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Cyclic Quasinormal Subgroups of Arbitrary Groups (*).
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ABSTRACT - In recent years several papers have appeared showing how cyclic
quasinormal subgroups are embedded in finite groups and many structure
theorems have been proved. The purpose of the present work is twofold. First
we show that, without exception, all of these theorems remain valid for finite
cyclic quasinormal subgroups of infinite groups. Secondly we obtain analogous
results for infinite cyclic quasinormal subgroups, where the statements turn out
to be even stronger.

1. Introduction and statement of results.

Let A be a cyclic quasinormal subgroup of a group G. Thus for every
subgroup X of G, AX = XA = (A, X). When G is finite, then the structure
of the normal closure A% of A in G is quite well understood. If A has odd
order, then [A, G] is abelian and A acts on it by conjugation as a group of
power automorphisms ([2]). When A has even order, then [A, G] is nilpo-
tent of class at most 2. When dihedral actions are excluded in certain
subgroups of products AX, where X is cyclic (see below), then [A, G] has
order at most 2 and A acts on [4, G]/[A, G] as power automorphisms ([3]).
But always [A,G,A] is abelian and A acts on it again as power auto-
morphisms ([4]).

Many of the arguments used in obtaining these results involved in-
duction on group orders; and at the time, infinite groups did not appear to
be the natural setting for the work. However, it has now transpired that all
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the major results in [2], [3] and [4] are true without the hypothesis that G is
finite. A large part of the present work, therefore, is devoted to extending
those earlier theorems to the case where G is infinite. Many of the original
proofs can be repeated almost verbatim, modulo some initial lemmas, and
we shall endeavour to avoid tedious repetition. But of course when G is
infinite we have the new situation allowing the cyclic quasinormal sub-
group A to be infinite also. The arguments in this case are new and we give
them in full. As one might intuitively expect, the structure of A¢ is simpler
when A is infinite than when A is finite.

Our work therefore divides naturally into three parts, dealing with the
two cases when A is finite, corresponding to |A| odd and |A| arbitrary
(analogous to the contents of [2], [3] and [4]); followed by the situation when
A is infinite. In general

all groups G are assumed to be arbitrary,

i.e. finite or infinite. For any set 7 of primes, A, denotes the 7-component of a
cyclic group A. Recall that all subgroups of a cyclic quasinormal subgroup
are also quasinormal (see Lemma 2.3 below). Our main results are as follows.

THEOREM A. Let A be a finite cyclic quasinormal subgroup of odd
order in a group G. Then [A, G] is abelian and A acts on it as a group of
power automorphisms.

THEOREM B. Let A be a finite cyclic quasinormal subgroup of a group
G. Suppose that each cyclic subgroup X of G is quasinormal in AxX, and
let N =[A,G]. Then

@ |N|<2and N < A;
(i) A acts on [A,G]/N as a group of power automorphisms; and
(iii) [A,G] is abelian if and only if A acts on [A,G] as a group of
power automorphisms.

In Example 5.2 of [3], a finite group G of order 217 is constructed, with a
cyclic quasinormal subgroup A of order 27, in which [4, G has order 2 and
the hypotheses of Theorem B are satisfied.

THEOREM C. Let A be a finite cyclic quasinormal subgroup of a group
G. Then
@ [A,G] = [Az,G] x [A2,G];
(ii) [Ag,G] is an abelian 2'-group on which A acts as a group of
power automorphisms;
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(i) [Az, G]is a 2-group of class at most 2;
(iv) [As, G,A] is normal in G and lies in Z([Az, G]); and
(V) A acts on [Az, G, A] as a group of power automorphisms.

In Theorems A, B and C, the power automorphisms are universal, i.e.
each element maps to the same power. Also one can easily check that if we
form the product of A with any of the abelian subgroups on which we claim
that A acts as a group of power automorphisms, then that product is a
modular group, i.e. its subgroups form a modular lattice.

THEOREM D. Let A be an infinite cyclic quasinormal subgroup of a
group G. Then

(i) [A,G] is abelian and A acts on it as a group of power auto-
morphisms;
(i) [A,G] s periodic if and only if AN[A,G] =1; and
(iii) when AN[A,G] # 1, i.e. when [A,G] is not periodic, then A is
abelian.

We shall see in Section 4 that the power automorphisms in Theorem D
(i) are not universal in general. It follows from Lemma 2.5 below that in all
the above theorems, the normal closure A% of A in G is locally nilpotent and
so the periodic elements of A% form a subgroup T, say. In [1], Theorem 2.2,
Busetto shows that with the hypotheses of Theorem D, A¢ = AT, T is
abelian and 7' < Z,,(G). Busetto also shows that A acts on 7" as a group of
power automorphisms and A% is a modular group. Clearly A% = A[A, G]
and when AN[A,G] =1, then [A,G] = T. But in general [A,G] # T. In-
deed Example 5 in Section 5 shows that 7" £ [4, G] in general.

Sections 2, 3 and 4 of our paper will establish the above results se-
quentially. The final Section 5 contains examples relevant to the many
questions that arise naturally throughout our discussion. The notation is
standard. Thus A% and A denote, respectively, the normal closure and
the core of a subgroup A in a group G. When A is a quasinormal sub-
group of G, then we shall write A gn G. Cyclic groups of order » and
infinity will be denoted by C,, and C., respectively, and Qg denotes the
quaternion group of order 8. The centre of G is Z(G) and, for any ordinal
a, the a-th term of the upper central series is Z,(G). If p is prime and A is
a p-group, then 2(A) denotes the subgroup generated by the elements of
order p. When 7 is a set of primes, then 7’ is the complementary set. Also
G, is a maximal p-subgroup of G and G, a maximal p’-subgroup. The
intersection of the normalisers of all the subgroups of a group G is the
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norm, written norm(G). Finally the subgroup lattice of G is denoted by
L(G) and the lattice of all subgroups of G containing a subgroup H by
L(G : H).

2. Finite cyclic quasinormal subgroups of odd order.

When p is an odd prime, Lemma 2.3 of [2] considers a finite p-group
G = AX, where A and X are cyclic subgroups. Here we need the following
generalisation.

LEMMA 2.1.  Let G = AX be a nilpotent group, where A = (a) is a cyclic
p-subgroup, with p an odd prime, and X = (x) is also cyclic (possibly in-
finite). Then

() G is metacyclic and G’ is a p-group;
(ii) every subgroup of G is quasinormal;
(i) G' = ([a,x]);
(iv) for each integer i, ([a',x]) = ([a,x']) = ([a,x]'); and
(v) each element of G’ has the form [a,gl, for some g € X.

Proor. (i) If X is finite, then X = X, x X;. So G = (AX))) x X,y and
AX, is metacyclic, by [2], Lemma 2.3 (i). Thus G is metacyclic. Clearly
G' < AX, and so G’ is a p-group. If X is infinite, then A <G and both
statements are immediate.

(ii) By (i) and Iwasawa’s Theorem (see [11], Theorems 2.4.4 and 2.4.11),
G is a modular group. Since G is also nilpotent, all its subgroups are
subnormal and therefore quasinormal ([14], Proposition 1.7).

(iii) The easy argument is the same as in [2], Lemma 2.3 (iii).

(iv) When X is finite, then we argue as in (i) above and [2], Lemma 2.3
(iv). When X is infinite, then A <G and X; = X/Cx(A4) = C,», for some n.
Again the result follows from [2], Lemma 2.3 (iv) applied to the split ex-
tension A x Xj.

(v) The argument of [2], Lemma 2.3 (v) applies, making use of (i), (iii)
and (iv) above. O

We shall establish Theorem A in a somewhat circuitous way, as in [2]. It
turns out that each element of [A, G] has a special form and we deduce this
by considering first the case A N[A, G] = 1. In fact with this hypothesis we
can prove the strongest statement of all our results for a very general si-
tuation.
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THEOREM 2.2. Let A be any quasinormal subgroup of a group G and
suppose that A N[A,G] = 1. Then [A, G] is abelian and A acts on it as a
group of power automorphisms.

Proor. Let X be asubgroup of [A,G]. Then[A,X]<AXN[A,G]=X.
So A and hence also A normalise all subgroups of [A, G]. Therefore [4, G]
is a Dedekind group. If [A, G] is not abelian, we factor G by the 2'-compo-
nent of [A, G]. Then

[A,G] =2 Qg x Co x Cg x - - -

and there is a cyclic subgroup Y of order 4 in [A, G]. If A does not centralise
Y,then A/C4(Y)has order 2and AY /C4(Y)is the dihedral group of order 8,
with A/C4(Y) a non-central subgroup of order 2, contradicting the quasi-
normality of A. Therefore A must centralise [A, G] and thus so also does A¢.
But then [A, G] is abelian, a contradiction. O

Next we consider a cyclic quasinormal subgroup A of odd prime-power
order in a group G satisfying the hypotheses of Theorem 2.2, i.e.
AN[A,G]=1. Let A = (a). We will show that

1) [4,G] = {la,gllg € G}.

In Lemma 2.4 of [2], this is proved for the case in which G is a finite p-
group, with p an odd prime, using the following two results (see [11],
Lemma 5.2.11 and [1], respectively).

Lemma 2.3.  If A is a cyclic quasinormal subgroup of a group G, then
every subgroup of A is quasinormal in G.

LEmmaA 2.4. Let A be a quasinormal subgroup of prime ovder p in a
group G. Then A% is an elementary abelian p-group. Moreover, if A is not
normal in G, then A® < Z5(G).

It is convenient to recall two more well-known results (see [9], [3] and
[13], Lemma 2.1).

LEmMA 2.5. A quasinormal subgroup of a finite group is subnormal.
More generally, a quasinormal subgroup of any group is ascendant.

LeEMMA 2.6.  Let A be a quasinormal subgroup of a group G and let X be
an infinite cyclic subgroup such that AN X = 1. Then X normalises A.
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The argument used to establish (1) for finite p-groups G in Lemma 2.4
of [2] proceeds by induction on |G|. When G is infinite we can use the
following (see [8], Lemma 7.1.9).

LEmmA 2.7. Suppose that a group G = (A, g1, ...,gn), Where A qn G.
Then |AC : A| is finite.

Thus in order to prove (1) when G is infinite, clearly we may assume that
G is finitely generated. Then |A“ : A| is finite and so A is finite. Therefore
suppose that G is a counter-example with |A%| minimal. Let A; = Ag(< A),
Ay /A = Q(A/A;) and As = (ag). Then by Lemmas 2.3 and 2.4

[A2, G1A1 /A < Z(G/Ay).

Hence [42,G,G] < A1 N[A,G] =1 and so [A2, G] < Z(G). Therefore there
is an element x in G such that [ag, x] € Z(G) and

(2) [az,x] ;ﬁ 1.

We would like to write [ag, x] in the form [a, g], where A = (a). In fact this
can be achieved by generalising a result due to Busetto (see [1]; also [11],
Theorem 5.2.12).

LeEmMaA 2.8. Let A be a cyclic quasinormal subgroup of order p* (p a
prime) in a group G and let |Ag| =p™, where 0<m <n. Then
A < Z2nfm(G)-

ProOF. Busetto’s theorem is the case m = 0. Suppose that the result is
false and let G be a counter-example with |A| minimal. Then m > 1. So
B = Q(A) <« G and by choice of G

(3) A/B < Zau-1)-m-1)(G).

Let g € G. If |g| = oo or |g| = ¢¢, where q is a prime different from p, then
AY = A. The first case follows from Lemma 2.6 and the second from Lemma
2.5. Thus [A, g] < AP, by (3), and therefore [B, g] = 1. On the other hand, if
lg| = p', then B < (B, g) implies [B, g] = 1. It follows that B < Z(G). Then
A < Zy_n(G), again by (3). O

Returning to (2) above, since A N[A,G] =1, x does not normalise A.
Then Lemma 2.8 shows that (4, «) is nilpotent. Therefore, by Lemma 2.1
(v), there is an element y € (x) such that [ag, x] = [@,y]. The argument of
Lemma 2.4 in [2] now suffices to complete the proof of the following.
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LEmMMA 2.9. Let A = (a) be a cyclic quasinormal subgroup of odd
prime-power order in a group G. Suppose that A N[A,G] = 1. Then each
element of [A, G] has the form [a, g, for some element g in G.

We should point out that the hypothesis here that A has odd order is
necessary, even when G is finite. This is illustrated in Example 2 in Sec-
tion 5.

The next step is to remove the hypothesis A N[A, G] = 1 in Lemma 2.9.

Lemma 2.10. Let A = (a) be a cyclic quasinormal subgroup of odd
prime-power ovder in a group G and suppose that A is not normal in G.
Then each element of [A, G] has the form [a,g], for some g € G.

We have to exclude A <G here, as can be seen from the non-abelian
group of order 6. In [2], Theorem 2.5, Lemma 2.10 is proved in the case
when G is a p-group. We wish to use the same argument here. Since A is
not normal in G, it follows from Lemma 2.8 that A < Z,,(G) for some m.
Then it is convenient for us to prove the following result.

Let A = (a) be a cyclic quasinormal subgroup of odd prime-power
order in a group G and suppose that A < Z,,(G), for some finite m. Then
each element of [A, G] has the form [a,g], for some element g in G.

Now we can prove this stronger form of Lemma 2.10 by means of the
argument in Theorem 2.5 of [2]. There a counter-example was chosen with
|A| minimal. Here we assume the above statement is false and so there is a
finitely generated counter-example G. Then |A%| is finite and we can
choose G with |A%| minimal. Let |A| = p". Then we need to know that the
statement holds with A replaced by AP. But this must be the case, because
(AP)%) < |A%| is an immediate consequence of the following elementary
result.

LeEmma 2.11.  Let A be a cyclic quasinormal subgroup of finite order k
in a group G. Then A% has exponent k.

Proor. Ifk = 1,the Lemmais trivial. Thus we proceed by induction on
k and assume the usual induction hypothesis. Let p be a prime divisor of k&
and let B be the subgroup of order p in A. Then B gn G and B is ele-
mentary abelian, by Lemma 2.4. By induction A% /B¢ has exponent k/p and
hence A% has exponent k. O
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Thus our argument above can continue as in Theorem 2.5 of [2] and so
Lemma 2.10 follows. As a consequence we obtain

THEOREM 2.12. Let A be a cyclic quasinormal subgroup of odd prime-
power order p" in a group G. Then [A, G 1is an abelian p-group of exponent
dwiding |A| and A acts on [A, G] as a group of power automorphisms.

The proof is exactly the same as that of Theorem 2.1 in [2], using
Lemmas 2.10, 2.1 (iii) and 2.11 above. The power automorphisms here are
universal, by [10], 13.4.3 (ii).

We can now extend Theorem 2.12 to the case where A has finite odd
order, i.e. Theorem A. If A = P; x Py x - - - x Py is the primary decom-
position of A, then [A, G] = [P1,G] x [P2,G] x - - - X [Ps, G] and each P; is
quasinormal in G. Theorem A follows from Theorem 2.12 by the easy di-
vision algorithm argument which was used to establish Theorem 1.1 from
Theorem 2.1 in [2]. The only difference here is that G may be infinite, but
each step in the proof remains valid using the lemmas above.

3. Arbitrary finite cyclic quasinormal subgroups.

It suffices to prove Theorem B for the case where A is a 2-group. For, if
A = P x @, with P the 2-component and @ the 2’-component of A, then P
and @ are quasinormal in G. Also [A,G] = [P, G] x [Q, G]. By Theorem A,
[Q, G] is abelian and @) acts on it as a group of power automorphisms. By
Lemma 2.5, P centralises [Q, G] and @ centralises [P, G]. Thus if Theorem
B holds for quasinormal 2-subgroups (P here), then it holds generally. The
statements referring to power automorphisms follow as in Theorem A.

Thus we may assume that A in Theorem B is a 2-group and we have the
hypothesis

(*) X is quasinormal in AX for all cyclic subgroups X of G.

The key to making progress is again the understanding of the structure
of the products AX, where X is a cyclic subgroup of G. We need the ana-
logue of Lemma 2.1 for the case p = 2.

LEmMA 3.1. Let G = AX, where A = (a) is a cyclic quasinormal 2-
subgroup of G and X = (x) is a cyclic subgroup. Then

() G is metacyclic and G’ is a 2-group;
(i) G = ([a,x]),
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(iii) for each integer i, ([ai,x]> = ([a, ac]i);
@iv) a conjugates [a,x] to a power congruent to 1 modulo 4; and
) each element of G' has the form [a',x], for some integer i.

If in addition (x) holds, then

(i) for each integer i, ([a,x']) = ([a, x]i>;
(iv) « conjugates [a,x] to a power congruent to 1 modulo 4; and
) each element of G' has the form [a, %], for some integer 1.

The proofs proceed by considering the cases X finite and X infinite
separately. In the former, G = (AX;3) x Xo; and in the latter, A <G. The
arguments are straightforward, following the pattern established in
Lemma 2.3 of [2], Lemma 2.3 of [3], Lemma 2.1 of [4] and Lemma 2.1 above,
and may safely be omitted.

From (iii) we obtain

COROLLARY 3.2. Let A = (a) be a cyclic quasinormal 2-subgroup of a
group G. Then [A,G] = ([a, gllg € G).

We have already reduced the proof of Theorem B to the case where
A = (a) is a 2-group. When G is also a finite 2-group, then Theorem B is
contained in Theorems 2.1 and 2.2 of [3]. The arguments given in Sections
2, 3 and 4 of [3], upto and including the proofs of Theorems 2.1 and 2.2, use
the finiteness of G only for the purpose of applying induction. In the
present context, following on from Lemma 3.1, whenever this is necessary,
we may assume that G is finitely generated. Then, as in Lemma 2.7 above,
we deduce that AC is finite and this suffices for the induction arguments of
[3] to apply here. The presence of elements of infinite order in G is not a
problem, essentially because they always normalise A. Thus we can safely
omit the remaining details of the proof of Theorem B, and thereby spare
the reader much tedium.

In the same way, we can proceed as in Corollary 4.1 of [3] to obtain the
following consequence of Theorem B.

COROLLARY 3.3. Let A be a finite cyclic quasinormal subgroup of a
group G satisfying (x). Then AN[A,G]< Z([A, G)).

We now pass to the proof of Theorem C. Here G is any group and A is a
finite cyclic quasinormal subgroup of G. Our arguments reduce easily to
the case where A is a 2-group. Then we have the following.
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THEOREM 3.4. Let A = {(a) be a finite cyclic 2-subgroup, quasinormal
m an arbitrary group G. Then

() [A,G,A]l<G; and
@) [A4,G,A] = {lu,allu € [A,G]}.

THEOREM 3.5. Let A be a finite cyclic 2-subgroup, quasinormal in an
arbitrary group G, and put B =[A,G,A). Then

) B<Z(A,Gly;
(i) A centralises [A,G]/B;
(iii) A acts by conjugation on B as a group of power automorphisms;
and
(iv) [A, G] is milpotent of class at most 2.

REMARK. As in Theorem 2.12, the power automorphisms here are
universal.

When G is a finite 2-group, Theorem 3.5 is Theorem 1.3 of [4]. Using
Lemma 3.1, Corollary 3.2 and Theorem 3.4 above, the argument of [4]
applies here, without modification, to establish Theorem 3.5.

Proor or THEOREM C. We have
[A,G] =[As x Ay, G] = [A2,G] x [A2,G],

because both factors are normal in G and are a 2-group and a 2'-group
respectively. So (i) follows.

By Theorem A, [Ay, G]is abelian and Ay acts on it as a group of power
automorphisms. Since (Az)G is a 2-group, AslAy,G]= Ay x[Ax,G].
Therefore (ii) is true. Part (iii) follows from Theorem 3.5 (iv). For part (iv),
[A2,G,A] =[As,G,As] = B, say, since Ay centralises [A2, G]. By Theorem
3.4 (i), B < G; and by Theorem 3.5 (i), B < Z([A, G]).

Finally (v) follows from Theorem 3.5 (iii), again since Ay centralises B.

O

It remains to prove Theorem 3.4. When G is a finite 2-group, this is
Theorem 1.2 of [4]. For part (i) in [4], we were able to assume that G is
generated by A and at most 2 other elements. That argument did not re-
quire G to be a 2-group or even finite, and so again we may assume that

(4) G={(Ax1y).

By Lemma 2.7, A¢ is finite. Thus we suppose that Theorem 3.4 (i) is false
and choose a counter-example (4) with |[A%| minimal. Let A = (a) and
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B =[A,G,A]. Then Bg =1 and B # 1. Two cases must be distinguished.

Case (i). Suppose that ([a,x]) N {[a,y]) # 1. If @ commutes with [a, x]
and [a,y], then, as in [4], it would follow that B = 1. (This is Lemma 4.2
below.) Thus we may assume that [a,x,a] # 1. Then

Q[a,21)) = Q({[a,y])) < BN Z(G),
contradicting Bg = 1.

Case (ii). Suppose that ([a,x]) N {[a,y]) = 1. For each integer i > 0,
write A; = A%. Choose i such that a acts non-trivially on [4;, G] and tri-
vially on [A;.1, G]. Then following the detailed analysis of the analogous
situation in [4], we can show that @ acts as a power automorphism on
[A;, G]. Thus suppose that a conjugates each element of [A;, G] to its n-th
power and let L = [4;, G]. Then

L’)Zfl < [L,A] < Ln71

and so [L,A] = L' «G. But 1 # [L, A] < B, again contradicting Bg = 1.
This completes the proof of Theorem 3.4 (i).

For Theorem 3.4 (ii), again A = (a) is a finite cyclic 2-subgroup, qua-
sinormal in an arbitrary group G. We must show that

(5) [4,G, Al = {[u,allu € [4,G1}.

When G is a finite 2-group, we argued in [4] by induction on |A| and we do
the same here. When |A| < 4, then |[a,¢]| <4, for all g € G, by Lemma
2.11. Thus a centralises all [a, g], by Lemma 3.1 (iv), so [A, G, A] = 1 and (5)
is true. Therefore we suppose that |A| > 8 and assume the usual induction
hypothesis. This means that

[A%,G,A%] = {[v,d*]|v € [A%,G]} = K,

say. By Theorem 3.4 (i), K < G. Also by Lemma 3.1 (ii), A normalises each
cyeclic subgroup of K and hence A% does the same. Thus K is abelian and a
acts as a universal power automorphism on K. As in Theorem 3.5 (i), it
follows that

(6) [4,G,K]=1.

Following the analogous argument in Theorem 1.2 (ii) of [4] (without
modification), we deduce from (6) that each element of K has the form
[u,a], with u € [A, G]. Recall that by Lemma 2.8, either A <G (in which
case (b) is trivial) or A < Z,,(G), for some integer m. Thus we may assume
the latter and so there is a central series of G between 1 and K. Then a
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simple induction on the length of this series allows us to assume that
K=1

Again as in Theorem 1.2 (ii) of [4], we can now deduce from Lemma 3.1
that

[A,G, A% = ((a.9,0%lg € G) = L,

say. In turn this leads to L C {[y,ally € [4%,G]} C [4%,G,A]. But using
Lemma 3.1, we can show that L = [A, G,AF <G, and so the Three Sub-
group Lemma gives

[A% G,Al< L.

Thus we have equality here and in exactly the same way as we were able to
assume that K = 1, we may also assume that

L=1

Using Lemma 3.1 (iv), this leads to [A,G,A,[A,G]] = 1, from which we
deduce (5). This completes the proof of Theorem 3.4 (ii). O

REMARKS. If A is a periodic locally cyclic quasinormal subgroup of a
group (7, then, for each prime p, the p-component S of A is quasinormal in
G (see [1], Proposition 1.6, or [11], Lemma 6.2.16). Moreover if SP = S, then
S <G, as a consequence of Lemma 2.7. Then applying Theorems A, B and C
to the p-components of A makes the structure of A quite transparent.
Also all the subgroups of A are quasinormal in G, by Lemma 2.3; and if N is
the join of all the normal p-components of A, then A%/N < Z,(G/N), by
Lemma 2.8.

4. Infinite cyclic quasinormal subgroups.

We move on now to consider an infinite cyclic quasinormal subgroup A
of a group G. As for finite cyclic quasinormal subgroups, the structure of
products AX, where X is also cyclic, is of fundamental importance (see
Lemmas 2.1 and 3.1 above). Once again it turns out that these subgroups
are metacyclic.

LEmma 4.1. Let G = AX, where A = (a) is an infinite cyclic quasi-
normal subgroup of G and X = (x) is also cyclic. Then G is metacyclic and
G = (la,x]).
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Proor. Clearly the second statement follows from the first. To show
that G is metacyclic, we consider five cases.

Case 1. Suppose that X = C,, and ANX = 1. Then by Lemma 2.6,
A < G and there is nothing to prove.

Case 2. Suppose that X =2C,, and ANX#1. We may assume that
A#4G. Let N =Ag. Then N > AN X. Since x must either invert or cen-
tralise N, we can see that the latter must apply. So N < Z(G). Let p be
prime and let P/N be any non-trivial p-component of A/N. Then
P/N qn G/N and hence

P/N < Z,(G/N),

for some finite integer m, by Lemma 2.8. Therefore P < Z,,.1(G). Since this
applies for all primes p, we have A < Z,(G), for some finite integer », and so
G is nilpotent. The Hirsch length 2(G) = 1 and the torsion subgroup 7" of G
is finite. Moreover

LT)=LAT:A) CLG:A)=LX:ANX),

a distributive lattice, so T is eyclic, by [9] (see also [11], Corollary 1.2.4).
Finally, since G /T is torsion-free, it must be cyclic and so G is metacyeclic. It
is easy to see that G is always nilpotent in this case.

Case 3. Suppose that X = Cy., where p is an odd prime. We claim that
(7 X < G and G 1is nilpotent.

To see this, we argue by induction on |X|. If | X| = p, then A <« G, by Lemma
2.5. So G is abelian and (7) is true. Therefore assume that |X| > p? and let
X7 = Q(X). Then by the same argument, AX; is abelian and hence
X1 < Z(G). Now by induction X/X; <«G/X;3, i.e. X <« G. Also G/X; is nilpo-
tent and so G is nilpotent, establishing (7).

REMARK. The group G here does not have to be a finite cyclic extension
of an infinite cyclic group. For example, this is not the case when x® = a1,
But G is a modular group and all its subgroups are quasinormal, by [7] (see
also [11], Theorem 2.4.11).

Case 4. Suppose that X =~ Co:. Here we claim that
(8) X? 4G and AX? is nilpotent.

Consider first the case |X| = 4. We know that all the subgroups of A are
quasinormal in G. So there are two possibilities.
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(a) Suppose that ax = x'a, for some i. Then X <« G and G is abelian. So
(8) is true.

(b) Suppose that ax = x'a™", for some i. Ifi = 1,then A «G and ¢ = a L.
Sox? € Z(G) and again (8)is true. On the other hand, if i = —1, then (ax)® = 1.
But G = A{ax) and this would imply that |G : A| = 2, a contradiction.

We have shown that when |X| = 4,

9) either G = A x X or A< G and x inverts A.

Now we suppose that |X| > 8 and argue by induction on |X| to prove (8).
Again let X7 = Q(X). Then X; < Z(G), by (9). Therefore by induction
X?/X; <G/X; and so X < G. Also AX?/X; is nilpotent and so AX? is nil-
potent. Thus (8) is true.

To prove that G is metacyclic, we may assume that |X| > 8, by (9). Since
X? 4G, we also have X* <G and so (a) or (b) above applies to G/X*. If (a)
holds, then X <« G and we are finished. Therefore we may assume that

ax = x'a~! mod X*.

Here i = +1. Butif i = —1, then modulo X* we get the same contradiction
as in (b). Therefore ¢ = 1 and so we have

for some integer j. Then 2 'ax = 2¥a ! and 2 2ax® = x¥ax~¥. Hence

x*t4 commutes with a and so [A, X?] = 1. Therefore

(™) = Yoo = ax¥a L.

Thus « normalises (ax~%) and so does a. Then (ax %) <G and G is me-
tacyclie, as required.

NoTE. In Case 4 we have shown that one of the following applies:
() X «G; (i) A < G; (iii) a* = a 'a¥, 2> € Z(G) and 2 # 1.
Example 5 in Section 5 shows that (iii) does occur.

Case 5. Suppose that X is finite. Let |X| = n, so we may assume that »
is not a prime power. If » is odd, then X < G, by Case 3. Therefore suppose
that

n 18 even, but not a power of 2.

We may assume that A< G and X« G.

Let X5 = (x2) be the 2-component of X. By the note above, (ii) or (iii)
must apply to AX,. We distinguish these possibilities.
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(a) Suppose that A < AX,. Then
(10) a2 =q7 L,

Let Xy = () be the 2'-component of X. Then Xj < G and AX) is nilpotent,
by Case 3. Also AX) is not abelian, since A 4 G. Therefore

To — b — i
a™ = axy and u = aj) # 1.

As a conjugate of A, (au) gn G. Consider (au)Xs. With (au) the infinite
cyclic quasinormal subgroup, (i) above cannot apply, otherwise X, < G and
then X <« G. If (iii) applies, then

(au)™ = (cm)_lxéj =a lu,
by (10). But then we obtain 90%7 = 1, contradicting (iii). We are left with (ii).
Then (au)™ = (au)! = a~'u, again by (10). So «® = ' and this contra-
dicts the nilpotency of AXj.
(b) Suppose that (iii) applies to A as a quasinormal subgroup of AXs.
Then for some j,

a® = a2y and xy # 1.

If [A, Xo] = 1, then G = (ax, % ) xX and G is metacyclic. Thus suppose
that [A, Xy] # 1. By Case 3,

(11) X, < AX,.

So again with u = [a,x0], we consider (au) qn (au)Xs and the three
possiblities in the note after Case 4. Since X # G, (i) cannot apply. If (ii)
holds, then (au) is normalised by x2 and hence the action is by inver-
sion. So

ulag ™t = aflx;]u,

ie.xd = 1, a contradiction. Finally, suppose that (iii) applies. Then for some
2 Y, supp pp
integer k, _
(aw)™ = ula 'afk = a 'aju.

But then by (11) we must have x5 = x‘zlj and u® = %!, contradicting (7).

This completes the proof of Lemma 4.1. |

REMARK. Even in a finite group G = AX, with A and X cyclic and
A gn G, it does not follow in general that G is metacyclie. (See Example 1in
Section 5.)

For the proof of Theorem D we need one more result.
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LEmMMA 4.2. Let A = (a) be a cyclic quasinormal subgroup of a group
G = (a,x,y). Then

(12) [A,G] = AN[A,G){la,x])([a,y]).

Proof. When G is a finite 2-group, this is Lemma 3.3 in [3]. Here G may
be infinite, but we still need the case where A is finite. This is a routine
generalisation of Lemma 3.3 of [3], already used in the proof of Theorem
3.4 above. For convenience we include the argument here.

Thus suppose first that A is finite. Then AG is finite, by Lemma 2.7, and
we can argue by induction on |A%|. We may assume that [A, G] # 1. So let
N (# 1) be anormal subgroup of G contained in A or in [4, G]. By induction
we have from G/N

(13) [A,GIN = ANI[A,GD{la,x]){a,y])N.

Suppose that Ag # 1. Then there is a normal subgroup A; of G with |A4,]
prime and A; < A. Take N = A;. If N <[A,G], then N < AN[A,G] and
(13) becomes (12). On the other hand, if N N[A, G] = 1, then intersecting
both sides of (13) with [A, G] again gives (12).

Now suppose that A; = 1. Then we may assume, without loss of gen-
erality, that L = [A1,x] # 1, where A; is again a subgroup of prime order
in A. Since A; gn G, we have L < Z(G), by Lemma 2.4. So we can take
N = L. But then N < ([a,«]) and again (13) becomes (12).

Finally suppose that A is infinite. By Lemma 2.7, |A® : A| is finite and
so A% /A is finite. Therefore Ag # 1. Suppose that A N[A, G] = 1. By the
case when A is finite, with N = A we have (13). Then intersecting with
[A, G]we get (12). Butif A N[A, G] # 1, then there is a normal subgroup N
of G with 1 # N < AN[A,G]. Again (13) holds and this is (12). O

ProoF oF THEOREM D. Let A = (@) be an infinite cyclic quasinormal
subgroup of a group G. Suppose that [A,G] is periodie. Then clearly
AN[A,G] = 1. By Theorem 2.2, [A, G]is abelian and a acts on it as a power
automorphism. Conversely, suppose that A N[A,G] = 1. Again [A,G] is
abelian by Theorem 2.2. By Lemma 4.1,

[A,G] = ([a,gllg € G).

Let g € G and H = A(g). By Lemma 2.7, |A" : A| is finite and therefore
[la, g]| is finite. It follows that [A, G] is periodic. This proves (ii).

Now suppose that [A,G] is not periodic. By what we have already
proved, this is equivalent to A N[A,G] # 1. By Lemma 2.5, A¢ is gener-
ated by ascendant cyclic subgroups and so it is locally nilpotent, by [6],
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Theorem 2. Thus [A, G]is locally nilpotent and so there is an element g € G
such that [a, g] has infinite order. But @ normalises ([a, g]), by Lemma 4.1,
and so a centralises [a, g]. This applies to any commutator [a, g] of infinite
order. Suppose that [a, 2] has finite order. Then

[a, kgl = [a,glla, RY

has infinite order and so a centralises [a, hg]. Put H = {(a, g, k) = (a,g, hg).
By Lemma 4.2,
[A,H] = (AN[A,H])([a,g]){la, hgl)

and so a centralises [A, H]. Therefore a centralises [a, & ].

It follows that A centralises [A,G]. Thus A% centralises [A, G] and
[A,G] is abelian. Hence A% is abelian. This completes the proof of
Theorem D. (]

The power automorphisms in (i) are not always universal. For example,
let H be an abelian group of type p> and let a be a p-adic integer such that
a =1mod p (a =1 mod 4 if p = 2). Then the map

(14) h— h®

for all h € H, defines an automorphism of H. Let G be the split extension of
H by the cyclic group A generated by a. Then every subgroup of G is
quasinormal (see [11], Theorem 2.4.11). If @ # 1, then [A,G] = H. Clearly
the power automorphism (14) is not universal in general.

We end this Section, as we did in Section 3, with a brief discussion of
how our results extend to locally cyclic subgroups. Let A be a torsion-free
locally cyclic group. Then the automorphism group Aut(4) of A is iso-
morphic to a subgroup of the multiplicative group of the rationals. Also
Aut(A) contains an element a of infinite order, if and only if we have
AP = A, for at least one prime p. In this case, no non-trivial cyclic subgroup
of A is left invariant by a. (See [5].)

THEOREM 4.3. Let A be a torsion-free locally cyclic quasinormal
subgroup of a group G. Then the following conditions are equivalent.

(i) There is a non-trivial cyclic subgroup of A which is quasi-
normal in G.
(il) Ewvery subgroup of A is quasinormal in G.
(iii) Forall g € G, |(g) : Ciy)(A)| is finite.

ProorF. Assume that (iii) holds. Let a € A, a # 1. Let g € G and put
T={(ag9), L=(A,9) and A; =ANT. If |L:A| =00, then A<L, by
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Lemma 2.6, and so 4; = <a><g> <T. Since A; is finitely generated, we have
(a) <A; ={(a1)<T and so {(a) <« T. If |L : A| is finite, then (a) <A; qgn T
and |T : A;] is finite. Thus A; is finitely generated, hence cyclic, and so
(@) <A1 = (1) gnT. Then (a) gn T, by Lemma 2.3. It follows that
(@) gn G. Therefore (iii) implies (ii).

Now suppose that (iii) fails, i.e. |(g) : C(;(A)| = oo, for some element g.
Then AY = A, by Lemma 2.6, and g induces an automorphism of A of in-
finite order. But then (a)? # (a) forany a € A, a # 1, as stated above. Thus
(@) is not quasinormal in G, and (@) fails. O

THEOREM 4.4. Let A be a torsion-free locally cyclic quasinormal
subgroup of a group G. Then

() [A,G] s abelian, A acts on it as a group of power automorph-
isms and AC is a modular group;
(ii) [A, G] s periodic if and only if AN[A,G] =1;
(i) if AN[A,G]#1, then AC is abelian; and
(iv) for every natural number n, A" is quasinormal i G.

The proofs of the above statements can safely be left as exercises,
following the arguments of Lemma 4.2, Theorem D and Theorem 4.3. Of
course (iv) holds for any abelian quasinormal subgroup A of any group G,
provided 7 is odd or divisible by 4. (See [15], Theorem 1.)

5. Examples.

All the results that have been proved in the previous Sections have
depended on showing that a group G = AX, with A and X cyclic subgroups
and A quasinormal, is metacyclic, provided certain hypotheses are sa-
tisfied. We begin this final Section by showing that hypotheses are re-
quired here.

ExampLE 1. Let B and X be cyclic groups of orders 7 and 9, respec-
tively, and let B = (b), X = (x). Form the split extension

H=BxX,

where b° = b%. Now let C be a cyclic group of order 3 generated by the
element ¢ and form the split extension

G=HxC,
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where b° = b and 2¢ = x*. The action of ¢ on H has order 3 and the relations
of H are preserved. So G exists and has order 33.7.
Set A = BC, a cyclic group of order 21. We claim that

(15) A is quasinormal in G.

To see this, since B < G, we may factor by B, i.e. we may assume that B = 1.
Then G = X x C, which is a modular group with all subgroups quasinormal.
Therefore (15) is true. However, G 1is mnot metacyclic. For,
G' = (b,x?) = Cy. If G = NK, with N <G and N and K both cyclic, then
G’ < N. Since G/G' = C3 x C3, we must have G’ < N. Thus |[N| = 8.7 and
s0 N3 = Cy. But N3 must centralise B, while C(B) = B x (x3) x C con-
taining no cyclic subgroup of order 9.

Another key result was Lemma 2.9 showing that when A = (a) is a
cyclic quasinormal subgroup of odd prime power order in G and
AN[A,G] =1, then

(16) [A,G] = {[a,gllg € G}.

This result is also true when A has 2-power order, provided condition (x)
holds. (It follows easily from [3], Lemma 2.7.) However, if (x) is not sa-
tisfied, then (16) can fail to hold.

ExamPLE 2. Let H and X be cyclic groups of orders 8 and 16, respec-
tively, and let H = (k) and X = (x). We form the split extension

G=HxX,

with 2% = h~1. Let @ = ha? and A = (a), a cyclic group of order 8. Then
CaA) =HX?. Also ANH=ANX=1,s0G =AX and

[A4,G] = ([h,x]) = H? ~ C,.
Thus AN[A,G] =1. Also the only elements of form [a,g] are 1 and
h=2 (= [a, «]). Therefore

[A,G] # {la,gllg € G}.
However,

(17 A is quasinormal in G.

For, any cyclic subgroup of G of form (ha¥) commutes with A. On
the other hand, (hia/), with j odd, has order 16 (because (hia/)* =
= hiwhix7x¥ = x¥) and intersects A trivially. So |A(hia/)| =27 and
hence A(h'a/) = G. Thus (17) is true.
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REMARK. Clearly the subgroup X is not quasinormal in G and so (x) is
not satisfied here. Also each element of [A, G] has the form [a’, g1, for some
integer ¢ and element g. For many purposes this is as useful as (16) and it
would be interesting to know if it is always the case.

We know (see Lemma 2.6) that if A is any quasinormal subgroup of any
group G and if X is an infinite cyclic subgroup of G such that AnX =1,
then X normalises A. It is natural to ask if this then implies that A is
normal in G. In fact this is not the case, as is shown by the next two ex-
amples.

ExampLE 8. Let X = (x) be an infinite cyclic group and let Y = (y) be a
cyclic group of order 8. We form the split extension

K=XxY,

where x¥ = 2. Then let A = (a) be a cyclic group of order 2 and form the
split extension

G=KxA,

where x* = x, ¥* = 3. This extension exists, because the relations ¢ = 1
and x¥ = ¢! are both preserved by the a-action (of order 2). Clearly

A 1s not normal in G.

However, A is quasinormal in G. For, consider an arbitrary cyclic subgroup
H = (x'fa*),0<j<7,0< k<1 We have
k)CL

(@ifa™)" = xlyak.

Case (i). Suppose that j is even. Then % = 9 and A centralises H.

Case (ii). Suppose that j is odd. Then [y, a] = [, a] = y* € Z(G) and
(29, a) has nilpotency class 2. Thus (x'yfa¥)® = (xiyf/)’ak. Also (wiyf)? = y¥
and (x'y)° = xiy¥. So (K'ya¥)® = xly¥ak = (xiyfaF)" and A normalises H.

Therefore A < norm(G) and so A qn G, as claimed.

The previous group G is isomorphic to Cy, x(Cg xC2) and involves a
dihedral action. We show that the same result can be achieved using odd
primes instead of the prime 2.

ExamPLE 4. Let p be an odd prime and let Y be a cyclic group of order
p? generated by y. Put Y; = Y/Y? and y; = yY?. Let R = 7Y}, the in-
tegral group ring of Y7 and let I = R(y; — 1), the augmentation ideal of R.
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Then I becomes a Y-module via the natural action ¥ = uy;, allu € I. We
form the split extension K =1 xY, a free abelian group of rank p — 1
extended by Cp.

Let A be a cyclic group of order p generated by a and define an action of
A on K by

u® =u,allu € I, y* = y*P,

Then form the split extension G = K x A. Thus A is not normal in G. But, as
before, we claim that

(18) A < norm(G).

For, A centralises IYPA = L, say. A typical cyclic subgroup of G, not con-
tained in L, is generated by an element of the form g = yua’, where i = 1
mod p and « € I. Then ¢ = y"@*Pya’. But we have

(19) gl+p — yi(lpr)u/a/j.

For, (y'u, a) is nilpotent of class 2, since its derived subgroup is Y?, which is
central in G. Therefore

P = (i) Pal.

Also (yu) P = yuyu’ = yu@Pul +y1 +yi+ -+ y'™1) = y'*Pu. Thus
(yiu) P =y TPy and (19) is true. Therefore (18) holds and A is quasi-
normal in G.

When proving Lemma 4.1, we considered in Case 4 a group G = AX,
where A = (a) is an infinite cyclic quasinormal subgroup of G and X = (x)
is cyclic of order 2". We showed that if neither X nor A is normal in G, then

at = a—llej ,

with 2% € Z(G) and x¥ # 1. In fact this situation does occur.

ExAMPLE 5. Let A = (a) be an infinite cyclic group andlet Y = (y) be a
cyclic group of order 2"~! (n > 3). Let H = A x Y and let j be an integer.
Then H has an automorphism of order 2 defined by

a—a Yy, yey.
So there is an extension G of H by a group of order 2 defined by
G = (a,x|a* = ala¥, 2% =1).
(See [12], Theorem 9.7.1 (ii).) Then G = AX, where X = (x) and ax? = #%a.
We claim that

(20) A is quasinormal in G.
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For, a typical cyclic subgroup H of G is generated by an element a‘a*. If k is
even, then A centralises H. If k is odd, then (a'a¥)? = 224, generating X2
and X2 < Z(G). So H? = X2 and AH = G. Thus (20) is true. Provided 2" 2
does not divide j, we have a group of type described in (iii) of Case 4 of
Lemma 4.1.

Our final example also concerns the case when the quasinormal sub-
group A is infinite cyclie. Situations where [A, G] are periodic or torsion-
free are familiar. However, the mixed case can also occur.

EXAMPLE 6. Let H = (a,y|y® =1,y4* = %°). Then H has an auto-
morphism of order 2 defined by

(21) a—al, y—1’.

So we can form a split extension G = H x X, where X = () is a cyclic group
of order 2 with action on H defined by (21). We claim that A = (a) is qua-
sinormal in G. To see this, since A% < G, we may factor by A2, i.e. assume that
a? = 1.Then easy calculations show that a conjugates each element of G toits
5-th power. Therefore A gn G. However,

[A,G] = (a®) x (y*) = Cy, x Cs.
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