chosen above. Thus 7" is a Ks-set, a final contradiction.

O

Now we come to the main step in the proof of Theorem D. The following
Lemma shows, for example, that every group with Ks-free Hasse graph
has a Sylow tower and hence is soluble.

LEMMA 5.5. Let G be a finite group such that L(G)* is Ks-free and let
P € Syl ,(G). If P is not cyclic, then PQG.

Proor. Let G be a minimal counterexample and let p be the smallest
prime dividing |G| for which a Sylow p-subgroup P of G is not cyclic and not
normal in G. Clearly, if P < X < G, then P< X and hence

(1) H := Ng(P) is the unique maximal subgroup of GG containing P.

We show next that

(2) G has no normal r-complement (r € P,r | |G|).

This is clear if » # p because P < N < G for such a normal » com-
plement N and this would imply that P < G. So suppose that N is a normal p-
complement. Then for every prime q dividing |N|, there would exist a P-in-
variant Sylow ¢g-subgroup @ of N [5,4.1.3(d)]. Since P is not cyclic, Lemma 5.4
would imply that [Q, P] = 1. Thus[N,P] = land G = N x P,acontradiction.

@) p=2

To see this, let g be the smallest prime dividing |G| andlet @ € Syl ,(G). By
(2) and Burnside’s theorem [3, p. 420], @ is not cyclic. So if ¢ # p, then the
choice of p would imply that @ < G. But then Lemma 5.4 would yield that
[, P] =1 and this would contradict Lemma 4.5. Thus p = ¢q. Now (2) and
Frobenius’ theorem [3, p. 436] imply that there exist Py < P and « € G of
prime power order »"* where 7 # p such that x induces a nontrivial auto-
morphism on Py and hence also on Py/@(Py). By Lemma 3.1, |Py/ ®(Py)| = p?
and sor | p? — 1. Since p < r, it follows that » = p + 1. Thus p = 2.

4) 0:(G)=1.
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Suppose, for a contradiction, that O2(G) # 1 and let N < O2(G) be a
minimal normal subgroup of G. By Lemma 3.1, |[N| < 4. The minimality of
G implies that P/N is cyclic; by Burnside’s theorem, G/N has a normal 2-
complement A/N. By Schur-Zassenhaus [3, p. 126], there exists a com-
plement K to Nin A. If N < Z(A), then K would be a normal 2-complement
of G, contradicting (2). So N £ Z(A), hence |[N| =4 and |A : C4(N)| = 3.
Clearly, C4(N) = N x Cx(N) and P normalizes Cx(N) = O2(A). So Lem-
mas 4.5 and 5.4 imply that Cx (V) = 1. Thus A ~ Ay and if A < B < G such
that |B:A| =2, then Cp(4) =1, again by Lemma 3.1. It follows that
B~ S8, and the minimality of G implies that B =(G. We claim that
I :={1,N,P,P* G} with o(x) = 3 is a K5-set in L(G)". For, we have paths
1,Q,4A,G) with Q = (x),(1,Z(P),S,P) and (1,Z(P"),S*,P*) with S <P
cyclic of order 4, and connect 1 to N via the third subgroup of order 2 of N.
Furthermore, Nq(Q) ~ S3 and therefore P N Ng(Q) =: T has order 2 and
is not contained in N. So we have the path

(P,TZ(P),T,No(@Q), T", T*Z(P"), P")

and, in addition, can take 5 trivial paths inside [G/N] so that all paths are
internally disjoint. Thus I is a Ks-set, the desired contradiction which
shows that (4) holds.

(5) If S, T € Syl2(G) such that S £ T, then SNT = 1.

Choose S and T such that SN T =: D is maximal. We show that D < G;
then (4) will imply that D = 1 and (5) holds. So suppose, for a contradiction,
that Ng(D) < G. Since (Ns(D), Np(D)) is not a 2-group, Ng(D) contains
more than one Sylow 2-subgroup and the minimality of G implies that the
Sylow 2-subgroups of Nq(D) are cyclic. In particular, Ng(D) is cyclic; since
S is not cyclic, it follows that Ng(D) < S. But then D < Ng(Ng(D)) > Ng(D),
a contradiction. Thus (5) holds.

It follows from (1) and (5) that if P = H, then G would be a Frobenius
group with Frobenius complement P. But then the Frobenius kernel would
be a normal 2-complement, contradicting (2). Thus P < H and so H = PK
with K # 1 and |K| odd. If [P, K] =1, Lemma 4.5 would imply that P is
isomorphic to Ce x Cy or Qs. So proper subgroups of P would have no au-
tomorphisms of odd order and again G would have a normal 2-complement
[3, p. 436]. So [P, K] # 1 and hence |P/®(P)| = 4 and |K/Ck(P)| = 3. Thus

(6) H = PK where |K/Ck(P)| = 3 and |Ck(P)| is a prime or 1,
by Lemma 4.5. Finally, we claim that
(7) there exists x € Ng(K) such that H N H* = K.
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Forthislet 7' = Kif Kisa3-groupand T = Cg(P)if 1 # |Cx(P)| # 3. If
N¢(T) < H, then T would be a Sylow subgroup of G and T' < Z(Ng(T)); by
Burnside’s theorem, T would have a normal complement and this would
contradict (2). So Ng(T) £ H; let x € Ng(T)\ H. Then T <HNHY;
therefore, if T = Ck(P), it would follow that T < Z(H) N Z(H*) and hence
T < G. But then the minimality of G would imply that PT/T'< G/T and so
P <@, a contradiction. Thus 7 = K and « € Ng(K); by (6), |[H N H”|is odd,
so H N H* = K and (7) holds.

Let N := &(P)Ck(P). Then H/N ~ A4 and we choose y € P such that
KN # KYN. We claim that I .= {1,H,H*, H" G} is a Ks-set in L(G)".
For, we have edges (H, @), (H*,&),(H*,G) and obvious paths from H to
H? via KN, K and KN?, from H to H" via KYN, KY = H N H* and KYN*¥
and from H to 1 via PN and P. Since H* ~ H ~ H"Y, there are comple-
ments K; to P* in H* and K; to P in H* such that KiN* # KN* and
KoyN™ £ KYN™; so we have paths from H” to 1 via K1 N* and K; and from
H" to 1 via KoN* and K. Since |HNH®| is odd and 4 divides |G|,
|G : H| > 3. Therefore there is a conjugate H* different from H, H* and
H% and a path from 1 to G via P* and H*. Finally, if a is an involution in P,
then (a,a?) is a dihedral group of order 2m where m is odd, by (5). We
connect H* to H" via P*, (a), (a,a?), (a¥) and P"; here all groups properly
between (@) and (a¥) in this path have nonnormal Sylow 2-subgroups
whereas the members of the other paths are G or are contained in nor-
malizers of Sylow 2-subgroups. Therefore the set of all these paths is in-
ternally disjoint and I is a K5-set. This is a final contradiction proving the
lemma. O

We can now complete the

ProOOF OF THEOREM D. It remains to be shown that if G is a non-
nilpotent finite group such that L(G)* is Ks-free, then G has one of prop-
erties (a) — (h) of Theorem D. For this we use induction on |G]|.

We show first that G = PK with [P, K] # 1 for some normal Sylow p-
subgroup P and p-complement K of G. This follows from Zassenhaus’
theorem [3, p. 420] if all Sylow subgroups of G are cyclic. And if P is a
noncyclic Sylow p-subgroup of G, then by Lemma 5.5, P< G. By Schur-
Zassenhaus [3, p. 126], there exists K <G such that G = PK and
PNK=1.1f G = P x K, then Lemma 4.5 would imply that |K| is a prime
and hence G would be nilpotent, a contradiction. Thus [P, K] # 1.

By Lemma 5.4, K is a cyclic g-group and |K : Cx(P)| < ¢® for some
prime q or K is cyclic of order gr with primes ¢ # ». Therefore if |P| = p,
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then G satisfies (a) or (b) of Theorem D. So let |P| > p. If |K| = gr with
primes g # + and Cg(P) # 1, then K = Ck(P) x R with |R| = r, say, and by
Lemma 4.3, L(PR)* would contain no (3,6)-gon; but this would contradict
Proposition 4.4. So, in the sequel, |P| > p and either

(i) K is a cyclic g-group and |K : Cx(P)| < ¢, or
(i) K =Q x R where |Q| =¢q, |[R| =7, q+#r, and Cx(P) = 1.

Now assume that P is cyclic. Then by induction, either |P| = p? or
G/Q(P) satisfies (c) of Theorem D. In the latter case, |P| = p? and, again by
induction, Cx(P) =1. Thus |G| = p®¢ and there is an obvious Kjs-set
I = {QP),2(P),T1,T>,G} in L(G)" where |T;| = p?q for i =1,2 and
Ty # To; here, since G/Q2(P) and T;/Q2(P) are nonabelian of order pg, 8 of
the 10 required paths are trivial, there is a further path from Q(P) to G via
a third subgroup of order p?q and a final path (T1,X;,Y1,1,Ys, X5, Ts)
where |X;| = pq and |Y;| = ¢ for ¢ = 1, 2. So this case cannot occur, that is,
|P| = p*.

If K would satisfy (ii), then I" := {1, Q(P), PQ, PR, G} would be a K5-set
in L(G)". For, there are 3 edges between members of I” and the path
(PQ, P, PR); and since p > 7, there are enough conjugates of K (pairwise
intersecting trivially) and of Q(P)Q and Q(P)R to connect 1 and Q(P) to
PQ, PR, G.This contradiction shows that K is a ¢yclic g-group. The induction
assumption then yields that Cx(P) = 1 and |K| = ¢ if |K : Cx(P)| # q. But
then I := {1, Q(P), Q(P)Q(K), PQ(K), G} is a K5-set in L(G)". For, there are
4 edges, 2 further trivial paths and the path (Q(P)Q(K), 2(P)K, ); and since
p > 5, there are enough conjugates of K to connect Q(P) to G and 1 to PQ(K)
and G. Thus |K : Cx(P)| = q and G satisfies (c) of Theorem D.

Assume next that P is elementary abelian and not cyclic. Then by
Lemma 3.1, |P| = p. If (i) holds for K, then Lemmas 4.5 and 5.2 show that
G satisfies (d) of Theorem D. And if K satisfies (ii), then (e) holds.

Finally, suppose that P is neither cyclic nor elementary abelian. Then
®(P) # 1 and by induction, G/®(P) satisfies (d) or (e). In both cases, K is
irreducible on P/®(P). But if |P| = p" and n > 5, then by Lemma 3.3, P is
metacyclic and has exponent p™ where m > n — 2. So if L(P) is modular,
then ©,, 1(P) is a characteristic maximal subgroup of P [5, 2.3.5]. And if
L(P) is not modular, then p =2 and P = (a)(b) with P’ = (a?) [5, 2.3.4].
Then P/P’ has a characteristic maximal subgroup or |P : {a)| = 2. In the
latter case, (a) is the unique cyclic maximal subgroup of P. In every case, P
has a characteristic maximal subgroup, a contradiction. It follows that
|P| < p*. If |P| = p?, then, clearly, P ~ Qg or P is nonabelian of exponent p.
Finally, if |P| = p*, then |®&(P)| = p? and so |P/Cp(®(P))| < p. Since P has
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no characteristic maximal subgroup, it follows that &®(P) < Z(P). So if
P = (a,b), then P' = ([a, b]) and [a, b]’ = [a?,b] = 1. So |P'| < p and since
P/P’ has no characteristic maximal subgroup, P’ = 1. Thus P is abelian and
of type (p?,p?).

If P ~ Qg, then |K/Cg(P)| = 3 so that G/Cg(P) ~ SL(2,3) and K does
not satisfy (ii). So K is a 3-group and Lemma 4.5 implies that |Cx(P)| < 3.
Thus (g) holds.

In the other two cases, Lemma 4.5 yields that Cx(P) = 1. Suppose, for a
contradiction, that |K| is not a prime. Then the induction hypotheses
implies that |K| = ¢? or |K| = qr. Let Q be the subgroup of order q of K
and take x € P such that &(P)Q # ©(P)Q°. Then we claim that
I :={1,®(P), ®(P)Q, ®(P)Q", PQ} is a Ks-set in L(G)". Since PQ = PQ"
and @ is irreducible on P/®(P), we have 5 trivial paths and three further
ones (1,Q,2(P)Q), (1,Q°,d(P)Q"), (D(P)Q,P(P)K,G, D(P)K*, D(P)Q").
Finally, we connect @(P) to PQ via &(P)QY for a suitable ¥ € P and 1 to
PQ via P and suitable subgroups of order p’ different from ®(P). Thus I"
is a Kjs-set, the desired contradiction. It follows that |K| = ¢ and G sa-
tisfies (f) or (h) of Theorem D. O
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