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On the Group of Automorphisms
of Finite Wreath Products

FRANCESCO FUMAGALLI (*)

Dedicated to Guido Zappa on his 90th birthday

ABSTRACT - In this paper we study the structure of the group of automorphisms of
the wreath product A wr Cs, where A is a finite nilpotent group, and C; is the
cyclic group of order 2. In particular we give necessary and sufficient conditions
for Aut (A wr C3) to be supersolvable depending only on Aut(A) and on the
Remak decomposition of A.

Introduction and statement of the main result.

This work is a contribution to the study of the group of automorphisms
of a (restricted) wreath product A wr B of two non-trivial groups A and B.
Throughout this paper we denote with G the group A wr B. Particular
interest concerns the relationships among the structures and the group-
theoretical properties of the groups A and B and the ones of Aut (G).

For instance, if Aut (@) is a nilpotent group much is known. In fact in
this case G is clearly nilpotent and for a result of G. Baumslag ([2]) we have
that both A and B are nilpotent p-groups (for the same prime p), where A
has finite exponent and B has finite order. Moreover, if Aut (G) is supposed
to be finite (and nilpotent), then Aut(4) and Aut (B) are finite p-groups
(see [9]). Conversely, if A and B are finite p-groups (for p # 2) with Aut (4)
and Aut (B) p-groups too, then Aut (A wr B) is a p-group (see M.V. Khor-
oshevskii [4]).

Concerning supersolvability, in a recent paper ([7]) G. Corsi Tani and
R. Brandl proved the following
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THEOREM. If Aut (G) is supersolvable then A is nilpotent. Moveover if
either G is supposed to be infinite or if (|A|,|B|) = 1, then B ~ Cq, the cyclic
group of order two.

In this paper we study the “inverse problem” of the aforementioned
result. We suppose that A is a finite nilpotent group and give necessary and
sufficient conditions for Aut (A wr Cs) to be supersolvable.

Our main Theorem is proved in section 3 and it can be stated as follows.

THEOREM 1. Let A be a finite nilpotent group with Aut(A) super-
solvable and let G := A wr Co. Then Aut (G) is supersolvable if and only if
either no two distinct factors in a Remak decomposition of A are iso-
morphic, orthe only possible ones are 2-groups and in this case O2(A) is not
isomorphic to Ce x Co.

Clearly the supersolvability of Aut(A) is a necessary condition since
Aut (A) is, up to isomorphism, a subgroup of Aut (G).

The paper is organized as follows. In the first two sections we analyze
what happens if A is a finite p-group, where p is any prime number. In the
former we focus our attention on the inner structure of Aut (@), while in the
latter on the problem of supersolvability. Finally, in the last section we
generalize the results to any finite nilpotent group A.

1. The structure of Aut (G).

Let A be a finite p-group, Co be the cyclic group of order two and
G := A wr Cy the restricted wreath product of A and Cs. Then, by [3], if A
itself is not the group of order two, the base group F' of G is characteristic
in G and, if we fix a complement Cs = (t), we can express Aut(G) as a
product

Aut(G)=K-1I,

where K is the subgroup of Aut(G) consisting of those automorphisms
which fix ¢ and [ is the subgroup of Aut (&) consisting of those inner au-
tomorphisms which correspond to conjugations by elements of F'. More-
over [ is normal in Aut (G), and since [ is isomorphic to a quotient of ', [ is
a p-group. Let us give now another interpretation of K. We identify the
base subgroup F' with A x A, the direct product of two copies of A. Denote
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as usual the elements of F' with couples (x,y), where x,y € A, and with J
the involution of F defined by: J(x,y) = (y,«) for each x,y € A. Let
Caut 7 (0) be the centralizer of ¢ in Aut ().

LEmMA 1. The groups K and Cay)(0) are isomorphic.

PrOOF. An isomorphism is given by the map that sends # € K into
npimp € K where iy is the canonical injection of /' in G and 7y the canonical
projection of G on F'. The inverse of this map is the application that sends
¢ € K into the automorphism @ of G so defined: &(a;ast?) := ig(p(ay, az))t?,
for each ajast € G. O

We note that in this situation the automorphism ¢ of ¥ is indeed the
conjugation by the element ¢ that generates Cs in G.
To study more in detail the structure of the group K, we give some
more notation that will be used through all the paper.
We indicate with:
Autz(A), Autz(F') the groups of the central automorphisms of A and of
F respectively (that is the groups of the automorphisms which act tri-
7 and % respectively).
Ky .= K N Auty(F) and similarly if X is any subgroup of Aut (') we use
Xz for X N Autz(F).
AY) :={(y,y) | y € Y} for each Y subgroup of A (we use simply A for
A(A)).
V() :=((y,y™ 1) |y € Y) for each Y subgroup of A (we use simply V
for V(4)).
H = Cg(A) the centralizer of A in K.
L := Cg(V) the centralizer of V in K.
A* :={ay | f € Aut (A4)} where as denotes the automorphism of F' defined
by ar(a1, az) = (f(a1),f(az)), for each (a1, az) € F. (Clearly A* ~ Aut (4)).

vially on the central factor groups

Given any element ¢ of Aut (F'), define two endomorphisms ¢, ¢, of A by
o, 1) == (p;(2), po(w)), YV € A.

As a Lemma we collect now some elementary facts. We omit the easy proofs.

Lemma 2. () If ¢ € K, then Va,y € A
p(1,2) = (pa(), ;@) and o, y) = (p1(@)pay), p2 ()91 ()
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(i) [Mme;,Imp,] =1 and A = Ame)dAme,) (in particular Im ;N
NIm g, < Z(A) and Im ¢; are normal subgroups of A).

(iii) Any element of K fixes the subgroups A and V, in particular it
permutes the generators (x,x1) of V.

(iv) The subgroup H 1is the kernel of the group epimorphism
D :p e K—p; + 0, € Aut (4) (where p; + @y is the map a—g;(a)ps(a) for
each a € A) and K = [H]A* is the semidirect product of H and A*.

H . .
) 2P 1s an elementary abelian 2-group.
z

(i) Themap ™ : ¢ € Hz—¢ € Autz(A) defined by p(a) := p;(@®a'isa
homomorphism of groups.

At this point we distinguish the two cases p even and p odd.

Let us suppose first that A is a finite 2-group.
In this situation the map ~ defined in Lemma 2 (vi) is in general not in-
jective. In fact its kernel is constituted by the elements ¢ of H; such that
9,(a?) = a? for each a € A, and so, since ¢, + ¢, = idy4 , p5(a?) = 1 for each
a € A. Then

Ker = {(0 c HZ | ¢‘A2><A2 = id‘AZXAz}.

LEmMA 3. The kernel of the map ~ is an elementary abelian 2-group.

ProOF. Let ¢ be a non trivial element of the kernel of ~ and a an ele-
ment of A. Then

v'(a,1) = (Pi(@)g5(@), 1)
and so (p*); = ¢ + ¢5 and (¢?)z = 0 the null endomorphism of A. Since
¢® € H, then (¢*); + (¢*)s = id4 and so (p*); = id4 and ¢ has order 2. [
Lemmas 2, 3 and the fact that Aut (G) = K - I imply the following

THEOREM 2. If A is a 2-group, then the composition factors of Aut (G)
are either composition factors of Aut (A) or cyclic groups of order 2.

The same result can be proved for p # 2, in fact if p is odd, the map ~ of
Lemma 2 (vi) is a monomorphism, therefore H is a normal subgroup of H
that can be embedded in Aut (A). So, according to Theorem 2, we can state
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THEOREM 3. IfA is a p-group, with p any prime, then the composition
factors of the group K are either composition factors of Aut (A), or cyclic
groups of order 2.

We next show that in the situation p # 2 we can lift the subgroup Hz up
to H, and this will be of fundamental importance for our purposes.

Fix a Remak decomposition of A, say A = Ay x Ag x ... x A,, where A;
are indecomposable direct factors of A. For each subset I of the set
{1,2,...,n}, we define X;:=(A;|iel), Yr:=(A4;|j¢I), so that
A = X x Y[, and denote with ¢y, y,, or ¢; the automorphism of ' defined by

Pt v @y, e1y1) = oy, x1y1) = (Y1, 1Y)

for each x,x; € X; 4,91 € Y7.

It is immediate to verify that ¢; € H. We can then consider the subset
of HQ:={p; | I C{1,2,...,n}}. It is not difficult to prove that @ is an
elementary abelian 2-subgroup of H that can be generated by the elements
Pips 1=1,2,...,n (we leave the proofs to the reader).

Note that the subgroup € depends on the Remak decomposition, say A,
of A chosen at first, so that it is convenient to write Q4 :=
={p |1 C{1,2,...,n}} instead of Q:={p; |1 C {1,2,...,n}}. If we
choose another direct decomposition of A, say B, then we obtain in general
another elementary abelian 2-subgroup, say @°. The relation between @
and QP is explicitated in the next

LemMA 4. Q4 and QF are conjugate in K by an element of Aj,.

Proor. Suppose the two different Remak decompositions of A are
A= {A;}] and B := {B;}]. By the Krull-Schmidt theorem there exists a
central automorphism f of A such that for each 1 =1,2,... n, f(4;) = B;.
Consider then the automorphism ay of F'. ay is a central automorphism of ¥’
and for each I C {1,2,...,n},

ar'pfay = gf,
and so @ and QP are conjugate by an element of A}, O

These arguments allow us to give the following description of the
structure of the subgroup H.

LemMA 5. Chosen a Remak decomposition A of A, the subgroup H of K
is the product H = Hy - Q*.
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Proor. By Lemma 2 we already know that H is normal in K and that
Hﬁz is an elementary abelian 2-group. Suppose that ¢ is an element of H of
order a power of 2, say 2". If we call M := Ker ¢, and N := Im ¢,, we have
that A = M x N. In fact by Lemma 2, M and N are both normal subgroups
of A. In order to prove that their intersection is trivial, consider an element
a€eMNN, say a=@,(x). By an induction argument we have that
o, 1) = (ph(x), 9,(®)"), for each k > 1. In particular for & = 2" we obtain
po()" =1 and since 2 does not divide |A|, we have that x € Ker ¢, i.e.
a=1.S0A = M x N and this decomposition of A allows us to consider the
automorphism ¢, y). A simple computation shows that e, y) € Hz. In

H
this way, according to the fact that the order of P is a power of 2, we have
Z

that for any ¢ in H there exists an element of H of the form ¢, g, (for some
decomposition (R, S) of A) such that pg ) € Hz.

Now we fix a Remak decomposition A of A and call @ the subgroup @~
of H. If ¢ is any element of H, we proved that there exist ¢ € H; and
PrS) € Q5, for some decomposition B of A, that is a refinement of (R, S),
such that ¢ = g9 5). Call f the central automorphism of A such that
Q=0a; 1Q5ay, then % = % (p(a{eys) € H;Q. But now we can write the ele-
ment ¢ as ¢ = [p 1, ar g%, and, since H and K are normal subgroups of
K, [p~',0;'1 € Hz and so0 g € Hz@, i.e. H = HzQ. O

2. Supersolvability of K.

We now concentrate our study on the problem of the supersolvability of
the group K. We of course assume that Aut (A4) is supersolvable.
As before, we consider first the case p = 2.

With the considerations of section 2.1 it is not difficult now to establish
when Aut (G) is supersolvable. Making use of [8], we know that the auto-
morphism group of a 2-group, not Cy x Cq, is supersolvable if and only if it
is itself a 2-group. Therefore we have the following

THEOREM 4. Let A be a finite 2-group. If A is not isomorphic to
Cs x Cy, then Aut(G) is supersolvable if and only if Aut(A) is super-
solvable. If A ~ Cy x Cy, then Aut (@) is not supersolvable.

ProOF. For the case A not isomorphic to Cy x Cs, Theorem 2 and the
results in [8] tell us that Aut (@) is a 2-group and so it is supersolvable.
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If A ~ Cs x Cy, Aut (), being not a 2-group, is not supersolvable. (In
this case the subgroup /- A of Aut(G) is isomorphic to the symmetric
group Sy). O

The case p odd requires more work.

We recall that a group 7 is said to be strictly p-closed (where p is any
prime number) if 7'7?~! is a p-subgroup of T, or equivalently if
T =[0,(T)]S with S an abelian group of exponent that divides p — 1.
Strictly p-closed groups are supersolvable (see Baer [1]), and the auto-
morphism group of a finite p-group (p # 2) is supersolvable if and only if it
is strictly p-closed (see G. Corsi Tani [8]).

Before making any other hypothesis than the supersolvability of
Aut (A), we prove a relevant result concerning the subgroup K of K.

LEMMA 6. If A is a p-group (p # 2), then, with the same notations as
before:
(i) Kz =[HzlA} =[Lz]147, semidirect products.
@) H;NLz=1.
(ili) Hz ~ Lz ~ a subgroup of A}, normal tn A*.
(iv) If Aut (A) is supersolvabdle, then Kz is supersolvable.

Proor. (3) It is immediate by the fact that the applications @, and @,
from K; to Autz(G) defined respectively by &1(p):=¢p; + ¢, and
Di(p) := ¢y — 2 (Where ) +¢5(a) = p1(@)p(@)  and  ¢; — py(a) =
= gol(a)(goz(a))*l for each a € A) are both epimorphisms of kernels re-
spectively H; and L.

(11) Let 9 € HNL, then ¢(a?, 1) = p(a,a)p(a,at) = (a,a)a,a™!) =
= (a?,1) and since 2 does not divide |A|, ¢ is the identity map, and so
HnNnL=1.

(i12) We have already proved that H; can be embedded in A*. More-
over, using a better argument, one can consider the subgroup
T := Hyz x Lyz. T is subgroup of Kz, which is normal in K, so TNA* is a
subgroup of A} normal in A*. Using () and Dedekind’s modular law, we
obtain that TNA* ~ Hy ~ L.

K;, K

(iv) By (i) we obtain that =2 ~ =% ~ A%, and since H; N Ly =1, i
Hyz Ly

Aut(A) is supersolvable, Ky is a supersolvable group. O

In particular Lemma 6 applies when A is abelian and Aut(A4) super-
solvable. In this case Autz(F) = Aut (F') and so K = Kz is a supersolvable
group.



22 Francesco Fumagalli

Let us now concentrate on the case A non-abelian, and study more in
detail the structure of the subgroup Kz, with particular interest on the
action of K on Kj,.

LEMMA 7. Let A be a non abelian finite p-group (p # 2), with Aut (A)
supersolvable. Then:
(i) Op(Kz) =1 and Kz =[0,(K2)1S, where S is an abelian Hall
p' —subgroup of K.
(ii)) K = K;Ck(S).
(iii) [Kz,K] < Op(Kz).

ProOF. (%) Since Aut(A) is supersolvable, another result of G. Corsi
([8]) implies that O,(Aut(4)) =1, and so, as A} is normal in A* and
A* ~ Aut(A), 0,/(A}) = 1. Now the map @; defined in Lemma 6 (7) is a
homomorphism with kernel Hz, and so we deduce that 0, (Kz) = O,/(H7).
By Lemma 6 again, H is isomorphic to a normal subgroup of A}, and so
Op(Hz) =1, i.e. Oy(Kz) =1 and the Fitting subgroup Fit(Kz) coincides
with O,(Kz). The supersolvability of K and Schur-Zassenhaus theorem
complete the proof of this step.

(i) Take S a Hall p’—subgroup of K. Using Frattini’s argument we
have that K = K;Nk(S). In order to prove that Nx(S) = Ck(S), consider a
decomposition of A as A = X x Y, where X and Y # 1 are respectively the
product of the abelian and non-abelian direct factors of A. Since S is in
particular a p’'—subgroup of Autz(F) we have, according to [5],
F =Cr(S) x [F,S], where Cp(S) is the centralizer of S in F and
[F,S]:= (wlgw) | g € S,w € F) is abelian. Moreover, up to conjugation,
we can suppose that S contains the automorphisms a and f defined by
aley, 2y) = @y, xy), Py, xy) = (@ 1y, x~1y), for each 2,2 € X, y,y € Y.
Consider now the subgroups A(X) and V(X). One can easily prove that
AX) 2 VX)) =X, XxX=AX)xVX), [F,a]=VX), and [F,f]=
= X x X. From this, we obtain that [F',S] = X x X. Then N(S) fixes the
subgroups AX), V(X) and Y x Y, and so any element f of Ng(S) can be
seen as atriple f = (fo, f1,/2), where fo = f|yy is an automorphism of Y’ x ¥
and f1 = fiax), f2 = five) are automorphisms of X. In particular the ele-
ments of S are of the form ¢ = (id, ¢;, ;). Now taken any f € Ng(S) and
any ¢ € S we have that ¢ = (id,(ﬂ?,(ﬂ?) € S and gol,go’f,qoz and (pg can be
seen as p'—elements of Aut (X). Aut (X) is a supersolvable group, since it
is, up to isomorphism, a subgroup of Aut(A), in particular Aut(X) is
strictly p-closed. Therefore [¢;,f1] lies in O,(Aut (X)), but ¢, lies in a Hall
p’-subgroup of Aut (X) and fi normalizes this subgroup and so [¢;,f1] must
be also a p’-element, therefore [¢,,f1] = 1.
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Similarly [¢,,f2] =1, and so f centralizes S, and K = KzCg(S).
(i21) Using the previous two steps we obtain

[Kz, K] = [0p(K2)S, 0p(Kz)Ck(S)] < Op(Kz). O

As a consequence of this Lemma we obtain the following result on the
subgroup H.

LeEmMA 8. The subgroup H of K 1s strictly p-closed.

Proor. Using the previous Lemmas we obtain that

H' =[HzQ,HzQ) < Op(Hz) < Oy(H).

H
So we just have to prove that 0. has exponent that divides p — 1.
P

H
Note that i is an elementary abelian 2-group and so O,(H) = O,(Hy).
z

Using the facts that H = H;Q, @ is an elementary abelian 2-group, and

p—1 p—1
is abelian, we deduce that ( H > = <i> , and since

H
0,(H) 0,(H) 0,(Hz)

H \"*!
Hz; <Aut(A), Hy is strictly p-closed and | ——— =1.
7 ut (A), Hy is strictly p-closed an <O,,(H))

In particular we proved that [H, H] < O,(H). As [A*,A*] < 0,(4%), we
now just have to consider the action of A* on H. At this point we make
hypotheses on the structure of A. Suppose first of all that A has no pairs of
isomorphic direct factors in any of its Remak decompositions. Note that
this hypothesis is consistent in the case A abelian, in fact a result of
G. Corsi [8] shows that any abelian p-group (p # 2) with supersolvable
automorphism group necessary satisfies this condition.

A first consequence of this assumption is contained in the next

LEmMMA 9. Let A be a p-group (p # 2), with Aut (A) supersolvable and
such that A has no isomorphic direct factors in its Remak decompositions,
then

) Nk@) = Ck(@).
(i) K = KzCk(@Q).

Proor. (i) Welet f be an element of Nx(Q) and prove that f centralizes
@ by showing that f* centralizes the generators ¢;, of @ for i =1,2,... n.
Let us begin by observing that f permutes the elements ¢;,. In fact if @ is
associated to the following Remak decomposition of A, A = Xjx
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xXz x ... x Xy, the automorphism ¢ ;, interchanges the elements of X; x X;
in A x A and acts like the identity on the others. Similarly f !¢ (i) changes
the positions of the elements of f ~1(X;) x £~1(X;) and acts trivially on the rest.
Since X; is indecomposable, f~1(X;) is to be such, and so f~1p (ip/ must be an
element of @ that acts not trivially only on one pair of direct indecomposable
factors, i.e. f 1o @) = oy forsomej = 1,2, ..., n. Therefore f permutes the
elements ¢;,.

In order to prove that 7 = j, since A has no isomorphic direct factors, it is
enough to show that X; ~ X;. From the previous observation we immediately
deduce that [X;| = |Xj|. Let us prove now that f(X; x X) = X} x X.

We denote with [6F, ¢(;,] the subgroup ((5(u*1)(p{7~}(u) | w € F); then
[6F, py] = (@, ) | & € X;) = V(X))
and
Xix X <VX)NF <X x XpnF' =X; x X

and so VX)) NF' = X; X X7’ Similarly V(X;) NF' = X! x X!. Now we
claim that f(V(X})) = V(X;). In fact let (z, r e V(Xj), then by Lemma 2
@ii), f(x,2™1) = (y,y 1) for some y € A. Let y = uv with u € X;, v € Yj,
then

1

(v, o™ = fle, 2™ = foe, a7 = g f (e, 27" = (o™ u )

and so, since 2 does not divide the order of A, f(x,x 1) = (u,u'). Since
|X;i| = |X;|, we have proved that f(V(X})) = V(X;), and from this we obtain
that

XIxX = F'OvX)=fF)NfEE) =
— fF V@) = fX] x X))

Now for the sake of simplicity we let
X = AXy) = {(x,x) | ¢ € X;},

Y =AY = {(y,y) |y € Yi},

M = f(AX))) and

L = f(AY))).

Since f fixes A= A), M <ANfX; x X;) = Af(X; x X;)) and by
reasons of orders, M = A(f(X; x Xj)). Similarly L = A(f(Y; x Y;)). More-
over, A=X;xY;=X;xY;, and this implies M ~X; L ~Y, and
A=XxY =M x L.
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Let now zx and m; be the projections from A respectively on X and on
M, and set @ := my; o mx. @ restricted to M is an endomorphism of M, so
there exists # > 1 such that @*(M) = &"1(M) := R. Now

M = (Af(X; x X)) = Af(X; x X)) = AX)) =X,
and so
OM') = nynx(X') = nyX') = ny (M) = M.

Therefore R = &"(M) > &"(M') = M’, in particular R< M.

Now call S = Ker @", then S22 M, RNS =1 and M = RS. Therefore
M=RxS and S is abelian as R >M'. Since M ~X;, M is in-
decomposable, so either M = R or M = S, in both cases we have X; ~ X;.
In fact if M = R, then M = &(M), so M ~ nx(M). But |M| = |X|, and so
X =nx(M) ~ M, ie. X; ~ X;. Otherwise if M = S then M is cyclic, so X;
too. Using the fact thatf(X]f X X]’-) = X! x X}, we have that

Xix X =f(X; x Xj) =1

80 X is abelian and since it is indecomposable, it is cyclic. By the fact X; and
X; are of the same order we deduce they are isomorphic.

(11) As a consequence of Remak-Krull-Schmidt theorem, we have that
for each ay € A* there exists a a;, € A} such that Q¥ = Q%, but this means
that ara; 1 e Nk@), and so A" = N4.(QA}. Therefore K=HA* =
= H;QN4-(Q)A;, = Nx(Q)Ky, and by the previous Lemma K = Cx(Q)K,.

LEmma 10. [A*, H] < O,(H).

Proor. Using Lemmas 6 and 9, and the fact that D centralizes H we
obtain that K = A7,Ck(Q). In particular A* = A;C(Q). Then

[A*, H] = [A", H;Q] < [A*, H7]U[A*,Q] < [K,K7][A*,Q] <
< K, K/J[A7Ha @), Q] < [K. K7)lAy, Q) < [K. K7] < 0,(Kp),
and since H is normal in K, [A*, H] < O,(H). O
Now we are in condition to prove a result about K.
THEOREM 5.  The group K is supersolvable if and only if Aut(A) is

supersolvable and either A has no isomorphic direct factors (and in this
case K 1s strictly p-closed), or A = Ay x Ay with A ~ Az indecomposable.
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ProOF. Suppose first that in any Remak decomposition of A there are
no pairs of isomorphic direct factors. Then from the previous Lemmas it is

clear that O,(K)=0,(H)0,(4) and K < O0,(K). Since
_ Op(H)A* " HO,(A%)
0,(K) 0,(K)
Aut (A)
O,(Aut (4))
closed and thus supersolvable.

K p—
O0,(K)
, we have that the exponent of —— divides the

P 0,(K)

and so also (p — 1). It follows that K is strictly p-

exponent of

Suppose now that A = A; x Ay is the direct product of two isomorphic
indecomposable groups. Since Aut(A) is supersolvable, this implies that
the A; are not abelian ([8]). In particular F has no abelian direct factors too,
and this implies that K is a p-subgroup of K. In fact if S is any p’-subgroup
of K, using [5] we have that F = Cr(S) x [F',S], with [F',S] central, then
Krull-Sechmidt theorem implies [F',S]=1, i.e. S=1. So we have that
K7 < 0,(K) and [Kz, K] < O,(K). Using the same notations as before, the
subgroup @ now reduces to (p;, ®,), an elementary abelian group of order
4. We indicate with [ any isomorphism from A; to Ag; [ induces the fol-
lowing involution in A L(g1g2) := 1Y (g2)l(g1) for each g, € Ay, g € As.
Moreover, L induces a7 € A*<K. We have that |oz|=2 and
Nx(Q) = (ar,)Cr(Q). From these we obtain that [A*, H] < 0,(K){d), and
so, since [A*,A*] < 0,(A4") <O0y(K) (as A* is supersolvable with
0p(A*) =1) and [H, H] < [Kz, K] < O)(K), we have that K’ < 0,(K)(6) <

< Fit(K), the Fitting subgroup of K. Then we have that
_ Fit(H)A*  HO,(A") K
T FRE) i) Fit(K))
ough to deduce the supersolvability of K.

K —
Fit(K)
divides (p — 1). This is en-

and so exp (

Finally we consider the case A =A; x A x B with A; ~ A, in-
decomposable groups and B # 1. In this situation we prove that K is not
supersolvable by showing that there is an element of order two in the Fitting
subgroup of K which does not commute with all the elements of order p, and
this is a contradiction, since p is the largest prime number that divides |K|.
Using the same notation as in the previous step, let us consider the following
subgroup of K, R := {(p,ar, ps), (Where a;, now acts like the identity auto-
morphism on the elements of K). It is easy to see that R is a dihedral group of
order 8 and that its centre consists of the subgroup generated by
0p19y = [y, ar]. If K were supersolvable then, O,(K) would be a Sylow p-
subgroup of K, moreover K’ < Fit(K), and so d¢ n2) € Fit(K) would com-
mute with every element of order p. Now let 0 be a non trivial homomorphism
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A
from zl to Z(K) (remember that in this situation Aut (A) supersolvable and
1
A; ~ Ay imply that A; is non-abelian). 0 defines the following automorphism
of A: O(g) := g0(g). © has order p and it induces ag € K. Finally, a simple
computation shows that [0¢; 5y, ae] # 1 and this contradiction completes the
proof. O

3. Supersolvability of Aut (G).

This section is devoted to prove Theorem 1.
We first consider the case that A is a finite p-group and then derive the
result for finite nilpotent groups as a consequence.

THEOREM 6. Let A be a finite p-group with Aut (A) supersolvable.

If p =2, Aut (A wr Cs) is supersolvable if and only if A # Cy x Ce.

If p # 2, Aut (A wr Cy) is supersolvable if and only if A has no iso-
morphic direct factors in any of its Remak decomposition.

Proor. If p = 2 the result follows from Theorem 4.

Let now p # 2 and suppose first that A has no isomorphic direct factors.
Then Aut (A wr Cs) = K - I, by Theorem 5, is an extension of a strictly p-
closed group by a normal p-group and so it is strictly p-closed and su-
persolvable.

If otherwise A has isomorphic direct factors, in order to have Aut (G)
supersolvable, we must require that K is supersolvable, so Theorem 5
implies A = A; x Ay with A; ~ Ay indecomposable factors. Now the con-
jugation y, (Where a is the generator of Cy) is not in the Fitting subgroup of
Aut (A wr Cy), otherwise it will be a central element. Therefore if we con-
sider the dihedral subgroup R := (par,,p,) (with the same construction
used in the second step of Theorem 5), we have that Cr(I) = 1. Then

) Aut (A wr Cy)
RN Fit(Aut (A wr Cz)) =1, and so FitAut A wor Cs))
Aut (A wr C3) not supersolvable. O

is not abelian and

Proor oF THEOREM 1. The key idea of the proof consists in observing
that Aut (G) is a central product of the groups Aut (4, wr Cs), where A, is
the p-component of A and p varies on the set of prime divisors n(4) of |A|.
Use induction on |7(4)|.

If |z(A4)| = 1, then A is a prime power group and there is nothing to
prove. Let |n(4)]>2 and write A =P x, where P=0,(4) and
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Q = Oy(4) (p € n(A)). Using the same notations as in the previous sec-
tions, we have again that F' is characteristic in G and

Aut(G) =1 K.
Moreover I = I, x I,y, where
Ly = {yg, p) € Inn(A wr C2) | (p1,p2) € P x P}

(Iy is defined in a similar way), and K := Cpu)(9). Since F = A x A is
nilpotent Aut(F) = Aut (P x P) x Aut (Q x @) and we can write

K=K, x Ky
where K, is the subgroup of Aut(W) of all the elements which fix each
element of @ x @ and commute with ¢, (J, is the involution of F' that in-
terchanges the elements of P x P and acts like the identity on the rest). Ina
similar way is defined K,y. Finally we have that

[Ip,Kp’] = [IpHKp] =1.

So we obtain that Aut(G) is a central product of the groups
I, - K, ~ Aut(Pwr Cp) and Iy - K;y ~ Aut(Q wr Cs). The result follows from
Theorem 6 and the inductive hypothesis. O
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