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ABSTRACT - Let V be a simple module for a finite group G, over a finite field I, and let
H be a subgroup of G. Assuming that V is induced by an FH-module, we in-
vestigate some aspects of the structure of V viewed as a module for H. This kind
of analysis turns out to play a central role in a problem concerning tensor in-
duction for representations of finite groups.

Introduction.

I. Let G be a finite group, I a finite field, and V a simple FG-module;
given a subgroup H having odd index in G, and an FH-submodule W of V,
assume that V is isomorphic to the induced module W1¢. In this setting,
we are interested in exploring the structure of the FH-module V|5 (which
is V restricted to H) from a particular point of view: namely, we ask
whether the odd-index assumption for H implies that the multiplicity of W
as a composition factor in the socle of Vg is also odd. By Lemma 1.4(b),
this is equivalent to saying that V| is isomorphic to the FH-module

S
(@ W) @Y, where s is an odd positive integer, and Y is a submodule of
i=1

V| g not containing any submodule isomorphic to W.

It follows from Clifford’s Theorem ([1, 11.1]) that the answer to the
above question is certainly affirmative when H is a normal subgroup of G.
More generally, as outlined in the last paragraph of Section 2, it is not
difficult to see that the same holds when W is induced from the normal core
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L of Hin G, provided L has odd index in H (hence in ). On the other hand,
if W is induced from L but |H : L| is even, then the answer can be negative,
as it is shown by an example ([5, 11.1]) in which G is solvable, I is the prime
field in characteristic 3, and |G : H| is 3.

In view of our original motivation for this kind of analysis (presented in
Part II of this Introduction), we are actually interested in the case when W
is not induced from L, and we can also assume that I has odd characteristic.
The main result of this paper (which is proved in Section 2) is the following.

THEOREM A. Let G be a finite solvable group, H a subgroup of G having
odd index, ' a (not necessarily finite) field of odd characteristic, V a
simple FG-module, and W a submodule of V| such that V ~ W1¢. De-
noting by L the normal core of H in G, assume that W is not induced from
L, and that G/L is a Frobenius group with Frobenius complement H/L.

S
Then we have V| g~ (EB W) @Y, where s is an odd number and Y is a

i=1
submodule of Vg suchlthat Hompyz(W,Y) = 0 (In other words, W has odd
multiplicity as a composition factor in soc(V ]y )).

Note that, if H is a (not normal) subgroup of odd prime index in the
solvable group G, then G/L does have the structure of a Frobenius group
with Frobenius complement H/L (in fact, denoting by K/L a minimal
normal subgroup of G/L, we have that G/L is a semidirect product of K/L
and H/L; moreover, every nontrivial element of H/L acts fixed-point-
freely by conjugation on K /L). Therefore Theorem A covers this case, thus
providing a generalization of Theorem 9.7 in [5].

II. It may be worth mentioning the problem which led us to the question
presented in Part I.

Let G be a finite group, H a subgroup of G, and D an irreducible
complex representation for G. As it is easy to check, every direct summand
of the restriction D]z must have degree at least as large as deg D divided
by the index |G : H|, and D is induced by a representation of H if and only if
D]y does have a direct summand of degree (degD)/|G : H|. One of the
main purposes of [5] is to explore the possibility of an analogous result for
tensor induction; more explicitly we ask whether the following holds.

CONJECTURE. Let D be a faithful, quasi-primitive and tensor-inde-
composable representation of G. Then D is tensor-induced by a projective
representation of H if and only if D]y has a tensor factor whose degree is
the |G : H|th root of deg D.
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(We refer to [5, Introduction and Section 1] for a detailed discussion
about the concept of tensor induction, which motivates and explains the
setting of the above Conjecture.) Following the line developed in [5], this
problem can be approached by means of two subsequent reductions. First,
the Conjecture appears to be deeply linked to a statement ([5, ‘weak’
Conjecture 4.3]) concerning form induction for symplectic modules over
finite fields (see Section 3), and at this level it can be shown that the
Conjecture is false in its full generality (Example 5.2 in [5]). Next, positive
results toward the Conjecture are obtained assuming that H has odd index
in G, and such results are achieved via a reduction to the question pre-
sented in Part I. In particular, the Conjecture is proved to be true when H
is a normal subgroup of odd index in G (provided the Fitting subgroup of G
is assumed noncentral) and also, through Theorems 9.7 and 9.10 of [5],
when G is solvable and H has odd prime index in G.

As in this paper we generalize [5, 9.7 and 9.10] (by means of Theorem A
and Theorem 3.3 respectively), we are in a position to extend the cases in
which the Conjecture (together with the weak version of Conjecture 4.3 in
[5]) is proved to be true. The precise statements for these results, together
with the relevant definitions and notation, are formulated in Section 3.

To conclude, every abstract group considered throughout the following
discussion is tacitly assumed to be finite. Also, we shall freely use (often
with no reference) some basic facts in Representation Theory, such as
Clifford’s Theorem, Mackey’s Lemma ([1, 10.13]) and Nakayama re-
ciprocity ([8, VII, 4.5 and 4.10]).

1. Some preliminaries.

Before proving Theorem A, we recall some results and notation which
will be relevant in the sequel.

LeEmMA 1.1. Let G be a Frobenius group with Frobenius complement H
and Frobenius kernel K, and let I be a subgroup of G such that I N H # 1.
Then we have I = (I N H)I N K).

PrROOF. See[4, 4.1.8]. O
LeEMMA 1.2. Let H be a solvable Frobenius complement of even order,

which does not have any subgroup of index 2. Then there exists a normal
subgroup N of H such that H/N is isomorphic to the alternating group Ay.



74 Emanuele Pacifici

ProoF. Set A := 02(H), and N := Cy(A); looking at the proof of Zas-
senhaus’ Theorem 18.2 in [6], we see that our assumptions force A to be
isomorphic to the quaternion group of order 8, whence H/N embeds in
Aut (Qs) ~ S4. Moreover, a Sylow 2-subgroup of H/N must be isomorphic
to Cy x Cy. As H/N can not be a 2-group, its order is necessarily divisible
by 3, and the claim follows. O

LeEmMaA 1.3. Let H be a group, I a field, and M a normal subgroup of H.
Also, let W be a simple FH-module, and U a simple constituent of
Wy If I is the inertia subgroup of U in H, and e denotes the multiplicity
of U as a composition factor in W\, then |I/M| > ¢* - (dimp Endpy (U))/
(dim;[n El’ld'[cH(W)) holds.

ProoF. Letf denote the multiplicity of W as a composition factor of the
largest semisimple quotient of U1%. Since the direct sum of f copies of W is
a homomorphic image of U1#, the direct sum of ef copies of U is a homo-
morphic image of U1|,,. From Mackey’s Lemma, it is easy to see that
U1f|,, is semisimple and one of its homogeneous components is the direct
sum of |//M]| copies of U: therefore |I/M| > ef. By [3, VII, 4.13],

e - dlmF EndrM(U) :f . dlmr El’ldrH(W)
Thus
I/ M| > ef = ¢2 - (dimy Endyy(0))/(dimp Endpg(W)),

as claimed. O

LEmMA 1.4. Let G be a group, H a subgroup of G, F a field, V a simple
FG-module, and W a submodule of V| such that V.~ W1¢. Let T be the
homogeneous component of W in the socle of V]g. Then the following
conclusions hold:

(a) the multiplicity of W as a composition factor in T is given by
(dimr Endpg(V))/(dimp Endpg(W));
(b) T is a direct summand in Vg, it has a unique direct comple-
ment Y, and Y is such that Hompyg(W,Y) = Homug (Y, W) = 0.
Proor. Claim (a) easily follows from the fact that, by [3, VII, 4.12b)],
the multiplicity of W as a composition factor in 7' is given by
(dimprHompg (W, V] g ))/(dimr Endgg(W)).

Nakayama reciprocity yields now the conclusion.
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For claim (b), note that if Z is any submodule of V|5 with the same
dimension as W, then Z is a direct summand (simply because V is the
vector space direct sum of the translates of Z, the translates different
from Z are permuted by H among themselves, and so their sum is an H-
module complement to 7). Let Y be of minimal dimension among the
submodules of V| suchthat T + Y = V| . If Y contained a submodule Z
isomorphic to W, then Z would lie in 7" and Z would be a direct summand
of Y, contrary to the minimality of Y. Therefore we must have
Hompy(W,Y) =0,and TNY = 0 (so that Y is a direct complement to 7).
Dually, one can use the fact that if Z’ is any submodule of V| with co-
dimension equal to dimW then it is a direct summand: if Y had a nonzero
homomorphism onto W, the sum of T with the kernel of that could play
the role of Z’ and yield a contradiction. Thus Homuz (Y, W) = 0, and from
this it follows at once that there can be no direct complement to 7' other
than Y. O

LeEmMa 1.5. Let H be a group, L a normal subgroup of H, F a finite field,
and S a 1-dimensional FH-module whose kernel contains L. Let W be a
simple FH-module. Then W @ S and W have the same (nonzero) multi-
plicity as composition factors in the socle of W|, 1.

Proor. Seel5, 9.1]. O

LeEmMA 1.6. Let H be a group, L a normal subgroup of H, I a finite field,
and W an absolutely simple FH-module. Assume that there exists an FH-
module S such that ker S contains L, |H : ker S| =2, and W @ S 1is iso-
morphic to W. Then the multiplicity of W as a composition factor in the
socle of W\, 1% is an even (positive) number.

Proor. See[5, 9.4]. O

REMARK 1.7. It is not hard to see that the ideas of the proof of [5, 9.7]
can be applied more generally, and we shall need some of their con-
sequences here. Let G be a (finite) group, H a subgroup of G, I a finite
field, V a simple FG-module, and W a submodule of V] such that
V~W7 G Then Endpg(V) and Endpy(W) are fields, every element of the
latter arises as the restriction of one and only one element of the former,
and the relevant elements of Endpg(V) form a subfield: call that K, write
Vx for V regarded as KG-module, and W for W regarded as KH-module
(of course Vx is simple, and it is induced by Wx from H). It is now easy to
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see that Endxq(Vkx) = Endpg(V), and Endxg(Wx) = Endpyg(W), so Wi
is indeed absolutely simple, and by Lemma 1.4(a) the multiplicity of W as a
composition factor in soe(V] ) is the same as the multiplicity of Wk as a
composition factor in soc((Vk)|y). Moreover, if Wx is induced from
some subgroup L of H, then Wx has a submodule of K-dimension
dimg (Wx)/|H : L|; that subspace is also a submodule of W, of F-di-
mension dimp(W)/|H : L|, and so W is also induced from L.

2. A proof of the main theorem.

We present next a proof of Theorem A, which was stated in the In-
troduction. We are interested in this result when the field F is finite (and
this will be our assumption), but in Remark 2.1 we shall take the oppor-
tunity to explain that the theorem is in fact true also if I is infinite. It may
be worth stressing that in the special case when I is a splitting field for G
(for instance, when F is algebraically closed), Theorem A is an immediate
consequence of Lemma 1.4(a).

Proor or THEOREM A. In what follows, we shall assume the statement
true for all groups having order strictly smaller than |G|, and our aim will
be to show that the statement is true for G as well. As the first step, we
shall prove that W can be assumed absolutely simple.

In fact, let us suppose that Theorem A is true when the relevant H-
module is absolutely simple. Taking in account Remark 1.7 and its set-up,
we can apply Theorem A with K, Vx and Wx in place of I, V and W re-
spectively. Then we get that the multiplicity of W as a composition factor
in soc((Vk)| ) is odd. But, as explained in 1.7, that multiplicity equals the
multiplicity of W as a composition factor in soc(V] ), and we achieve the
desired conclusion.

In view of the previous step, we henceforth assume that W is absolutely
simple. Let X be a simple constituent of W|;, and let I denote the inertia
subgroup I(X) (recall that this is the subgroup of all the elements g of G
such that XY is isomorphic to X as an IFL-module). Also, denote by K/L the
Frobenius kernel of G/L. We shall proceed by discussing the various si-
tuations which may occur, depending on 1.

(1). Case I " H = L. This can not happen, as otherwise we would get
Iy(X) = L, and Clifford’s Theorem would yield that W is induced by X
from L, against the hypothesis.
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(2). Case L<INH<H. Set J:=1IK=UNH)K (see Lemma 1.1),
and let U be the (unique) submodule of W|;~; with the property that U|;,
is the homogeneous component of W|; containing X. Since U1¥~ W,
this U must be absolutely simple. Moreover, we get (U1/)1 G U9~
~ (UM%~ W1%~ V, so that U1’ is a simple FJ-module. Of course J is
a solvable group, I N H is a subgroup of it having odd index, L is the
normal core of I N H in J, and J/L is a Frobenius group with Frobenius
complement (I N H)/L. Moreover, U is not induced from L. By our in-
ductive hypothesis, we can conclude that U has odd multiplicity as a
composition factor in the socle of (U17)|;y. By Lemma 1.4(a), this is
equivalent to saying that dimg Endyy(U1”) is an odd number. Now, we
have

dimy Endyg(V) =dimp Endyy(U17) - (dimp Endpg(V))/(dimp End ey (U17)),

and it suffices to show that U1’ has odd multiplicity (as a composition
factor) in soc(V]; ). We shall see that this multiplicity is in fact 1.
Denoting by 7 a transversal for I N H in H, we get

Vi Wient'= (U )=Ut o @ U

teT teT\(INH)

(Observe that, although the individual U! are not necessarily [ N H]-

modules, certainly @  U'is invariant under the action of I N H). For a
teT\(INH)
proof by contradiction, suppose that the multiplicity of U1’ in soe(V];) is

greater than 1; this means that Hompy (UT (@ Un J) (Which is
teT\(UNH)

isomorphic, as a vector space, to Homp[mH](U (@ UHYY| mH)) is
teT\(INH)

not the zero space. Therefore, X is a constituent of (@  U?)1”|, and,
teT\(INH)
finally, there exist £in 7 \ (/ N H) and j in J such that X is a constituent of

(UY)],. Now, X" is a constituent of U/, so that # lies in 1. Writing j as
hk, where h is in INH and k in K, we have that thk =1 is in
I = (U NH)INK)(see Lemma1.1). This implies that t liesin I N H, which s
not the case.

(3). Case I = H. We see that in this situation W has multiplicity 1 in
soc(V|g). In fact, W|;, is now a homogeneous component of V|;. If V|
contained another isomorphic copy of W, the restriction of that to L would
be isomorphic to W|;; but this is a contradiction, as a homogeneous
component can never be isomorphic to any submodule distinct from it.
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(4). Case H <I < G. We have that I is a solvable group, H is a
subgroup of I having odd index, L is the normal core of H in I, and I /L is
a Frobenius group with Frobenius complement H/L. Also, let R be the
submodule of V|; generated by the subspace W (so that R is isomorphic
to W1!, and it is certainly a simple F/-module). By the inductive hy-
pothesis we deduce that dimp Endg;(R) is an odd number and, as
dimp Endpg(V) is given by that number times the multiplicity of R in
soc(V];), it is enough to show that the latter multiplicity is odd. But,
similarly to what happens in Case (3), R|;, is a homogeneous component
of V|; and, as above, there can not be any other copy of R in V| :
therefore the multiplicity of R in soe(V];) is 1, and the argument for this
case is complete.

(5). Case I = G. Our assumption that G/L is a Frobenius group with
Frobenius complement H/L implies that, considering the action of H on
the set of its right cosets in G (given by right multiplication), the orbits not
containing the trivial coset H have a common length, namely |H : L|.
Therefore, Mackey’s Lemma applied to the present situation yields

Vie= W o (é; WlLTH),
i=1

where 7 is the number of nontrivial double cosets of H in G. This number is
given by (|G : H| — 1)/|H : L|, so there is nothing to prove if |H : L] is odd
(in that case n is even). From now on we shall then assume |H : L| even,
and most of the time our aim will be to show that W has even multiplicity as
a composition factor in soc(W|,1 7y,

Let us start by assuming that H has a subgroup @ which contains L and
is such that |H : Q| = 2; then we can consider the representation of H/Q
which maps the generator to —1 in IF' (and view it as a representation for
H). We claim that, if S denotes an FH-module associated to this re-
presentation, then W ® S is isomorphic to W. In fact, by Lemma 1.5,
W @ S and W have the same multiplicity (call it ) as composition factors in
the socle of W|; 17. If they are assumed to be nonisomorphic, then Lemma
1.4(a) yields

nr +1 = |Endpg(V) : Endrg(W)| = | Endpg(V) : Endrg(W @ S)| = nr

(here we used that Endrg(W) and Endrg(W & S) are isomorphic vector
spaces), a clear contradiction. We are now in a position to apply Lemma
1.6 (as of course the kernel of S has index 2 in H), and we are done in
this case.
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If H/L does not have a subgroup of index 2, then (by Lemma 1.2) there
exists a normal subgroup N of H, containing L, such that H/N is iso-
morphic to A4. In what follows, we denote by M the subgroup of H which
contains N and such that M /N is the Sylow 2-subgroup of H/N.

Let us assume that W|;, is not homogeneous. Then we get W|;,=
= U ® U" ¢ U”, where his in H\ M and the three summands are simple
homogeneous components. Now, M is a subgroup of KM having odd index,
L is the normal core of M in KM, and KM /L is a Frobenius group with
Frobenius complement M /L. Since W is induced by U from M, we see that
U is absolutely simple; moreover, U7 KM g simple, as it induces V. Now,
M /L does have a subgroup of index 2 and, since U 1M | is homogeneous,
we can apply the same argument as in the first two paragraphs of Case (5)
(with KM, M, U™ and U in place of G, H, V and W respectively) con-
cluding that the multiplicity of U in soc(U|; M) is even: say, 2k. Since
I = G, the restriction of V to L is homogeneous; thus U, and U"|;, which
are submodules of equal dimension in V| ;,, must be isomorphic. From this,
we get

Hompy (U™, U 1) ~ Homy, (U, Ul 1) ~ Homyr, (Ul p,, Uly,) ~
~ Hompy (U, U, 1),

whence U” and (similarly) U" have the same multiplicity as U in
soc(UlLTM). Now we have

Wi M (U, oU, U () M~ UM aU M U, M~
6k 6k 6k ,
~ (D)o (Br)= (§v) o2
=1 =1 =1

where the socle of Z does not contain any of the U"" as a submodule (from
each of the three copies of U|; 1™ we “extracted” all the copies of each U"’;
note that every submodule of U|; 1™ isomorphic to one of the U" is cer-
tainly a direct summand of U|; 1™). Finally,

Wi 1" (Ezé w)ez",
=1

(where [ := 9k) with Hom~[rH(W,ZTH ) =~ Homyyp, (W, Z) = 0.

It remains to examine Case (5) in the situation in which H/L does not
have a subgroup of index 2, and W, is homogeneous. Observe that in this
case W], is simple because, by Lemma 1.3, if e denotes the multiplicity of a
simple constituent of W, in it, we have e < |H/M| = 3. The composition
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length (as an F[KM]-module) of WlMTKM ~ Vl]ky can be 1, 2, or 3. We
analyze the situation in each of the three cases.

Assume that the composition length of V]g, is 3, and set V| gy~
~ 71 ® Zy @ Z3 where the Z; are simple F[KM]-modules. Since we get

Homyy (W, Zilas ) ~ HomegoanW 1y 1Y, Zi) ~ Homuyoan(V kg, Zi) =
~ Homyg(V,Z1%) ~ Endpg(V),

the multiplicity of W, in soe(Z;] ;) is dimp Endpg(V)/dimp End gy, (W] ).
In particular, this number does not depend on %, so that the multiplicity of
W, in the socle of V|, is a multiple of 3. On the other hand, Mackey’s
Lemma gives

d
Vi W5 |y Wi & (D W1 ),
j=1

where d is the number of double cosets of M in KM different from M.
This number is given by (KM : M| —-1)/|M : L| =3(|G : H| - 1)/|H : L|,
whence the multiplicity of W|;, in the socle of V|, is congruent to 1
modulo 3. We thus reached a contradiction, so this case can not arise.

Let us now examine the case in which the composition length of V| ¢, is
2, so that we have dimV = 2kdimX. On the other hand, dimV is given by
|G : H|dimW = s|G : H|dimX, where s denotes the composition length of
W/|;,. The conclusion is that s is even, say 2r; therefore we get

2r
Wi~ P,
j=1

and of course we are done.

Finally, let V| k), be simple, and let S be an ['M-module such that ker S
contains L, and |M : ker S| = 2. If W|;; @S % W]y, then a contradiction
arises as in the second paragraph of Case (5); therefore we must have
Wiy @S ~W|,. If W|,,is absolutely simple, then we apply Lemma 1.6
getting that dimpHomy,(W |, W, 1™ ) is an even number; we reach now
the desired conclusion, as Hompy (W], W[, 1) is isomorphic to
Hompz(W, W[, 11). We are left with the case in which W|,, is not abso-
lutely simple: in such a situation, the Theorem stated in the Introduction
of [2] guarantees that W ,,1% is isomorphic to a direct sum of three copies
of W, and also that Endry;(W|,,) has degree 3 as a field extension of .
Observe that we can also assume W|;,; not induced from L, otherwise the
composition length of W|; (as an FL-module) is the even number |M : L|,
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and again we are done. Now, we get

Homyy (Wag, Vi) = Homppr (W, V1™ o Homppr (W, (Vg ) Ly 1) =
~ Homppg(W, V] gy 191 ) ~ Hompuy (W, Vg V]g &V]g),

where the last isomorphism relation holds because of the following:

Vg 19 Wy 1019 Wy 1% Wiy 11> WeWe W)~ VeveV.

The conclusion so far is

dimgHomppy (W37, V1) /dimp Endpgs (W] ) = 3dimpHompg (W, V] ) /3 =

= dimpHompg(W, V| g);

in other words, the multiplicity of W in the socle of V| equals the multi-
plicity of W, in the socle of V| ;. This completes the proof, as we can now
use the inductive hypothesis and conclude that the latter multiplicity is odd.

O

REMARK 2.1. Let G be a finite group, and ¥ a field of prime char-
acteristic. Denoting by n the order of G, we set F™ to be the (finite)
subfield of the algebraic closure of I generated by the n-th roots of 1, and
we define [y := F™ N . In this setting, Lemma 6 of [2] establishes what
follows: for every subgroup X of G, and for every simple FX-module U,
there exists a simple FyX-module Uy, uniquely determined up to iso-
morphisms, such that U ~ Uy ®p, I (we refer here to Definition 1.1b) of [3,
VII)).

The above result enables us to prove Theorem A in its full generality,
without requiring that I is finite. In fact, assume the hypotheses of The-
orem A as stated in the Introduction, and consider the modules Wy and Vj
(an FoH-module and an FG-module respectively) associated to W and V/
by means of [2, Lemma 6]. It is easy to check that W and V satisfy the
hypotheses of Theorem A (for this purpose, it is convenient to take in ac-
count that the process of induction of modules “commutes” with the pro-
cess of tensoring modules with a field extension); thus, as we proved
Theorem A when the relevant field is finite, we can conclude that
(dimy, Endp,q(Vy))/(dimg, Endg,z(Wp)) is an odd number (here we also
applied Lemma 1.4). Now, using 1.12 and 1.1a) of [3, VII], we get

dimp El’ldpg(V) = dlmr( Endrog(VO) ®FO F) = dimvo Endpo(;(VO)

and, similarly, dimy Endpy(W) = dimp, Endy, gz(Wo). Another appeal to 1.4
completes the argument.
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We stress that, as mentioned in the Introduction, the assumption of W
not being induced from L is crucial for Theorem A (see [5, 11.1]), although
that assumption is not needed when |H/L| is odd. In fact, assuming W
induced from the FL-module X, it is easy to see (using [3, VII, 4.12b)] and
Clifford’s Theorem) that the multiplicity of W as a composition factor in the
socle of V] is given by |I5(X) : Iy(X)|, a divisor of the odd number |G/L|.

3. Form induction and tensor induction.

We start this section recalling some definitions and notation. For fur-
ther details, we refer to [5, Introduction, Section 1 and Section 3].

DEFINITION 3.1. Let G be a group, F a field, V an FG-module, and f a
symplectic F-form defined on (the underlying vector space of) V; if
f@?,v9) = f(u,v) holds for all u, v in V and g in G, then f is called G-in-
variant.

DEFINITION 3.2. Let G be a group, H a subgroup of G, I a field, V a
simple FG-module, and W a submodule of V| ;. Assume that a G-invariant
nonsingular symplectic '-form f is defined on V, and that the following
conditions hold:

(a) the restriction of f to W x W, which is an H-invariant sym-
plectic F-form on W, is nonsingular;

(b) the translate WY lies in W+ for all g in G such that W9 # W;

(¢) V is induced by W from H.

Then we say that V is form-induced by W (with respect to f) from H.

A map P: H— GL(, ) is called a projective representation of H (of
degree d, over the field I) if the map P, defined as the composite of P with
the natural homomorphism of GL(d, I') onto PGL(d, ), is a group homo-
morphism. If P; and Py are projective representations of H having the
same degree d, then they are called equivalent if P; is the composite of P;
with an inner automorphism of PGL(d, I'); in this case, we write P; ~ Ps.

Given two projective representations P and @ of H, having degrees ¢
and d respectively, the symbol P ® () denotes the inner tensor product of P
and @ (which is a projective representation of H whose degree is cd),
whereas the symbol P1“% denotes the projective representation of G which
is tensor induced by P from H.
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In order to achieve the desired results on form induction of modules,
and consequently on tensor induction of representations, we need (to-
gether with Theorem A) a generalization of Theorem 9.10 in [5]. This
generalization is only stated in that paper, so we present next a proof.

THEOREM 3.3. Let G be a solvable group, H a subgroup of G having odd
mdex, ¥ a finite field, V a simple FG-module which carries a G-invariant
nonsingular symplectic F-form f, and W a submodule of V| g such that
V ~ W1C. Assume that W is induced from the normal core L of H in G.
Then there exists a submodule Z of V| g such that f does not vanish on Z,
V ~ Z1% and Z has odd multiplicity as a composition factor in soc(V | z).

Proor. Weproceed by induction on |G : H|. If H is a maximal subgroup
of G, then we get the conclusion applying [5, 9.10]; thus we shall assume that
there exists a proper subgroup £ of G such that H is properly contained in £.
Now, V is induced by W from H, so we get V ~ (W1% )1%; denoting by R the
module W1¥, we have that V is induced by R from E, and R is in turn induced
from a normal subgroup of G contained in £ (which is L.). We conclude that R
is induced from the normal core of £ in G and, since |G : E| is odd, we can
apply the inductive hypothesis (we can certainly assume that R is a sub-
module of V| ;) and find a submodule S of V | ;; such that f does not vanish on
S,V ~ 81%, and S has odd multiplicity as a composition factor in soc(V | z).

Next, we know that there exists a submodule X of V|; such that
V ~ X1%; by Mackey’s Lemma we get

Vig= P (X)*)

teT

where 7 is a set of representatives for the double cosets in G of L and £.
Since each of the (X*)1¥ induces V from E and is therefore simple, we have
that S is isomorphic, as an I'E-module, to one of those. We conclude that S
is induced from L, hence also from the normal core of H in E. Therefore we
can use again the inductive hypothesis, obtaining that there exists a sub-
module Z of S| such that f does not vanish on Z, S ~ Z1¥, and Z has odd
multiplicity as a composition factor in soc(S| 5 ). Now, putting together the
two steps, we see that Z satisfies the required conditions. |

We are now in a position to extend Theorem 10.1 and Theorem 10.2 of
[5]. The two theorems below are only stated, as a proof of them can be
obtained arguing as in 10.1 and 10.2 of [5], just replacing Theorem 9.7 and
Theorem 9.10 of [5] with Theorem A and Theorem 3.3 of this paper.
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THEOREM 3.4. Let G be a solvable group, H a subgroup of G having odd
mdex, I a finite field, V a simple FG-module, and W a submodule of V| .
Denoting by L the normal core of H in G, assume that G/L is a Frobenius
group with Frobenius complement H/L. Assume also that V carries a G-
muariant nonsingular symplectic F-form f which does not vanish on W. If
V is induced by W from H, then V is also form-induced from H (with re-
spect to f).

THEOREM 3.5. Let G be a solvable group, H a subgroup of G having odd
ndex, and D a faithful, primitive, tensor-indecomposable representation
of G. Denoting by L the normal core of H in G, assume that G/L is a
Frobenius group with Frobenius complement H/L. Assume also that we
have D\ ~ P1 @ Py, where Py and Ps are projective representations of H.
If deg Py is not 1, and (deng)lG:H 'is a divisor of deg D, then we have
(deg P2)\%l — deg D, and there exists a projective representation P of H
such that D ~ P1%% holds.
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