Groups in which the Derived Groups of all 2-Generator Subgroups are Cyclic.

Patrizia Longobardi (*) - Mercede Maj (*) - Howard Smith (**)

Dedicated to Guido Zappa on his 90th birthday

1. Introduction.

Let us denote by $\mathcal C$ the class of groups G for which $\langle x,y\rangle'$ is cyclic for all $x,y\in G$. It is easy to check that a group G belongs to $\mathcal C$ if and only if, for all $x,y\in G$, there is an integer n=n(x,y) such that $[x,y]^y=[x,y]^n$. Groups G with this property appear to have been first studied in [1]. Theorem 2 of that paper states that a finite nilpotent group G of odd order in which every two-generator subgroup has cyclic derived group is metabelian, and it is remarked that it is not known whether the stated restriction on the order of G is necessary. We show that it is indeed necessary, that is, we exhibit a finite 2-group in $\mathcal C$ that is not metabelian (see Theorem 4 below). We also generalise the above result of Alperin by proving the following.

Theorem 1. If G is a finite group of odd order that belongs to the class C then G is metabelian.

Another result from [1] is that a torsion-free nilpotent group with our property is metabelian. It turns out that there is considerably more that may be said about torsion-free groups in C.

THEOREM 2. If G is a torsion-free group in the class C then G has a normal nilpotent subgroup N of class at most 2 and index at most 2 in G. In

(*) Indirizzo degli AA.: Dipartimento di Matematica e Informatica, Università di Salerno, Via Ponte don Melillo, 84084 Fisciano (Salerno), Italy.

E-mail: plongobardi@unisa.it

E-mail: mmaj@unisa.it

(**) Indirizzo dell'A.: Department of Mathematics, Bucknell University, Lewisburg, PA 17837, U.S.A. E-mail: howsmith@bucknell.edu

particular, a torsion-free locally nilpotent group in $\mathcal C$ is nilpotent of class at most 2.

In fact, a satisfactory classification is available for torsion-free groups in \mathcal{C} , as follows.

THEOREM 3. Let G be a torsion-free group. Then $G \in C$ if and only if either G is nilpotent of class at most 2 or $G/Z(G) = F/Z(G) \cdot \langle g \rangle Z(G)/Z(G)$, where F/Z(G) is abelian, $g^2 \in Z(G)$ and $a^g \cong a^{-1} \mod Z(G)$ for all $a \in F$.

Our next result shows that Theorem 2 cannot be improved upon in at least one direction; it also provides us with a finite 2-group that answers the question from [1] referred to above. We make the obvious remark that subgroups and homomorphic images of a group in \mathcal{C} are again in \mathcal{C} .

Theorem 4. There exists a torsion-free group G that lies in the class C but is not metabelian. Furthermore, G has a homomorphic image of order 2^{10} that is not metabelian.

For p a fixed prime, it is easy to exhibit finite p-groups of arbitrarily large nilpotency class that belong to \mathcal{C} , for the group $G_n := := \langle a,b:a^{p^n}=1=b^{p^{n-1}},b^{-1}ab=a^{p+1}\rangle$ is metacyclic and has class exactly n for each positive integer n. One might try to use these easy examples to construct a locally finite p-group in \mathcal{C} that is not nilpotent but, at least for odd p, such a construction is not possible, as the following result indicates.

Theorem 5. Let p be an odd prime and let G be a p-group in the class C. Then G is nilpotent.

It is obvious that every two-generator subgroup of a group in \mathcal{C} is supersoluble, and by a result from [3] we have immediately that a finite group in \mathcal{C} is supersoluble. This was pointed out in [2], where several structural properties were established for finite groups in \mathcal{C} . Our next result shows that local supersolubility is a characteristic of many groups in \mathcal{C} . It was established in [7] that a finitely generated hyper(abelian-by-finite) group in which every two generator subgroup is supersoluble is itself supersoluble, while our stronger hypothesis allows us to establish local supersolubility for an arbitrary *locally graded* group, where each nontrivial finitely generated subgroup is assumed to have a nontrivial finite image.

Indeed, we do not know whether even this extra hypothesis is necessary, but if there is a counterexample at all then it is easily shown that there is one that is finitely generated, infinite and simple.

THEOREM 6. Let G be a locally graded group in the class C. Then G is locally supersoluble and has a finite series of characteristic subgroups $1 \le L \le M \le N \le G$ where L is metabelian and consists of all the elements of G that have odd order, M/L is a (locally finite) 2-group, N/M is torsion-free and nilpotent of class at most 2, and G/N has order at most 2.

Theorem 6 presents by no means a satisfactory description of locally supersoluble groups in \mathcal{C} . We would like to know more about finite 2-groups in \mathcal{C} - perhaps such a group always has its derived subgroup, or even its square, of bounded nilpotency class, though we have insufficient evidence to present this as a conjecture. We are, however, able to assert the following, our final main result.

Theorem 7. If G is a 2-group in C then G^2 is hypercentral, of length at most ω .

It will be seen that this last result is an easy consequence of a lemma that is required in order to establish Theorem 6. We mention (without providing a proof) that, if G is a 2-group in C then G^2 is also soluble, and we conjecture that it is nilpotent. Possibly G itself is nilpotent, but again we are reluctant to offer this as conjecture.

2. Finite groups in the class C.

In this section we prove Theorem 1. It is convenient to divide the proof into a sequence of lemmas as follows

LEMMA 2.1. Let $G \in \mathcal{C}$ and suppose that $G = P \times \langle x \rangle$, with P a finite p-subgroup and x a p'-element of odd order, where p is an odd prime. If $a, b \in P \setminus C_P(x)$ and $[a, x]^x = [a, x]^r, [b, x]^x = [b, x]^s$, then $r \equiv s \mod p$ and $1 \not\equiv r \mod p$.

PROOF. Let *i* be maximal such that neither [a, x] nor [b, x] is contained in $Z_i(P)$, the *ith* term of the upper central series of P. Working modulo $Z_i(P)$, we may assume that $1 \neq [a, x] \in Z(P), [b, x] \neq 1$. Then for some in-

teger t we have $[ab,x]=[a,x][b,x], [ab,x]^x=[ab,x]^t=[a,x]^t[b,x]^t$, and $[ab,x]^x=[a,x]^x[b,x]^x=[a,x]^r[b,x]^s$. If $\langle [a,x]\rangle\cap\langle [b,x]\rangle$ contains a nontrivial element c then $c^x=c^r=c^s$ and $r\equiv s \mod |c|$, while if the intersection is trivial then $[a,x]^{t-r}=1=[b,x]^{s-t}$ and $t\equiv r \mod |[a,x]|, s\equiv t \mod |[b,x]|$, and in particular $r\equiv s \mod p$. Also $r\not\equiv 1$, for otherwise [a,y]=1 for some j and hence [a,x]=1, a contradiction.

LEMMA 2.2. Let $G \in \mathcal{C}$ and suppose that $G = P \rtimes \langle x \rangle$, with P a finite p-subgroup and x a p'-element of odd order, where p is an odd prime. Then $[P, \langle x \rangle]$ is abelian.

PROOF. Supposing the result false, there exist $a,b\in P$ such that $c:=[[a,x],[b,x]]\neq 1$. As G is supersoluble there is a normal subgroup N of G that has order p, and by induction on |G| we may assume that $[P,\langle x\rangle]$ is abelian modulo N. By Lemma 2.1 we have $[a,x]^x=[a,x]^r,[b,x]^x=[b,x]^s$ with $r\equiv s \mod p$. If $N\leq C_G(x)$ then $1\neq c=c^x=c^{rs}$ and so $r^2\equiv rs\equiv 1 \mod p$, a contradiction since |x| is odd and $r\not\equiv 1 \mod p$, by Lemma 2.1. Thus $N\not\leq C_G(x)$ and $[n,x]^x=[n,x]^t$ for every nontrivial element n of N, where $t\equiv r \mod p$, again by Lemma 2.1. Now $1\neq c^t=c^x$, as $c=[n,x]^v$ for some $n\in N,v\in \mathbb{Z}$, and since $c^x=c^{rs}$ we have $r^2\equiv r \mod p$. Lemma 2.1 gives the required contradiction.

LEMMA 2.3. Let $G \in \mathcal{C}$ and suppose that $G = P \times \langle x \rangle$, with P a finite p-subgroup and x a p'-element, where p is an odd prime. Then G is metabelian.

PROOF. By Theorem 3.5 of [4] we have $P = C_P(x)[P, \langle x \rangle]$. Moreover, $[P, \langle x \rangle] \triangleleft G$, and so $G' = (C_P(x))'[P, \langle x \rangle]$. By Theorem 2 of [1] and Lemma 2.2 above, each of $(C_P(x))'$ and $[P, \langle x \rangle]$ is abelian, and it suffices to show that $(C_P(x))' \leq C_G([P, \langle x \rangle])$. But if $a \in P, g \in C_P(x)$ then we have [a, x] = [ga, x] and, since $G \in \mathcal{C}$, each of a, ga and x is in the normalizer K of $\langle [a, x] \rangle$ in G. Thus $C_P(x) \leq K$ and $(C_P(x))' \leq C_G(\langle [a, x] \rangle)$, and the result follows.

LEMMA 2.4. Let $G \in \mathcal{C}$ and suppose that $G = P \rtimes \langle x \rangle$, with P a finite p-subgroup and x a p'-element of odd order, where p is an odd prime. If $Z(P) < C_G(x)$ then G is nilpotent.

PROOF. Assume the result false and let $i \ge 1$ be maximal such that $Z_i(P) \le C_G(x)$. Then x does not act nilpotently on $Z_{i+1}(P)$ and we may assume that i = 1. Let $a \in Z_2(P)$, $b \in P$. By Lemma 2.2, $[[a, x], [b^{-1}, x]] = 1$,

and since $G \in \mathcal{C}$ it follows that $[x,b^{-1}]$ centralizes $[a,x]^x$ and hence that $[a,x]^{bx}=[a,x]^{xb}$. Also, $\langle [a,x] \rangle^P$ is abelian, and we deduce easily that 1=[a,x,b,x]=[a,x,x,b], and since b was arbitrary it follows that $[a,x,x] \in Z(P)$. Thus $[a,x,x] \in C_G(x)$ and so $a \in C_P(x)$, and we have a contradiction to the fact that x does not centralize $Z_2(P)$.

We are now in a position to complete the proof of the theorem.

PROOF OF THEOREM 1. Let G be a counterexample of minimal order. Since G is supersoluble we have G' nilpotent, and it follows by minimality that G' is a p-group for some prime p. Let P be a Sylow p-subgroup of G; thus $G' \leq P$ and $G = P \rtimes X$ for some abelian p'-subgroup X, and G' = P'[P, X]. Now P' is abelian, by [1], and by Lemma 2.3 $P'[P, \langle x \rangle]$ is abelian for every $x \in X$ and X is not cyclic. Thus [P, X] is not abelian and we may choose elements $a, b \in P$ and $x, y \in X$ such that $[[a, x], [b, y]] \neq 1$. By minimality we have $G = \langle a, b, x, y \rangle = P\langle x, y \rangle$; also Z(P) is cyclic since G has just one normal subgroup N, say, of order p. Write $N = \langle n \rangle$.

If $n^x = n^a$ and $n^y = n^\beta$, with each of $a, \beta \not\equiv 1 \mod p$, then we have $n^{xy^\gamma} = n$ for some γ , and so if $z = xy^\gamma$ then $N \leq C_G(z)$, so that $Z(P) \leq C_G(z)$ (see Theorem 3.10 of [4]) and $P \leq C_G(z)$ by Lemma 2.4. But then $G = P\langle y, z \rangle$ and $[P\langle y \rangle, \langle z \rangle] = 1$, and so G' is abelian. This contradiction concludes the proof of the theorem.

3. Torsion-free groups.

Our main objective in this section is the classification of torsion-free groups in \mathcal{C} , as presented in Theorem 3. For much of the following discussion we concern ourselves with \mathcal{C} -groups G whose derived subgroups are torsion-free. We begin with an easy lemma, but one which has a very useful consequence. All we need for the proof is that, for elements a, x of a group G, $\langle [a, x] \rangle^{\langle a \rangle} = [\langle a \rangle, x]$.

LEMMA 3.1. Let G be a group, $a, x \in G$, and suppose that $[a, x]^a = [a, x]$ or $[a, x]^a = [a, x]^{-1}$. Then a^2 centralizes $[\langle a \rangle, x]$.

The next two results are also very straightforward.

LEMMA 3.2. Let $G \in \mathcal{C}$ and suppose that $\langle x,y \rangle'$ is either infinite or trivial for all $x,y \in G$. Let $g \in G$. Then, for each $x \in G$, either $[x,g^2]=1$ or [x,g,g]=1 (with both holding if and only if [x,g]=1).

PROOF. If $g, x \in G$ then $\langle [x,g] \rangle \triangleleft \langle x,g \rangle$ and so $[x,g]^g = [x,g]$ (and [x,g,g]=1) or $[x,g]^g = [x,g]^{-1}$. In the latter case we have $[x,g^2] = [x,g]^2[x,g,g] = [x,g]^2[x,g]^{-2} = 1$.

Lemma 3.3. Let G be a torsion-free locally nilpotent group in C. Then G is nilpotent of class at most 2.

PROOF. If $x, y \in G$ then each of x and y normalizes $\langle [x, y] \rangle$ and hence centralizes it, by local nilpotency. Thus G is 2-Engel and hence nilpotent of class at most 2 (see, for example, [9; Theorem 7.14]).

COROLLARY 3.4. Let $G \in \mathcal{C}$ and suppose that G has no nontrivial normal torsion subgroups. Suppose further that $\langle x, y \rangle'$ is either infinite or trivial for all $x, y \in G$. Then G^2 is nilpotent of class at most 2 (and so G' is nil-2).

PROOF. Let $a \in G$. If $x \in G$ then, using Lemma 3.1, we see that a^2 centralizes $[\langle a \rangle, x]$ and, since x was arbitrary, a^2 centralizes $[\langle a \rangle, G]$. Thus $\langle a^2 \rangle^G$ is abelian. Since this is true for all $a \in G$ it follows that G^2 is a product of normal abelian subgroups and hence locally nilpotent, and the result follows by Lemma 3.3.

We are almost in a position to establish a result that says much about the structure of certain groups in \mathcal{C} . But first we must prove the following "global version" of Lemma 3.2.

LEMMA 3.5. Let $G \in \mathcal{C}$ and suppose that $\langle x, y \rangle'$ is either infinite or trivial for all $x, y \in G$. Then, for each $g \in G$, either $g^2 \in Z(G)$ or [x, g, g] = 1 for all $x \in G$.

PROOF. Fix $g \in G$ and let $T_q = \{x \in G : [x, g, g] = 1\}$.

Claim. T_g is a subgroup of G.

Let $x, y \in T_g$, so [x, g, g] = 1 = [y, g, g], and suppose for a contradiction that $[xy, g, g] \neq 1$. Then $[xy, g^2] = 1$, by Lemma 3.2, and we deduce that $[x, g^2] = ([y, g^2]^{-1})^{y^{-1}}$ and hence that $[x, g^2] \in \langle x, g \rangle' \cap \langle y, g \rangle'$ and so $N := \langle [x, g^2] \rangle$ is normal in $H := \langle x, y, g \rangle$. In the following, all congruences are modulo N: since [x, g, g] = 1 we have $[x, g]^2 \equiv [x, g^2] \equiv 1$ and similarly $[y, g]^2 \equiv 1$. Also [x, g, x] = 1 or $[x, g]^{-2}$ and so $[x, g, x] \equiv 1$, and similarly $[y, g, y] \equiv 1$. Next, $[x, g, gy] \equiv [x, g, y] \equiv [x, g, xy]$ and, since $[x, g, y] \equiv [x, g, y]$ and, since $[x, g, y] \equiv [x, g, y]$ and, since $[x, g, y] \equiv [x, g, y]$

normalizes $\langle [[x,g],y] \rangle$ and xy normalizes $\langle [[x,g],gy] \rangle$ it follows that $\langle y,xy,gy \rangle$ normalizes $K:=\langle [x,g,y] \rangle$ mod N, so H normalizes K mod N, and hence H' centralizes K mod N. In particular, $[[x,g,y],[x,g]] \in N$, and so $1 \equiv [[x,g]^2,y] \equiv [x,g,y]^2$, and it follows that K has order at most $2 \mod N$ and hence that $[K,H] \leq N$. We deduce that $[x,g]N \in Z_2(H/N)$ and similarly that $[y,g]N \in Z_2(H/N)$. Thus $[xy,g]N \in Z_2(H/N)$ and we have $[xy,g,g,g] \in N$. But [x,g,g] = 1 and $N = \langle [x,g^2] \rangle$ together imply [N,g] = 1 and hence [xy,g,g,g,g] = 1. But g^2 centralizes xy and hence $\langle xy \rangle^{\langle g \rangle}$, and we get $1 = [xy,g,g,g^2] = [xy,g,g,g]^2$ and so [xy,g,g,g] = 1. Similarly [xy,g,g] = 1 and this contradiction establishes the claim.

Again by Lemma 3.2 we have $G = C_G(g^2) \cup T_g$ and so either $G = C_G(g^2)$ or $G = T_g$, as required.

PROPOSITION 3.6. Let $G \in \mathcal{C}$ and suppose that G has no nontrivial normal torsion subgroups. Suppose further that $\langle x, y \rangle'$ is either infinite or trivial for all $x, y \in G$, and let F = Fitt(G), the Fitting radical of G. Then the following hold.

- (i) If $g \in G \setminus F$ then $a^g \equiv a^{-1} \mod Z(G)$ for all $a \in F$.
- (ii) G/F has order at most 2.
- (iii) $F' \leq Z(G)$.

PROOF. By Lemma 3.3 and its corollary, F is (torsion-free) nilpotent of class at most 2 and contains G^2 , and so G/F has exponent at most 2. Suppose that there exists $g \in G \setminus F$ and let $a \in F$. If [u, ag, ag] = 1 for all $u \in F$ then $[u, g, g] \in F'$ for all $u \in F$ and so $[F, \langle g \rangle, \langle g \rangle] \leq F'$ and $F\langle g \rangle/F'$ is nilpotent. But then $F\langle g \rangle$ is nilpotent (see [5]) and so $g \in F$ (since $F\langle g \rangle \triangleleft G$), a contradiction. It follows from Lemma 3.5 that $(ag)^2 \in Z(G)$ for all $a \in F$ (and in particular $g^2 \in F$). Thus, again for all $a \in F$, $a^g \equiv a^{-1} \mod Z(G)$, and (i) is proved. If $a \in F$ has a also in $a \in F$ then we have $a^h \equiv a^{-1} \mod a$ and $a^{gh} \equiv a^{-1} \mod a$ for all $a \in F$, but $a^{gh} \equiv a$ and so $a \equiv a^{-1}$ for all $a \in F$ and hence $[F, \langle g \rangle] \leq Z(G)$ and again we have the contradiction that $F\langle g \rangle$ is nilpotent. Thus $a \in F$ has order at most 2. Finally, suppose $a \in F$ for all $a \in F$ and let $a \in F$. Then, modulo $a \in F$ has order at most 2. Finally, suppose $a \in F$ has order at most 3.

Theorem 2 follows immediately from Proposition 3.6 and Lemma 3.3. Proposition 3.6 also establishes that a torsion-free group in $\mathcal C$ has the structure described in Theorem 3. Suppose now that G is a torsion-free group; if G is nil-2 then of course $G \in \mathcal C$, so assume that $G = F\langle g \rangle$ where F

and g are as described in Theorem 3. Let H be an arbitrary two-generator subgroup of G. If $H \leq F$ then H' is cyclic. Otherwise, $H = \langle a, bg \rangle$ for some $a, b \in F$; then $a^g = a^{-1}z$ for some $z \in Z(G)$ and one checks easily that $[a,bg] = z[a,b]a^{-2}$ and $[a,bg]^{bg} = [a,bg]^{-1}$, so H' is again cyclic. Thus Theorem 3 is also proved.

PROOF OF THEOREM 4. Let $A=\langle a\rangle \times \langle z\rangle$, a free abelian group of rank 2, and let H be the group with presentation $\langle x,y:[x,y]^x=[y,x]=[x,y]^y\rangle$. It is routine to check that H is torsion-free; indeed, H is an extension $\langle x,[x,y]\rangle \rtimes \langle y\rangle$, where x acts by inversion on $\langle [x,y]\rangle$ and the action of y on $\langle x,[x,y]\rangle$ is via $x^y=x[x,y],[x,y]^y=[x,y]^{-1}$. We define an action of H on A by setting $a^x=a^{-1}z,a^y=a^{-1},z^x=z=z^y$. It is easily verified that $a^{x^{-1}}=a^{-1}z,a^{y^{-1}}=a^{-1},a^{[x,y]}=az^2,a^{[y,x]}=az^{-2},a^{xy^{-1}}=az=a^{xy}$, and that the relations for H are thereby respected. With the above action, set $G=A\rtimes H$, which is also torsion-free.

First let us observe that G' is not abelian, for it contains both $[a,x]=a^{-2}z$ and [x,y], but $(a^{-2}z)^{[x,y]}=a^{-2}z^{-3}$. Next, it is clear that x^2 and y^2 are central in G, as of course is z. Since $[a,[x,y]]=z^2$, the centralizer of a in H is easily seen to be $\langle x^2,y^2\rangle$, and so $Z(G)=\langle z,x^2,y^2\rangle$. Let $F=\langle A,x^2,y^2,[x,y],xy^{-1}\rangle$. From the above calculations and the fact that $[[x,y],xy^{-1}]=1$ it is immediate that F/Z(G) is abelian. Also $G=F\langle y\rangle$, and since y inverts every element of F modulo Z(G) we may apply Theorem 3 to deduce that $G\in\mathcal{C}$.

Finally, let N be the subgroup of G generated by a^8, z^8, x^2, y^2 and $[x,y]^4$. Since $[a,[x,y]]=z^2$ we have $[a,[x,y]^4]=z^8$ and it follows that N is normal in G. Certainly |HN/N|=16 and |AN/N|=64 and so G/N has order 2^{10} . Furthermore, $[a,x,[x,y]]=z^{-4} \notin N$ and so (G/N)' is not abelian, and the proof of Theorem 4 is complete.

4. p-groups in the class C, where p is odd.

Our first result in this section is very easy to prove but is nonetheless of some interest. In any case, the special case where G is a p-group will turn out to be an important ingredient in the proof of Theorem 5.

PROPOSITION 4.1. Let G be a group, n an integer, and suppose that $[x,y]^y = [x,y]^n$ for all $x,y \in G$. Then G is 2-Engel and therefore nilpotent of class at most 3, and of class at most 2 if G contains no elements of order 3.

PROOF. Let $x,y \in G$. Then $[y,x]^y = ([x,y]^{-1})^y = [x,y]^{-n} = [y,x]^n = [y,x]^x$ and so xy^{-1} centralizes [y,x] and hence centralizes $\langle [y,x] \rangle = \langle x,y \rangle'$. In particular, $[x,xy^{-1},xy^{-1}]=1$. If $a,b \in G$ then we set $x=a,y=b^{-1}a$ in the above to get [a,b,b]=1, as required. The consequences for the nilpotency class of G follow from Theorem 7.14 of [9].

COROLLARY 4.2. Suppose $G = H \times K$ and that $G \in \mathcal{C}$. Suppose further that H is finite but not nilpotent of class at most 3, and let $x, y \in K$. Then the order of [x, y] is less than the exponent of H'. In particular, if K is finite and of odd order then exp(K') < exp(H').

PROOF. First note that if K has odd order then K' is abelian, by Theorem 1, and so all we need establish is the statement concerning each commutator of K. Suppose for a contradiction that $x,y \in K$ and $|[x,y]| \geq exp(H')$. We have $[x,y]^y = [x,y]^m$ for some integer m, and by Proposition 4.1 there are elements a,b of H such that $[a,b]^b \neq [a,b]^m$, but $[a,b]^b = [a,b]^n$ for some integer n. Now $[ax,by]^{by} = [a,b]^n[x,y]^m = ([a,b][x,y])^r$ for some r, and we have $r \equiv n \mod |[a,b]|$ and $r \equiv m \mod |[x,y]|$, and by our choice of x,y this gives $m \equiv n \mod |[a,b]|$ and so $[a,b]^b = [a,b]^m$, a contradiction.

Suppose now that p is an odd prime and that G is a p-group in C. Every two-generator subgroup of G has cyclic derived subgroup and is therefore regular, and in particular $[x^{p^n},y]=[x,y]^{p^n}=[x,y]^{p^n}$ for all $x,y\in G$ and for all positive integers n. (For these properties of regular p-groups we refer the reader to Chapter 4 of [8].) Now if $x\in G$ and |x|=p then we deduce that $[x,y]^p=1$ and so y centralizes [x,y], so x is a 2-Engel element and, since p is odd, it follows that x lies in $Z_3(G)$ - see Corollary 2 to Theorem 7.13 of [9]. By induction, an element of order at most p^n lies in $Z_{3n}(G)$, for each positive integer n, and so G is hypercentral, with hypercentral length at most ω . In particular, G is locally finite and therefore, by Theorem 2 of [1], metabelian. These facts about G will be used in our subsequent discussion.

Lemma 4.3. Let G be a p-group in C, where p is an odd prime, and let A be a normal nilpotent subgroup of G, with G/A abelian.

- (i) If G/A has finite exponent then G is nilpotent.
- (ii) If G/A is divisible then G is nilpotent.

PROOF. (i) By induction we may suppose that G/A has exponent p. If G/A' is nilpotent then so is G [5], and so we may factor by A' and assume that A is abelian. Let $a \in A, g \in G$. Then $1 = [a, g^p] = [a, g]^p$ and so $[A, G]^p = 1$ and $[A, G] \le Z_3(G)$, which gives $A \le Z_4(G)$ and G nilpotent.

(ii) As in part (i) we may suppose that A is abelian. We shall show that $A \leq Z(G)$, and for this we may assume that $G/A \cong C_{p^{\infty}}$, and so there are elements $g_1,g_2,...$ such that $G=A\langle g_1,g_2,...\rangle, g_1^p\in A$ and $g_{i+1}^p\equiv g_i \mod A$ for each $i\geq 1$. Let $a\in A$ and suppose that a has order p^n . Then, for $i\geq n+1$, we have $1=[a^{p^n},g_i]=[a,g_i^{p^n}]=[a,g_{i-n}]$. Thus $[a,g_j]=1$ for all $j\geq 1$ and the result follows.

PROOF OF THEOREM 5. We have seen that G is metabelian; let A be a normal abelian subgroup of G such that G/A is also abelian, and let B/A be a basic subgroup of G/A - so B/A is a direct product of cyclic subgroups and G/B is divisible (see [10; 4.3.4]). Assuming for a contradiction that G is not nilpotent, we have from Lemma 4.3 that B is not nilpotent, so we may assume that G/A is a direct product of cycles. Choose a finite subgroup F_1 of G such that F_1 is not nil-4 and F_1A/A is a direct factor of G/A, and write $G/A = F_1A/A \times M/A$.

M is normal in G, as therefore is M^{p^n} , where p^n is the exponent of F_1 . Since G/M^{p^n} has finite exponent we have from Lemma 4.3 that $N:=M^{p^n}$ is not nilpotent. For $x \in F_1$ and $y \in M$ we have $1 = [x^{p^n}, y] = [x, y^{p^n}]$, and it follows that $[F_1, N] = 1$. Note that $N \cap F_1 \leq Z(F_1)$, therefore.

Let $D = \{a \in A : a^{p^n} = 1\}$. If every finite subgroup F_2 of N has derived subgroup of exponent at most $p^n \mod D$ then $exp(F_2') \leq p^{2n}$ and hence $F_2' \leq Z_{6n}$ for all such F_2 , and so $N' \leq Z_{6n}(G)$ and we obtain the contradiction that N is nilpotent. Thus we may choose a finite subgroup F_2 of N such that $exp(DF_2'/D) > p^n$.

Let $E=F_1\cap F_2$. Then $E\leq Z(F_1), [E,F_2]=1$ and $E\leq D$ (recall that $F_1\cap N\leq A$.) Let $H=\langle F_1,F_2\rangle$. Then $E\lhd H$ and $H/E=F_1/E\times F_2/E$, and since $E\leq Z(F_1)$ we see that F_1/E is not nil-3. By means of Corollary 4.3 we deduce that $exp(EF_2'/E)< exp(EF_1'/E)\leq exp(F_1')\leq p^n$. But $E\leq D$ and so $exp(DF_2')/D)< p^n$, a contradiction that concludes the proof of Theorem 5.

5. Locally graded groups.

First let G be a locally supersoluble group in C. The set L of elements of odd order in G forms a subgroup, which of course is characteristic in G, and if M is the maximal normal torsion subgroup of G then M/L is a locally

finite 2-group. Now G' is locally nilpotent, and we may apply Proposition 3.6 to the group G/M to obtain a normal torsion-free nil-2 subgroup N/M of index at most 2 in G/M. Thus, in order to establish Theorem 6, it suffices to prove the following.

PROPOSITION 5.1. Let G be a locally graded group in the class C. Then G is locally supersoluble.

This in turn requires a preliminary lemma.

Lemma 5.2. Let G be a group in the class C and suppose that every torsion element of G has 2-power order.

- (i) If $a \in G$ and |a| = 4 then $[a^2, x^2] = 1$ for all $x \in G$.
- (ii) c^2 is in the ω -hypercentre of G^2 for every 2-element c of G.

PROOF. For (i), let a be as stated and let $x \in G$. If [a,x] has infinite order then $[a,x]^a = [a,x]^{-1}$, for if $[a,x]^a = [a,x]$ then we obtain the contradiction that $[a,x]^4 = 1$. Thus $[a^2,x] = 1$ and so $[a^2,x^2] = 1$ in this case. Now suppose that [a,x] is a 2-element; then $[a,x]^a = [a,x]^{1+2s}$ for some integer s and so $[a,x]^{a^2} = [a,x]^{1+4h}$ for some h, and it follows that $1 = [a^4,x] = [a^2,x]^{2+4h} = [a^2,x]^{2t}$, where t is odd. Thus $[a^2,x]^2 = 1$, and we have $[a^2,x]^x = [a^2,x]$ and hence $[a^2,x^2] = 1$, as required. Now suppose that c has order 2^n . Statement (ii) follows by an easy induction on n, provided that $G/Z(G^2)$ inherits from G the property that there are no nontrivial elements of odd order. But if $g \in G$ and $g^k \in Z(G^2)$ for some odd k then it is clear that $g \in Z(G^2)$, and the lemma is proved.

PROOF OF PROPOSITION 5.1. We may assume that G is finitely generated. Let R denote the finite residual of G and suppose that G/R is supersoluble. Now $\langle x \rangle^{\langle y \rangle}$ is finitely generated for all x,y in G, and we may apply Lemma 3 of [6] to deduce that R is finitely generated. If R is nontrivial then it has a proper G-invariant subgroup S of finite index, and then G/S is polycyclic and hence residually finite, giving the contradiction R=S. Thus we may assume that G is residually finite. Every finite image is supersoluble and hence nilpotent-by-abelian, and so G' is residually a finite nilpotent group; it is also finitely generated, again by Lemma 3 of [6], and if G' is supersoluble then G is soluble and the result follows from [7]. Thus we may assume that G is residually (finite nilpotent), and since the G-radical of every finite nilpotent image is metabelian, we may suppose that G is residually finite-2.

Let H be the hypercentre of G^2 ; by Lemma 5.1, $c^2 \in H$ for all 2-elements c of G. Let $x, y \in G$; if [x, y] has infinite order then $[x, y]^y = [x, y]$ or $[x, y]^{-1}$, but the same holds mod H if [x, y] has 2-power order, for in that case we have $[x, y]^2 \in H$. Arguing as in the proof of Corollary 3.4, we deduce that G^2/H is locally nilpotent. But G^2 has finite index in G and is therefore finitely generated, so G^2/H is nilpotent, and another application of Lemma 3 of [6] gives H finitely generated and hence nilpotent. So G is soluble, and the result follows from [7].

Finally, it is clear that Theorem 7 follows immediately from Lemma 5.2.

Acknowledgments. The third author is grateful to the Mathematics Department at the University of Salerno for its splendid hospitality.

REFERENCES

- [1] J. L. Alperin, On a special class of regular p-groups, Trans. American Math. Soc., 106 (1963), pp. 77–99.
- W. DIRSCHERL H. HEINEKEN, A particular class of supersoluble groups, J. Australian Math. Soc. 57 (1994), pp. 357–364.
- [3] K. DOERK, Minimal nicht überauflösbare, endliche Gruppen, Math. Z. 91 (1966), pp. 198–205.
- [4] D. GORENSTEIN, Finite Groups, Harper and Row, New York, 1968.
- [5] P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958), pp. 787–801.
- [6] Y. K. KIM A. H. RHEMTULLA, Weak maximality condition and polycyclic groups, Proc. American Math. Soc. 123 (1995), pp. 711–714.
- [7] J. C. LENNOX, Bigenetic properties of finitely generated hyper-(abelian-by-finite) groups, J. Australian Math. Soc. 16 (1973), pp. 309–315.
- [8] S. McKay, Finite p-groups, Queen Mary Maths Notes, 18, Queen Mary University of London, 2000.
- [9] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, 2 vols., Springer-Verlag, 1972.
- [10] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, 1993.

Manoscritto pervenuto in redazione il 29 luglio 2005.