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1. Introduction.

Let us denote by C the class of groups G for which (x, )" is eyclic for all
x,y € G. Itis easy to check that a group G belongs to C if and only if, for all
%,y € G, there is an integer n = n(x,y) such that [x, y]Y = [x,y]". Groups
G with this property appear to have been first studied in [1]. Theorem 2 of
that paper states that a finite nilpotent group G of odd order in which every
two-generator subgroup has cyclic derived group is metabelian, and it is
remarked that it is not known whether the stated restriction on the order
of G is necessary. We show that it is indeed necessary, that is, we exhibit a
finite 2-group in C that is not metabelian (see Theorem 4 below). We also
generalise the above result of Alperin by proving the following.

THEOREM 1. IfG is a finite group of odd order that belongs to the class C
then G is metabelian.

Another result from [1] is that a torsion-free nilpotent group with our
property is metabelian. It turns out that there is considerably more that
may be said about torsion-free groups in C.

THEOREM 2. If G is a torsion-free group in the class C then G has a
normal nilpotent subgroup N of class at most 2 and index at most 2in G. In
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particular, a torsion-free locally nilpotent group in C is wilpotent of class at
most 2.

In fact, a satisfactory classification is available for torsion-free groups
in C, as follows.

THEOREM 3. Let G be a torsion-free group. Then G € C if and only if
either G is nilpotent of class at most 2 or G/ Z(G) = F | Z(().{9)Z(G) ] Z(G),
where F | Z(G) is abelian, g € Z(G) and of =~ a~! mod Z(G) for all a € F.

Our next result shows that Theorem 2 cannot be improved upon in at
least one direction; it also provides us with a finite 2-group that answers
the question from [1] referred to above. We make the obvious remark that
subgroups and homomorphic images of a group in C are again in C.

THEOREM 4. There exists a torsion-free group G that lies in the class C
but is not metabelian. Furthermore, G has a homomorphic image of order
219 that is not metabelian.

For p a fixed prime, it is easy to exhibit finite p-groups of arbi-
trarily large nilpotency class that belong to C, for the group G, :=
= (a,b:a?” =1=0b"" b"lab=aP™) is metacyclic and has class ex-
actly n for each positive integer n. One might try to use these easy
examples to construct a locally finite p-group in C that is not nilpotent
but, at least for odd p, such a construction is not possible, as the fol-
lowing result indicates.

THEOREM 5. Let p be an odd prime and let G be a p-group in the class C.
Then G is nilpotent.

It is obvious that every two-generator subgroup of a group in C is su-
persoluble, and by a result from [3] we have immediately that a finite group
in C is supersoluble. This was pointed out in [2], where several structural
properties were established for finite groups in C. Our next result shows
that local supersolubility is a characteristic of many groups in C. It was
established in [7] that a finitely generated hyper(abelian-by-finite) group
in which every two generator subgroup is supersoluble is itself super-
soluble, while our stronger hypothesis allows us to establish local super-
solubility for an arbitrary locally graded group, where each nontrivial fi-
nitely generated subgroup is assumed to have a nontrivial finite image.



Groups in which the derived groups of all 2-generator etc. 31

Indeed, we do not know whether even this extra hypothesis is necessary,
but if there is a counterexample at all then it is easily shown that there is
one that is finitely generated, infinite and simple.

THEOREM 6. Let G be a locally graded group in the class C. Then G is
locally supersoluble and has a finite series of characteristic subgroups
1 <L <M <N < Gwhere L is metabelian and consists of all the elements
of G that have odd order, M /L is a (locally finite) 2-group, N /M is torsion-
free and nilpotent of class at most 2, and G /N has order at most 2.

Theorem 6 presents by no means a satisfactory description of locally
supersoluble groups in C. We would like to know more about finite 2-groups
in C - perhaps such a group always has its derived subgroup, or even its
square, of bounded nilpotency class, though we have insufficient evidence
to present this as a conjecture. We are, however, able to assert the fol-
lowing, our final main result.

THEOREM 7. If G is a 2-group in C then G? is hypercentral, of length at
Most w.

It will be seen that this last result is an easy consequence of a lemma
that is required in order to establish Theorem 6. We mention (without
providing a proof) that, if G is a 2-group in C then G? is also soluble, and we
conjecture that it is nilpotent. Possibly G itself is nilpotent, but again we
are reluctant to offer this as conjecture.

2. Finite groups in the class C.

In this section we prove Theorem 1. It is convenient to divide the proof
into a sequence of lemmas as follows

LEmMma 2.1. Let G € C and suppose that G = P x (x), with P a finite p-
subgroup and x a p'-element of odd order, where p is an odd prime. If
a,b € P\Cp(x) and [a,x]" = [a,x]",[b, x]" = [b,x]°, then r = s mod p and
1 # r mod p.

Proor. Let ¢ be maximal such that neither [a, x] nor [b, x] is contained
in Z;(P), the ith term of the upper central series of P. Working modulo
Z;(P), we may assume that 1 # [a,x] € Z(P),[b,x] # 1. Then for some in-
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teger t we have [ab,x] = [a,x][b, 2], [ab, x]" = [ab,ac]t =[a, m]t[b, ac]t, and
[ab,x]" = [a,x]°[b,2]" = [a,2]"[b,x]’. If ([a,x]) N {[b,«]) contains a non-
trivial element c then ¢* = ¢" = ¢® and r = smod |c|, while if the intersection
is trivial then[a, 2" =1 = [b, 2] *and t = »mod la, ]|, s = t mod |[b, ]|,
and in particular » = s mod p. Also r # 1, for otherwise [a,; x] = 1 for some j
and hence [a, 2] = 1, a contradiction.

LEMMA 2.2. Let G € C and suppose that G = P x (x), with P a finite p-
subgroup and x a p’-element of odd order, where p is an odd prime. Then
[P, (x)] is abelian.

ProoF. Supposing the result false, there exist @,b € P such that
¢ :=[[a,2],[b,x]] # 1. As G is supersoluble there is a normal subgroup N of
G that has order p, and by induction on |G| we may assume that [P, (x)] is
abelian modulo N. By Lemma 2.1 we have [a, 2]° = [a, 2]", [b, x]° = [b, 2]’
with7 = smod p. If N < Cg(x)thenl # ¢ = ¢* = ¢"* and s0 7 = rs = 1 mod
p, a contradiction since |¢| is odd and » # 1 mod p, by Lemma 2.1. Thus
N £ Cg(x) and [n,x]" = [n, x] for every nontrivial element »n of N, where
t = r mod p, again by Lemma 2.1. Now 1 # ¢! = ¢%, as ¢ = [n,x]" for some
n € N,v € 7, and since ¢* = ¢"* we have > = r mod p. Lemma 2.1 gives the
required contradiction.

LEMMA 2.3. Let G € C and suppose that G = P x (x), with P a finite p-
subgroup and x a p'-element, where p is an odd prime. Then G is meta-
belian.

Proor. By Theorem 3.5 of [4] we have P = Cp(x)[P, (x)]. Moreover,
[P, {x)]<G,andso G’ = (Cp@)[P, (x)]. By Theorem 2 of [1] and Lemma 2.2
above, each of (Cp(x)) and [P, (x)] is abelian, and it suffices to show that
(Cpx)) < Cq([P, (x)]). Butif a € P, g € Cp(x) then we have [a, x] = [ga, ]
and, since G € C, each of a,ga and «x is in the normalizer K of ([a,x]) in G.
Thus Cp(x) < K and (Cp(x)) < Cg({[a,x])), and the result follows.

LEMMA 2.4. Let G € C and suppose that G = P x (x), with P a finite p-
subgroup and x a p'-element of odd order, where p is an odd prime. If
Z(P) < Cg(x) then G s milpotent.

ProoF. Assume the result false and let < > 1 be maximal such that
Z;(P) < Cg(x). Then « does not act nilpotently on Z;,1(P) and we may as-
sume that i = 1. Let a € Z3(P), b € P. By Lemma 2.2, [[a,x], [, 2]] = 1,
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and since G € C it follows that [x,b~1] centralizes [a,x]* and hence that
[a, 21" = [a,x]®. Also, ([a, x])P is abelian, and we deduce easily that
1=[a,x,b,x] =[a,x,x,0], and since b was arbitrary it follows that
[a,x,x] € Z(P). Thus [a,x,x] € Ca(x) and so a € Cp(x), and we have a
contradiction to the fact that x does not centralize Z5(P).

We are now in a position to complete the proof of the theorem.

Proor oF THEOREM 1. Let G be a counterexample of minimal order.
Since G is supersoluble we have G’ nilpotent, and it follows by minimality
that G’ is a p-group for some prime p. Let P be a Sylow p-subgroup of G;
thus G' <P and G =PxX for some abelian p’-subgroup X, and
G' = P[P,X]. Now P’ is abelian, by [1], and by Lemma 2.3 P[P, (x)] is
abelian for every « € X and X is not cyclic. Thus [P, X] is not abelian and
we may choose elements a,b € P and x,y € X such that [[a, ], [b, y]] # 1.
By minimality we have G = (a, b, x,y) = P{x,y); also Z(P) is cyclic since G
has just one normal subgroup N, say, of order p. Write N = (n).

If n* =n® and n? = »”, with each of a, # 1 mod p, then we have
n* = n for some y, and so if z = xy” then N < C;(2), so that Z(P) < Cg(2)
(see Theorem 3.10 of [4]) and P < Cg(z) by Lemma 2.4. But then
G = P(y,z) and [P(y), ()] =1, and so G’ is abelian. This contradiction
concludes the proof of the theorem.

3. Torsion-free groups.

Our main objective in this section is the classification of torsion-free
groups in C, as presented in Theorem 3. For much of the following dis-
cussion we concern ourselves with C-groups G whose derived subgroups
are torsion-free. We begin with an easy lemma, but one which has a very
useful consequence. All we need for the proof is that, for elements a,x of a
group G, ([a,x])'” = [(a),x].

LEMMA 3.1. Let G be a group, a,x € G, and suppose that [a, x]* = [a, x]
orla,x]* =[a, 2], Then a2 centralizes [{a),x].

The next two results are also very straightforward.

LemMA 3.2. Let G € C and suppose that (x,y)" is either infinite or trivial
for all x,y € G. Let g € G. Then, for each x € G, either [x,g*]1=1 or
[x,g9,9] = 1 (with both holding if and only if [x,g] = 1).



34 Patrizia Longobardi - Mercede Maj - Howard Smith

Proor. If g,x € G then ([x,9]) < (x,g) and so [x,g) = [x,g] (and
[,9,91=1) or [x,g)’ =[x,g] ". In the latter case we have [x,¢%] =
= [xhg]z[x?gag] = [96',9]2[90,9]_2 =1.

LemMa 3.3. Let G be a torsion-free locally nilpotent group in C. Then G
1s nilpotent of class at most 2.

Proor. If x,y € G then each of x and y normalizes ([«,y]) and hence
centralizes it, by local nilpotency. Thus G is 2-Engel and hence nilpotent of
class at most 2 (see, for example, [9; Theorem 7.14]).

COROLLARY 34. Let G € C and suppose that G has no nontrivial
normal torsion subgroups. Suppose further that (x,y)' is either infinite or
trivial for all x,y € G. Then G? is nilpotent of class at most 2 (and so G’ is
nil-2).

ProOOF. Let a € G. If x € G then, using Lemma 3.1, we see that a®
centralizes [(a), 2] and, since x was arbitrary, a? centralizes [(a),G]. Thus
(a?)% is abelian. Since this is true for all @ € G it follows that G2 is a product
of normal abelian subgroups and hence locally nilpotent, and the result
follows by Lemma 3.3.

We are almost in a position to establish a result that says much about
the structure of certain groups in C. But first we must prove the following
“global version” of Lemma 3.2.

LemMa 3.5. Let G € C and suppose that (x,y)" is either infinite or trivial
forallx,y € G. Then, for each g € G, either g* € Z(&) or [x,9,9] = 1 for all
x e G

Proor. Fixge Gandlet Ty ={x e G :[x,g9,9] =1}.
Claim. T, is a subgroup of G.

Let x,y € Ty, so [x,9,9] =1=[y,9,9], and suppose for a contra-
diction that [xy,g,g] # 1. Then [xy,¢*] = 1, by Lemma 3.2, and we de-
duce that [x, ¢*] = ([?/,92]71)?’71 and hence that [z, ¢?] € (x,9)" N (y,9)" and
so N := ([x,¢?]) is normal in H := (x,%,9). In the following, all con-
gruences are modulo N: since [x,¢, 9] = 1 we have [x, g]* = [x,¢?] = 1 and
similarly [y,g]2 =1. Also [x,g,2] =1 or [90,9]*2 and so [x,9,2] =1, and
similarly [y,g,y]1=1. Next, [x,9,9y] = [x,9,y] = [x,9,2y] and, since ¥y
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normalizes ([[x,¢],y¥]) and xy normalizes ([[x,g],gy]) it follows that
(y,xy,gy) normalizes K := ([x,g,y]) mod N, so H normalizes K mod N,
and hence H’' centralizes K mod N. In particular, [[x,g,¥y],[x,g]] € N,
and so 1 = [[x, g]z, yl =lx,9, y]z, and it follows that K has order at most 2
mod N and hence that [K, H] < N. We deduce that [x,g]N € Zs(H/N)
and similarly that [y, gIN € Zo(H/N). Thus [xy,gIN € Zo(H/N) and we
have [xy,9,9,9]1 € N. But [x,9,91 =1 and N = ([x,¢*]) together imply
[N,g] =1 and hence [xy,g,9,9,9] = 1. But ¢? centralizes xy and hence
(ey)?, and we get 1= [xy,g,9,9%] = [xy,g,9,9F and so [xy,g,g,9] = 1.
Similarly [xy,g,¢9] = 1 and this contradiction establishes the claim.

Again by Lemma 3.2 we have G = C(¢9%) U T, and so either G = C;(¢?)
or G =Ty, as required.

ProPOSITION 3.6. Let G € C and suppose that G has no nontrivial
normal torsion subgroups. Suppose further that (x,y)' is either infinite or
trivial for all xz,y € G, and let F = Fiti(G), the Fitting radical of G. Then
the following hold.

(G) Ifg € G\ F then of = o' mod Z(G) for all a € F.
(i) G/F has order at most 2.
(i) F' < Z(G).

Proor. By Lemma 3.3 and its corollary, F' is (torsion-free) nilpotent of
class at most 2 and contains G?, and so G /F has exponent at most 2. Suppose
that there exists g € G\ F andleta € F.If[u,ag,ag] = 1for allu € F then
[u,g9,9] € F' for all w € F and so [F, (g}, (9)] < F" and F(g)/F" is nilpotent.
But then F'(g) is nilpotent (see [5]) and so g € F' (since F'(g) <G), a con-
tradiction. It follows from Lemma 3.5 that (ag)2 € Z(G)foralla € F (and in
particular g> € F). Thus, again for all @ € F, @/ = a ! mod Z(G), and (i) is
proved. If h and gh are also in G \ F then we have ¢" = ¢! and o?* = ¢!
mod Z(G) for all @ € F, but a?* = ¢ and s0 @ = ¢! for all @, and hence
[F,{g)] < Z(G) and again we have the contradiction that F'{g) is nilpotent.
Thus G/F has order at most 2. Finally, suppose /' < G, choose g € G\ F
and let a,b € F. Then, modulo Z(G), a! = a® = (ala,b])? = a a, bt
and so [a, bl € Z(G) and statement (iii) follows.

Theorem 2 follows immediately from Proposition 3.6 and Lemma 3.3.
Proposition 3.6 also establishes that a torsion-free group in C has the
structure described in Theorem 3. Suppose now that G is a torsion-free
group; if G is nil-2 then of course G € C, so assume that G = F'(g) where F’
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and g are as described in Theorem 3. Let H be an arbitrary two-generator
subgroup of G. If H < F then H' is cyclie. Otherwise, H = (a, bg) for some
a,b € F; then o/ = a2z for some z € Z(G) and one checks easily that
[a,bg] = z[a,bla~? and [a, bg]bg = [a, bg]’l, so H' is again cyclic. Thus
Theorem 3 is also proved.

Proor or THEOREM4. Let A = (a) x (2), a free abelian group of rank 2,
and let H be the group with presentation (x,y : [x,y]" = [y, x] = [x,y1¥). It
is routine to check that H is torsion-free; indeed, H is an extension
(e, [, y]) x (y), where x acts by inversion on ([x,y]) and the action of y on
(e, [, y]) isviaa? = wlx, y], [z, y] = [x, y]’l. We define an action of H on A
by setting a®=a"12,0Y =a71,2°* =z =2Y. It is easily verified that
o =alz,0¢" =a 1, a"N = 22, ¥ = az 2, a® " =az=a", and that
the relations for H are thereby respected. With the above action, set
G = A x H, which is also torsion-free.

First let us observe that G’ is not abelian, for it contains both
[a, %] = a2z and [z, y], but (¢ ~22)"¥ = ¢22-3. Next, it is clear that 2 and
y? are central in G, as of course is 2. Since [a, [, ¥]] = 22, the centralizer of
a in H is easily seen to be (x% %), and so Z(G) = (z,2%,9%). Let
F = (A, 2%,9%, [x,y],2y~!). From the above calculations and the fact that
[[x,y],2y~1] = 1itis immediate that F'/Z(G) is abelian. Also G = F (y), and
since y inverts every element of /' modulo Z(G) we may apply Theorem 3 to
deduce that G € C.

Finally, let N be the subgroup of G generated by a®, 2% 2% 9? and
[x,y]*. Since [a, [x, y]] = 2% we have [a, [x,y]'] = 2% and it follows that N is
normal in G. Certainly |[HN/N| =16 and |AN/N|=64 and so G/N has
order 21°, Furthermore, [a,x, [x,y]] = 2~* € N and so (G/N)' is not abe-
lian, and the proof of Theorem 4 is complete.

4. p-groups in the class C, where p is odd.

Our first result in this section is very easy to prove but is nonetheless of
some interest. In any case, the special case where G is a p-group will turn
out to be an important ingredient in the proof of Theorem 5.

PropoSITION 4.1. Let G be a group, n an integer, and suppose that
[z,y) = [z,y]" for all z,y € G. Then G is 2-Engel and therefore nilpo-
tent of class at most 3, and of class at most 2 if G contains no elements of
order 3.
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Proor. Let x,y € G. Then [y,x]’ = ([x,y]*l)y =[x, y]™" =[y,x]" =
=[y,x}* and so ay ! centralizes [y,x] and hence -centralizes
(ly,x]) = (x,y)'. In particular, [x,xy~ ', 2y ']1=1. If a,b € G then we
set ¥ =a,y = b la in the above to get [a,b,b] =1, as required. The
consequences for the nilpotency class of G follow from Theorem 7.14
of [9].

COROLLARY 4.2. Suppose G = H x K and that G € C. Suppose further
that H s finite but not nilpotent of class at most 3, and let x,y € K. Then
the order of [x,y] is less than the exponent of H'. In particular, if K is
finite and of odd order then exp(K') < exp(H').

Proor. First note that if K has odd order then K’ is abelian, by
Theorem 1, and so all we need establish is the statement concerning each
commutator of K. Suppose for a contradiction that x,y € K and
[, y]| > exp(H'). We have [x,y]Y = [x,y]"™ for some integer m, and by
Proposition 4.1 there are elements a, b of H such that [a, b’ # [a, b]", but
[a,b]’ = [a,b]" for some integer n. Now [owc,by]by = [a, b]"[x,y]" =
= ([a, bl[x,y])" for some 7, and we have » = n mod |[a, b]| and » = m mod
[, %]|, and by our choice of x,y this gives m =n mod |[a,b]| and so
[a,b]” = [a, b]™, a contradiction.

Suppose now that p is an odd prime and that G is a p-group in C. Every
two-generator subgroup of G has cyclic derived subgroup and is therefore
regular, and in particular [x?",y] = [x,y]pn = [oc,y]p” for all x,y € G and
for all positive integers n. (For these properties of regular p-groups we
refer the reader to Chapter 4 of [8].) Now if « € G and |x| = p then we
deduce that [x, ¥’ = 1 and so y centralizes [x, ¥], so x is a 2-Engel element
and, since p is odd, it follows that a lies in Z3(G) - see Corollary 2 to
Theorem 7.13 of [9]. By induction, an element of order at most p" lies in
Z3,(@), for each positive integer n, and so G is hypercentral, with hy-
percentral length at most w. In particular, G is locally finite and therefore,
by Theorem 2 of [1], metabelian. These facts about G will be used in our
subsequent discussion.

LEmMA4.3. Let G be a p-group in C, where p is an odd prime, and let A be
a normal nilpotent subgroup of G, with G/A abelian.

(@) If G/A has finite exponent then G is nilpotent.
(i) If G/A is divisible then G is nilpotent.



38 Patrizia Longobardi - Mercede Maj - Howard Smith

Proor. (i) By induction we may suppose that G/A has exponent p. If
G /A’ is nilpotent then so is G [5], and so we may factor by A’ and assume
that A is abelian. Let a € A,g € G. Then 1= [a,¢"] = [a,¢9]’ and so
[A,GP =1and [4,G] < Z3(G), which gives A < Z4(G) and G nilpotent.

(ii) As in part (i) we may suppose that A is abelian. We shall show that
A < Z(G), and for this we may assume that G/A = C)~, and so there are
elements g1,gz, ... such that G = A(g1, gz, ...),97 € A and ¢/ | = g; mod A
for each 7 > 1. Let a € A and suppose that a¢ has order p”. Then, for
i>n+1,wehavel = [a?" g;] = [a,g?n] = [a,9i_»]. Thus [a,g;] = 1 for all
7 > 1 and the result follows.

ProOF oF THEOREM 5. We have seen that G is metabelian; let A be a
normal abelian subgroup of G such that G/A is also abelian, and let B/A be
a basic subgroup of G/A - so B/A is a direct product of cyclic subgroups
and G/B is divisible (see [10; 4.3.4]). Assuming for a contradiction that G is
not nilpotent, we have from Lemma 4.3 that B is not nilpotent, so we may
assume that G/A is a direct product of cycles. Choose a finite subgroup
of G such that F'; is not nil-4 and F'1A /A is a direct factor of G/A, and write
G/A =F,A/A x M/A.

M is normal in G, as therefore is M?", where p” is the exponent of F;.
Since G/MP" has finite exponent we have from Lemma 4.3 that N := M*" is
not nilpotent. For x € F; and y € M we have 1 = [x”",y] = [x,%”"], and it
follows that [/, N] = 1. Note that N N F; < Z(F), therefore.

Let D = {a € A : a?" = 1}. If every finite subgroup F3 of N has derived
subgroup of exponent at most p" mod D then exp(F3) < p* and hence
F}, < Zg, for all such Fs, and so N’ < Zg,(G) and we obtain the contra-
diction that N is nilpotent. Thus we may choose a finite subgroup Fs of N
such that exp(DF}/D) > p".

Let E =FiNFs. Then £ < Z(F),[F,F3] =1 and E < D (recall that
FiNN<A)LetH = (F1,Fs). Then E<H and H/E = F/E x Fy/E, and
since £ < Z(F1) we see that F'; /E is not nil-3. By means of Corollary 4.3 we
deduce that exp(EF,/E) < exp(EF| /E) < exp(I'}) < p".But E < D and so
exp(DF)/D) < p", a contradiction that concludes the proof of Theorem 5.

5. Locally graded groups.
First let G be a locally supersoluble group in C. The set L of elements of

odd order in G forms a subgroup, which of course is characteristic in G, and
if M is the maximal normal torsion subgroup of G then M/L is a locally
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finite 2-group. Now G’ is locally nilpotent, and we may apply Proposition
3.6 to the group G/M to obtain a normal torsion-free nil-2 subgroup N /M
of index at most 2 in G/M. Thus, in order to establish Theorem 6, it suffices
to prove the following.

ProposITION 5.1. Let G be a locally graded group in the class C. Then
G 1s locally supersoluble.

This in turn requires a preliminary lemma.

LEmMMA 5.2. Let G be a group in the class C and suppose that every
torsion element of G has 2-power order.

(i) Ifa € G and |a| = 4 then [a?,4*] = 1 for all x € G.
(ii) c? is in the w-hypercentre of G* for every 2-element c of G.

Proor. For (i),let a be as stated and let x € G. If[a, ] has infinite order
then [a,x]* = [a, ac]*l, forif [a, 2] = [a,«x] then we obtain the contradiction
that [a, 2]* = 1. Thus[a?, #] = 1 and so [a2, %] = 1 in this case. Now suppose
that [a,x]is a 2-element; then [a, 2]* = [a, 2] for some integer s and so
[a, 2] = [a, 2] for some h, and it follows that 1=[a?,x]=[a2, x4 =
= [a?, 2]%, where t is odd. Thus [a?, x]? = 1, and we have [a2, 2]° = [a2, x]
and hence [a?,2%] =1, as required. Now suppose that ¢ has order 2".
Statement (ii) follows by an easy induction on 7, provided that G/Z(G?)
inherits from G the property that there are no nontrivial elements of odd
order. But if g € G and gk € Z(G?) for some odd k then it is clear that
g € Z(G?), and the lemma is proved.

PrOOF OF PROPOSITION 5.1. We may assume that G is finitely generated.
Let R denote the finite residual of G and suppose that G /R is supersoluble.
Now (x) W is finitely generated for all #, ¢ in G, and we may apply Lemma 3
of [6] to deduce that R is finitely generated. If R is nontrivial then it has a
proper G-invariant subgroup S of finite index, and then G/S is polycyclic
and hence residually finite, giving the contradiction R = S. Thus we may
assume that G is residually finite. Every finite image is supersoluble and
hence nilpotent-by-abelian, and so G’ is residually a finite nilpotent group;
it is also finitely generated, again by Lemma 3 of [6], and if G’ is super-
soluble then G is soluble and the result follows from [7]. Thus we may
assume that G is residually (finite nilpotent), and since the 2'-radical of
every finite nilpotent image is metabelian, we may suppose that G is re-
sidually finite-2.
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Let H be the hypercentre of G?; by Lemma 5.1, ¢ € H for all 2-ele-
ments ¢ of G. Let x, y € G; if [, y] has infinite order then [x, y]Y = [x,y] or
[, y]_l, but the same holds mod H if [x, %] has 2-power order, for in that
case we have [x,y]? € H. Arguing as in the proof of Corollary 3.4, we de-
duce that G?/H is locally nilpotent. But G has finite index in G and is
therefore finitely generated, so GZ/H is nilpotent, and another application
of Lemma 3 of [6] gives H finitely generated and hence nilpotent. So G is
soluble, and the result follows from [7].

Finally, it is clear that Theorem 7 follows immediately from Lemma 5.2.
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