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On Inert Subgroups of a Group.
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Dedicato al Professor Guido Zappa in occasione
del suo novantesimo compleanno.

ABSTRACT - A subgroup H of a group G is called inertif |H : H N HY| is finite for all g
in G. If every subgroup of G is inert, then G is said to be inertial. After giving an
account of the basic properties of inert subgroups, we study the structure of
inertial soluble groups. A classification is obtained for the groups which are fi-
nitely generated or have finite abelian total rank.

1. Introduction.

A subgroup H of a group G is said to be inert if |H : H N HY| is finite for
all g € G. This is equivalent to saying that H is commensurable with each of
its conjugates. Obvious examples of inert subgroups are normal subgroups,
finite subgroups and subgroups of finite index. Somewhat less obvious is
the fact that permutable subgroups are inert (Lemma 3.4 below): here a
subgroup H is said to be permutable in a group G if HK = KH for all
subgroups K of G. Recently inert subgroups have received attention in the
literature, mainly in the context of locally finite groups—see [1], [2], [3], [6].

A group G will be called nertial if every subgroup of G is inert (such
groups are termed totally inert in [3]). Clearly the class of inertial groups
contains all finite groups, Dedekind groups and Tarski monsters, and so it is
a highly complex class. On the other hand, Belyaev, Kuzucuoglu and Seckin
[3] have shown that no infinite locally finite simple group can be inertial.

In the present work, after a discussion of the basic properties of inert
subgroups, we investigate the structure of soluble inertial groups. While
there are many groups of this type, we are able to give complete de-
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scriptions in the cases where the group is finitely generated or has finite
abelian total rank.

2. Results.

We begin by noticing some uncomplicated types of inertial groups.
Suppose that G is a group with an abelian normal subgroup A of finite
index. In addition, assume that each g € G induces a power automorphism
in A; thus o/ = a” for all « € A where n = n(a) € 7. Then G s tnertial.
For, if H <G, then HNA<G and H/HNA, being finite, is inert in
G/H NA. Hence H is inert in G and G is inertial.

More generally, a group G is said to be inertial of elementary type if
there are normal subgroups F' and A, with /' < A, such that |F'| and |G : A|
are finite, A/F is abelian and elements of G induce power automorphisms
in A/F" clearly G is an inertial group.

Our first two results show that for wide classes of soluble-by-finite
groups, the only inertial groups are those of elementary type.

THEOREM A. Let G be a hyper-(abelian or finite) group such that
©(G) = 1. Then G is inertial if and only if G is abelian or dihedral.

Here 7(G) is the unique maximum normal torsion subgroup of G. Also a
group G is called dihedral if there is an abelian group A such that
G ~ Dih (A), where

Dih(4) = (t,A|#=1,d' =a™', a € 4),
the dihedral group on A.

THEOREM B. Let G be a finitely generated hyper-(abelian-by-finite)
group. Then G is inertial if and only if it has a torsion-free abelian normal
subgroup of finite index in which elements of G induce power auto-
morphisms.

Thus, for the classes of groups in Theorems A and B, the only inertial
groups are those of elementary type.

Inertial groups of non-elementary type

It is not difficult to find examples of inertial soluble groups which are
not of elementary type. A simple example is the group (t) x A where A is of
type p>, (t) is infinite cyclic and o = a!*?, (a € A).
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Recall that a soluble group with finite abelian total rank (FATR) is a
group G with a series 1= Gy<Gy1< --- <G, =G where each factor is
abelian and the sum of the p-ranks

; 7(Gi1/Gi)

is finite for< = 0,1,...,n — 1:in the summation here p is a prime or 0. Such
groups have also been called S;-groups and in the interests of conciseness
we will use this terminology. (For background on &;-groups see [5],
Chapter 5.) Our interest centres on the class

1
of ©;-by-finite groups: within this class there are, it turns out, inertial

groups of three types which are not elementary. We will now explain how
these non-elementary types may be constructed.

Construction

Let D be a divisible abelian p-group with finite positive rank and let ¥’
be a torsion-free abelian group, also of finite positive rank. By the spec-
trum of a group G

sp (@),
we mean the set of primes p for which G has a Priifer p>®-group as an
image.
I Split extension type

Let @ be an extension of a finite group by either F’ or Dih (F'), and let @
act on D as a group of power automorphisms. Assume that

p & sp(CqD))
and define
G=QxD.
Then G is an ©;§-group and in fact it is inertial, as is proved in Lemma

10.1 below.

11 Central extension types

Let Q@ = F' or Dih (¥) and regard D as a trivial -module. Since D is
divisible, Ext (Qu;, D) = 0 and the Universal Coefficients Theorem shows
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that
H*(Q, D) ~ Hom (M(Q), D),

where M(Q) is the Schur multiplier of Q.

Let 6 € Hom (M(Q), D) have infinite order (or equivalently, infinite
image). If Dy < D and Fy < F we denote by dp, and Jr, the natural induced
homomorphisms from M(Q) to D/Dy and M(Fy) to D respectively.

Assume that ¢ satisfies the following conditions.

(a) IfQ = F, (sothat M(Q) = F A F), then (F /\f)‘sD0 is finite for all
f € F, whenever dp, , = 0.
(b) If @ = Dih (F), then p ¢ sp (Fy) whenever Jr, is not surjective.

The existence of such homomorphisms ¢ is a question that will be ad-
dressed in §11. Next choose a central extension with cohomology class J,

0: D—G—Q.

Then G will be called a group of central extension type I1a or I1b, according
to whether (a) or (b) applies. Clearly G is an ©;-group and it is shown in
Lemma 10.2 that G is inertial.

Primary S1§-groups

Let G be any ©;%-group. Then G has a maximum divisible abelian
torsion subgroup D and ©(G/D) = ©(G)/D is finite. It follows from Theorem
A that if G is inertial, then G/D is inertial of elementary type, so it may be
assumed that D # 1. It is shown in Lemma 6.2 that G is inertial if and only
if G/D,y is inertial for each p € n(D). Furthermore, D/D,, is the maximum
divisible abelian torsion subgroup of G/D,, and this subgroup is a p-group
with finite rank.

An &;F-group whose maximum divisible abelian torsion subgroup is a
p-group will be termed p-primary. Thus in order to characterize the in-
ertial ©;%-groups of non-elementary type, it suffices to describe those
which are p-primary. This is accomplished in the following theorem, which
is the main result of the paper.

THEOREM C. Let G be a p-primary ©1%-group. Then G is inertial if
and only if either G is of elementary type or else it is an extension of a
finite group by a group of one of the types I, I1a, I1b.

The proof of Theorem C is accomplished in §§6-10. Basic results on
inert subgroups are presented in §3, while initial structural information
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about inertial groups appears in §4. The proofs of Theorems A and B are
given in §5.

Notation.

7(G@)  : the maximum torsion normal subgroup of G.
Fit(G) : the Fitting subgroup of G.

M(G) : the Schur multiplier of G.

Dih (A) : the dihedral group on A.

n(G)  : the set of primes dividing orders of elements of G.
sp(G@) : the spectrum of G, i.e., the set of primes p for which G has a p°-
image.

rp(4) : the p-rank of A.

3. Basic Results on Inert Subgroups.

We begin with an easy result that is used constantly in verifying that a
subgroup is inert.

Lemma 3.1.  Let H and K be subgroups of a group G such that H < K
and |K : H| s finite. Then H is inert in G if and only if K is.

Proor. Let g € G. Suppose first that |K : K N KY| is finite; then so is
[HKNKY:KNnKIY =|H: HNKY|.

Also HNKY : HNHY| < |K : H|, so that |H : H N HY| is finite.
Conversely, assume that |H : H N HY| is finite. Then so is |K : H N HY|
and hence |K : K N KY| is finite.

COROLLARY 3.2 ([3], Lemma 3). A subgroup which is commensurable
with an inert subgroup of a group is itself inert.

Proor. Let H,K < G with H inert in G and K commensurable with H.
Then H N K is inert in G by Lemma 3.1 since |H : H N K| is finite. By the
same result K is inert in G.

LeEmMA 3.3.  If H and K are inert subgroups of a group G, then H N K is
mert n G.
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Proor. Let g€ G. Then |H:HNHY| is finite and thus so is
|[HNK : HNnKnNHY.Also |K : KN KY|is finite, whence

[HNK N H : HNKNH N K|
is finite. Therefore |[H N K : (H N K) N (H N K)| is finite.

On the other hand, the intersection of infinitely many inert subgroups
need not be inert. For example, in a polycyclic group every subgroup is the
intersection of subgroups of finite index, but not every subgroup of a
polycyclic group need be inert: this is shown by the free nilpotent group of
class and rank 2.

We note that, in contrast to Lemma 3.3, the join of a pair of inert
subgroups need not be inert.

ExaMPLE. LetG = (x,y,a,b) wherex® = 1,5* =y, a* = a1, 0" = b,
a¥ = ab, b¥ = b and [a,b] = 1. Then T = (x,y) ~ Dih(Z) and A = (a, b) is
free abelian of rank 2. Furthermore G = T'x A. Notice that T is generated
by the finite subgroups (x) and (xy). However T is not inert in G: for by an
easy calculation TN T = Cp(a) = 1.

An interesting source of inert subgroups is the permutable subgroups
of a group.

LEmMA 3.4.  Permutable subgroups are inert.

Proor. Let H be a permutable subgroup of a group G and let g € G.
Then

HY = HY 0 (H(g)) = HHY N (g))
and

which is finite unless g has infinite order and H N (g) = 1. But under these
circumstances HY = H by a result of Stonehewer [7]. Thus in any event
|H'Y) : H| is finite and

|H:HNHY =|HHY : H| < |[HY : H|,
so |H : H N HY| is finite.

COROLLARY 3.5. The intersection of finitely many permutable sub-
groups s inert.
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4. Inertial Groups.

In this section we collect some useful properties of inertial groups,
mainly in the soluble case. The first result has already been noted in [3].

Lemma 4.1.  FC-groups are inertial.

Proor. Let G be an FC-group and let H < G, g € G. Then C = Cg(g)
has finite index in G, so |H : HNC| is finite. Since HNC < HNHY, it
follows that |H : H N HY| is finite and H is inert in G.

REMARKS. 1. Inertial groups need not be FC-groups.
An obvious example is Dih (Z), the infinite dihedral group.

2. Finite extensions of FC-groups need not be inertial.
In fact there are finitely generated abelian-by-finite groups which are
not inertial. An example is the group
G=(x,a,b|[a,b]=1=02% a"=b,b"=a'b7"),

as follows from Proposition 4.2 below. Another example is given in [3].

3. The direct product of two inertial groups need not be inertial.

For example, Dih (Z) x 7 is not inertial, again by Proposition 4.2. (For
another example see [3]).

4. There are nilpotent p-groups of class 2 which are not inertial.

For any prime p, let G = (x1, 2, . . .) satisfy the relations y3(G) = 1 and
af =1,(i=1,2,...). Then G'=Z(G)=(c;j|i<j=12,...)=C say,
where c;; = [x;,y;]. Evidently G is a nilpotent p-group of class 2.

Define H = (x1, 23,5, . ..). Then a simple calculation shows that

HnNH"” :HOC:<Ci]’|i,]Odd>.

Since |H : H N C| is infinite, H is not inert in G.
The next result is basic in the study of soluble inertial groups.

PRrROPOSITION 4.2.  Let A be a torsion-free abelian normal subgroup of
a group G. Assume that every cyclic subgroup of G is inert. Then elements
of G induce power automorphisms in A, i.e., if g € G, then a? = af for all
a € A, where ¢ = £ 1. Hence |G : Ca(A)| < 2.
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Proor. Let1# a € A and g € G. First of all we show that [a, gi] =1
for some ¢ > 0, and for this purpose we may assume that gA has infinite
order.

Since (g) is inert in G, we know that (g)/(g) N (g)" is finite and hence
(9) N {g)*# 1. Let 1 # x € (g9) N {g)"; then x = ¢g* = (¢)" = ¢/¢’, a] where
i,J # 0. Since |gA| is infinite, it follows that ¢ = j and [a, g*] = 1, as claimed.

Next (a) is inert, so (a) N (a)? # 1 and there exist m,n # 0 such that
a” = (a")’. Now by induction on j

amj _ ( an-7)9'7 ’

and by the previous paragraph we have ¢ = a? for some i > 0, from which it
follows that a” = a”'. Hence m = +n since a has infinite order. Conse-
quently (¢")?= o where ¢ = + 1, which implies that ¢ = a*. Thus g induces
a power automorphism in A (and the same ¢ will suffice for all a € A).

The situation is less clear for abelian normal subgroups of inertial
groups which are torsion. However the following result is sometimes
useful.

PRrOPOSITION 4.3. Let A be an abelian normal torsion subgroup of a
group G. If every subgroup of A is inert in G, then a'9 is finite for all
a€ A geqG.

Proor. Suppose for the moment that a € A has prime order p and put
H= <a92i lic z>

Then ' = (HUHY), so we may suppose H to be infinite. Since
|H : HN HY| is finite, HNHY # 1. Let 1 # « € HN HY; then we may as-
sume that

v — ol @ — gl

where 0#f, g € 7,[t], the polynomial ring. Then a/@)-"¢ =1 and
F@) — h(t®)t # 0 in 7, [t]. This implies that o' is finitely generated and
hence finite.

In the general case suppose that a has order m > 1 and let p be a prime
dividing m. Then B = (a%)w ! is finite. Passing to the group (a,9)/B and
using induction on m, we conclude that a'9) B/B is finite, whence a9 is finite.

The final result in the section highlights the special role played by di-
visible abelian subgroups of an inertial group.
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LEmMMAa 4.4.  Let G be an inertial group. Then G has a unique maximum
divisible abelian torsion subgroup D and elements of G induce power
automorphisms in D.

Proor. Let L be any p*°-subgroup of G. If g € G, then |L : LN LY| is
finite, which shows that L = LY and L <G. If M is any ¢>®-subgroup, then
[L,M] = 1 since M centralizes every finite subgroup of L. Consequently G
contains a unique maximum divisible abelian torsion subgroup, D say. If d is
ap-element in D, then d is contained in a p>-subgroup and hence (d) <G. It
follows that elements of G induce power automorphisms in D.

5. Proofs of Theorems A and B.

We have developed enough of the theory of inertial groups to be able to
prove the first two main results.

Proor or THEOREM A. Let G be a hyper-(abelian or finite) inertial
group for which (@) = 1. We show that G is abelian or dihedral.

Let N be a nilpotent normal subgroup of G and let M be a maximal
abelian normal subgroup of N. If a € M and x € N, then, since M is tor-
sion-free, a* = a*, where ¢ = £1 by Proposition 4.2. Since (x, a) is nilpo-
tent, 1 = [a,,x] = a® V" for some n > 0, and it follows that ¢ =1 and
[a,x] = 1. However M = Cy(M),so M = N and N is abelian. Consequently
the Fitting subgroup F' = Fit(G) is abelian, and of course it is also torsion-
free. Writing C = C¢(F"), we conclude that |G : C| < 2.

Assume that F # C. Then, since G is hyper-(abelian or finite), there is a
non-trivial normal subgroup U/F of G/F such that U < C and U/F is
either finite or abelian. If U/F is finite, U is centre-by-finite, so U’ is finite
and thus U is abelian. This implies that U = F', a contradiction. Hence
U/F is abelian, so that U is nilpotent and again U = F'. Therefore F' = C
and |G : F| < 2.

If F =G, then G is abelian. Otherwise F' # G and G = (¢, F); thus
ft=f"1,(f €F), and t* € F. Hence t* = 1 and thus #* = 1 since F is tor-
sion-free. Finally G = Dih (¥). The converse is clearly true.

COROLLARY 5.1. A torsion-free hyper-(abelian or finite) group which
18 mertial is abelian.

Proor oF THEOREM B. Let G be a finitely generated hyper-(abelian or
finite) group which is inertial. It must be shown that G possesses a torsion-
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free abelian normal subgroup of finite index in which elements of G induce
power automorphisms. Notice that finitely generated groups with this
structure are finitely presented. Thus, arguing by contradiction, we may
assume the statement in the theorem is true for all proper quotients of G,
but false for G itself.

If ©«(G) = 1, the result is a consequence of Theorem A, so we may as-
sume (@) # 1. From this it follows that G has a non-trivial normal sub-
group A which is either finite or an abelian torsion group. Suppose that A is
finite. Then G /A satisfies the conclusion of the theorem and hence G is
polycyclic-by-finite, which implies that it has a torsion-free normal sub-
group B of finite index. By Corollary 5.1 the subgroup B is abelian, and by
Proposition 4.2 elements of G induce power automorphisms in B. By this
contradiction A is an abelian torsion group.

Let 1 #a € A and g € G. Then @' is finite by Proposition 4.3. Since
G/A is the product of finitely many cyclic groups, a® is finite. The argu-
ment given above for A shows this to be impossible. The converse state-
ment is clearly true.

6. Inertial ©;%-Groups.

We begin the study of inertial &;F-groups with a discussion of the
reduced groups. (For background on &;§-groups see [4], §5).

Let G be an ©;§-group. Recall that the finite residual R of G is a di-
visible nilpotent group. Its torsion-subgroup D is a divisible abelian with
finite total rank, i.e., it is a direct product of finitely many Priifer p*-
groups. Clearly D is the unique maximum divisible abelian torsion sub-
group of G. If D =1, then G will be called torsion-reduced.

The inertial &;F-groups which are torsion-reduced are characterized
in the following result.

PROPOSITION 6.1. Let G be a torsion-reduced ©,%-group. Then the
following are equivalent:

(1) G is inertial;
(ii) G s of elementary type;
(iii) there is a torsion-free abelian subgroup A of finite index in
which elements of G induce power automorphisms;
(iv) G 1s finite-by-F or finite-by-Dih (F') where F 1s torsion-free
abelian.
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Proor. Itis either obvious or already known that (iii) = (i) = (i) and
(iv) = (ii). We show next that (i) = (iii). Let G be inertial. Since G is tor-
sion-reduced, its finite residual R is torsion-free. Also G/R is reduced, so it
has a normal torsion-free subgroup A/R with finite index in G/R. By
Corollary 5.1 the subgroup A is abelian and by Proposition 4.2 elements of G
induce power automorphisms in A. Thus (iii) holds.

To complete the proof we show that (i) implies (iv). Since G is inertial
and 7((7) is finite, we may suppose that the latter is trivial; the result now
follows from Theorem A.

Primary groups

In the light of Proposition 6.1, we may confine our analysis to inertial
©1 %-groups which are not torsion-reduced. Let G be an &4 §-group and let
D be its maximum divisible abelian torsion subgroup. Should D happen to
be a p-group, G will be called p-primary. We show next that it is sufficient
to describe the inertial &, &F-groups which are p-primary.

LEMMA 6.2. Let G be an ©,§-group with maximum divisible abelian
torsion subgroup D. Then G is inertial if and only if G /D,y is inertial for all
p in n(D). Moveover G /D,y is p-primary.

ProoFr. Since the condition is certainly necessary, we assume that it
holds for G. The group G/D, is inertial, so by Lemma 4.4 elements of G
induce power automorphisms in D/D,, and hence in D,. Thus every sub-
group of D is normal in G.

Let H <G: then HND<G and in showing that H is inert in G
we may suppose that HND=1. Let g€ G and p € n(D). Then
|HD,y : HDy N HYDy|is finite and thus so is |H : H N HYD,|. Since n(D)
is finite, it follows that |H : H N K| is finite, where

K= () (H'Dy).
pen(D)

If k € K, then k = hi\d, where h, € H and d, € D,y. Therefore, if p # ¢, we
have

(h)"'hg = dgd, e HYND =1,

which implies that d, = d, and h;, = h,. Hence K = HY and in consequence
|H : HN HY| is finite, so that G is inertial.
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7. Primary Inertial ©;%-Groups.

In this section we begin to analyze the structure of primary inertial
©1§-groups. Let G be an inertial ©;§-group which is not of elementary
type and denote by

D

its maximum divisible abelian torsion subgroup. Since G/D is of elemen-
tary type by Proposition 6.1, we have D # 1. By Lemma 6.2 we can assume
that D is a p-group, i.e., G is p-primary.

There are three normal subgroups which play a prominent role in the
analysis. By Proposition 6.1 there is a torsion-free abelian subgroup A/D
with finite index in G/D in which elements of G induce power auto-
morphisms. Also put

C=CsD) and L =CgzA/D).
Then A, C and L are normal in G,
D<C<A<L and |G:L|<2.

Since by Lemma 4.4 elements of G induce power automorphisms in D,
there are two possible situations:

(i) [D,A] =1, the central case;
(ii) [D,A] = A, the non-central case.

There is a further dichotomy arising from the location of the sub-
group L:
(i) L =G, 1i.e., A/D is G-central,
(iv) |IG:L|=2.

It is easy to deduce from Proposition 6.1 that the group G/D is finite-
by-torsion-free abelian in case (iii) and finite-by-dihedral (on some torsion-
free abelian group) in case (iv). Cases (iii) and (iv) are referred to as the
non-dihedral case and the dihedral case respectively. Thus in all there are
four cases to be dealt with.

The above notation with D, C, A, L will be maintained throughout this
and the following two sections.

A reduction

In establishing the necessity of the conditions in Theorem C one very
useful observation is that it is always possible to factor out by a finite
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normal subgroup without disturbing the standard subgroups D, C, A, L.
The basis for this reduction is the next lemma, which assures us that in
factoring out by a finite normal subgroup we remain in the same central or
non-central and dihedral or non-dihedral cases.

LEMMA 7.1. Let F be a finite normal subgroup of the inertial ©13%-
group G. Then:

(i) DF/F isthe maximum divisible abelian torsion subgroup of G/F;
(i) Ce(DF/F) = CgD).
(i) AF/DF g A/D, so AF /|DF is torsion-free abelian;
(iv) Cq(AF/DF) = Cg(A/D).

Proor. (i) Suppose that £//F is a divisible abelian torsion subgroup of
G/F. Since G is an &, §-group, £ is a Cernikov group and therefore ED /D
is finite. Thus £ < DF and DF'/F is the maximum divisible abelian torsion
subgroup of G/F.

(i) If g € Cq(DF/F), then [D, g]is finite; however it is also divisible, so
[D,g]=1.

(ifi) Since A/D is torsion-free, A N F' < D and hence

AF/DF £ AJAN (DF) = A/D.

(iv) This follows from (iii).

COROLLARY 7.2. (i) The central case applies to G/F if and only if it
applies to G.
(i) The dihedral case applies to G/F if and only if it applies to G.

As a consequence of the corollary we can make a first reduction.

LEmMa 7.3. It may be assumed (by factoring out by a finite normal
subgroup) that L /D is abelian.

Proor. Since L/D is centre-by-finite, L' D /D is finite. Now elements of
G induce power automorphisms in D, so we have [D, G'] = 1 and therefore
L'D is centre-by-finite. Hence (L'D)’ is finite and may be factored out. This
makes L'D an abelian Cernikov group. Factoring out by a further finite G-
invariant subgroup of L'D, we can make this subgroup divisible and hence
L' <D.
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8. The Central Case.

In the notation established in §7, we are faced with the situation where
[D,A] =1,

and hence G/Cg(D) is finite. There are two sub-cases that must be treated
separately.

The non-dihedral case

In this case we have L = G and thus we can assume that G/D is abelian
by Lemma 7.3. The case where in addition [D, G] = D is disposed of by the
next result.

LeEmma 8.1.  Assume that G/D is abelian and [D, G] = D. Then, modulo
a finite normal subgroup, G has the form X x D where X is abelian, its
elements induce power automorphisms in D and p & sp (Cx(D)).

From this we deduce:

COROLLARY 8.2. The group G is of split extension type ().

For the subgroup X is abelian and torsion-reduced, so its torsion-sub-
group is finite.

Proor or LEMMA 8.1. Since D = [D,G] and G/D is abelian, it follows
from [4, Theorem H] or [5, 10.3.6] that H%(G /D, D) is a torsion group. By [5,
10.1.15] G splits over D modulo some finite G-invariant subgroup of D. This
subgroup may be factored out without affecting the hypotheses on G, by
Corollary 7.2. Therefore we may assume that

G=XD and XNnD =1
where X is abelian. Put
Y =Cx(D);

it remains to show that p¢ sp (Y). Assume that this is false.
Since D is a non-trivial divisible abelian p-group and p € sp (Y), there
exists a homomorphism 6 : Y — D with infinite image. Put

E — Y1+<9
and notice that Y x D = K x D.
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Since [D, G] # 1, there exists a g in G such that [D, g] # 1; then d? = d*,
(d € D), for some p-adic integer a # 1. Now G is inertial, so |E : E N EY| is
finite. Let w € ENEY; thus u =¢; = eg = egles, g] where e; € E. Since
[E,9] <D and EnND =1, it follows that u = e; = ez € Cg(g), and conse-
quently

ENEY = Cy(g).

Therefore |[E,g]| = |E : Cg(g)| is finite.
Next let 4 € Y and write e = 4’ € E. Since Y < Z(G), we have

le, 91 = ") LY = ")y = @)

Since [¥, g] is finite, it follows that (Y%)* 1 is finite. But a =1, so this gives
the contradiction that Y is finite, which completes the proof of Lemma 8.1.

We are left with the case where [D,G] = 1. Let T'/D be the torsion-
subgroup of the abelian group G/D. Then T'/D is finite, so T is centre-by-
finite and thus 7" is finite. Factoring out by 7", we can assume that 7' is
abelian. Since 7' is a Cernikov group, we can make it divisible by factoring
out another finite normal subgroup. Hence T = D. Therefore we can
suppose that G/D is a torsion-free abelian group.

At this point it is convenient to have the following technical result at our
disposal.

Lemma 8.3. Assume that [D,G]l=1 and G/D is abelian. Suppose
further that D < B < G where B is abelian. Then [B, g] is finite for all g
m G.

PRroOOF. Since D is divisible, B = D x F where F' is abelian. Now F' is
inert in G, so |F' : F' N FY| is finite for all g € G. Next F' N FY = Cr(g) by an
argument in the proof of Lemma 8.1. Therefore |[F',gl| = |F' : Cr(g)] is fi-
nite. Finally, [B, g] = [F, g] since [D,G] = 1.

We can now complete the analysis of the central/mon-dihedral case by
analyzing the central extension

D—G—F,
where F' = G /D, a torsion-free abelian group. Since
H*(F,D) ~ Hom (M(F), D)

and M(F) = F A\ F (the exterior square), the group G is determined by an
element

d € Hom (F A F, D).
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Now Im(5) = G’ N D = ¢ and this must be infinite — for otherwise G would
be of elementary type. We will show that ¢ satisfies the conditions for the
central extension type Ila.

Let Fy < F and Dy < D, and suppose that dp, r, = 0. This means that, if
B/D, is the preimage of Fiy under the natural map G/Dy — F, then B/Dy is
abelian. By Lemma 8.3 applied to the group G/D,, we conclude that
[B,glDy/Dy is finite for all g € G, which translates into (Fy A f )Y’% being
finite where f = gD € F. Therefore G is a group of central extension type
IIa, which concludes our discussion of the central/non-dihedral case.

The dihedral case
We have now to deal with the situation where
[D,A]=1 and |G:L| =2,

i.e., the central/dihedral case. Thus elements in G\L induce the inverting
automorphismin A/D. An essential role in our analysis of this case is played
by the following technical result.

LeEmma 8.4.  Assume that [D,A]l =1 and |G : L| = 2. Suppose that B is
an abelian subgroup satisfying D < B < A. If p € sp(B/D), then each
element of G\ L induces the inverting automorphism in D, and in addition
[D,L]=1

PrOOF. Since B is abelian, we have B = D x F where F is torsion-free.
By hypothesis p € sp (B/D), so there is a homomorphism 6 : ¥/ — D with
infinite image. Write E = F'*/, noting that B =D x E.

Choose any g in G\L; then we claim that

ENE'={ecE|e¢f =¢'}.

To see this, suppose that w € E N EY;thenu = e¢; = eg = egld wheree; € £
and d = e, € D. Since E N D = 1, we obtain e;e; = d = 1, whence u = ¢;
and e =e;!, as required. Since E is inert in G, it follows that
|E9| = |E : E N EY] is finite. By the same argument |[F*9| is finite.

Next let f € F and put e = f1*% € E. Therefore, writing d = f1*9 € D,
we have

e = OO = a0 = d(f9)1+a’

where ¢ induces the automorphism x— x* in D, with a a p-adic integer.
Since E'19 and F'*9 are both finite, so is (F?)' ™. However F" is infinite, so
this can only mean that a« = —1 and g induces inversion in D.
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Finally, if ¢ € L, then g/ also induces inversion in D, which implies that
[D,¢] =1 and [D, L] = 1. This completes the proof of Lemma 8.4.

We return to our analysis of the dihedral case. Let us assume for the
present that in addition [D, L] # 1, so that

D =[D,L].

Since L/D is abelian, it follows from [4, Theorem H] or [5, 10.3.6] that
H*(L/D, D) is a torsion group, and because |G : L| is finite, H*(G/D, D) is
also a torsion group. Therefore, modulo some finite subgroup of D, the
group G splits over D, and by Corollary 7.2 we can assume that

G=QxD

where @ is abelian-by-finite and inertial. Thus @ is finite-by-Dih (4/D) by
Proposition 6.1.

Next A=AN@D) =ANKD, so A is abelian since [D,A] = 1. Ap-
plying Lemma 8.4 with B = A and using the fact that [D, L] # 1, we see
that p € sp(A/D). Since A/D ~ANQ < Cy(D) and |G : A| is finite, it
follows that p & Cg(D) and therefore G is of split extension type I.

For the rest of the section we assume that

[D,L]=1.

Let T/D be the torsion-subgroup of the abelian group L/D. Then T is
centre-by-finite, so, factoring out 7", we can assume T to be abelian. Of
course T is Cernikov, so factoring out one more time, we may assume that
T is divisible, i.e., ' = D. Thus L/D is torsion-free abelian. This allows us
to replace A by L, which means that we now have the situation

[D,A]l=1, |G:A]=2
and
G/D = Dih (4/D).

There are two further sub-cases to be considered.

Case: A’ is finite

Asusual we may assume that A is abelian. Write G = (¢, A); then¢induces
inversion in A/D. Write A = D x F; then |F' : F N F'| is finite, which by the
usual argument shows that F'*! is finite. Now F**1 <« G since F'*! < D, sowe
may factor out by F**1 and assume that ¢ induces inversion in F'.

Next we have t2 € A, which shows that 2 = ¢ 2(mod D) and # € D.
Since A/D is torsion-free, t* € D and (t*) «G. Factor out by (t*) to get
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2=1and G = {tyx D. Now d' = d*, (d € D), for some p-adic integer a. If
p € sp(A4/D), then Lemma 8.4 shows that ¢ = —1 and G ~ Dih (4), which
is of elementary type. Therefore p & sp(A/D).

We now have

G=(tA|f=1d=df=f" feF)

and G = Qx D where Q = (t,F) = Dih (F). Since p & sp(A/D) = sp(Q),
the group G is of split extension type I.

Case: A’ is infinite

In order to handle this case we need another lemma of a technical nature.

LEMMA 8.5. Assumethat[D,A]l =1, |G : A| = 2and A’ is infinite. Then
D < Z(G).

ProoF. Let g € G and ay,a2 € A. Then a“i’ = aid; where ¢ = £1 and
d; € D. Hence

[ar, a2l = [ajdy,asds] = [af, a3] = [a1, as],

since[D,A] = 1and A’ < D, which shows that A’ < Z(G). Since A’ is infinite
and elements of G induce power automorphisms in D, it follows that
D < Z(G).

By Lemma 8.5 we have a central extension

D—G—Q=G/D,

say with cohomology class 6 € Hom (M(Q), D). Also @ = Dih (A/D). Notice
that Im(d) = G’ N D is infinite since it contains A’. We show that ¢ satisfies
the conditions of the central extension type IIb.

Let Fy <F =A/D and put Dy = Im(Jr,); assume that Dy < D. Then
Fy = B/Dy is abelian. If p € sp(¥) = sp(B/D), then Lemma 8.4 shows that
elements of G\ L induce the inverting automorphism in D/Dy. This is im-
possible since D < Z(G) by Lemma 8.5; hence p ¢ sp (Fy), as required.

9. The Non-Central Case.

We now deal with the case where
D =[D,A].

Also, of course, A/D is torsion-free abelian and G /A is finite.
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Suppose first that we are in the dihedral case; thus |G : L| =2 and
o/ =a '(modD) fora € A, g c G\L. 1t follows that A? <[A,gID < G'D.
Since elements of G induce power automorphisms in D, we have [D,G'] = 1
and hence [D,A2D] = 1. Also, A2D/D is torsion-free abelian and |G : A2D)|
is finite. Consequently, if we replace A by A%2D, we are again in the situation
[D,A] =1, i.e., we are in the central/dihedral case, which was dealt with in
§8: either G is of split extension type I or of central extension type IIb.

Now assume we have the non-central/non-dihedral case: thus L =G
and G/D is abelian, while D = [D, G]. It follows directly from Lemma 8.1
that, modulo a finite normal subgroup, G is of split extension type I.

10. Sufficiency.

In order to complete the proof of the main result, Theorem C, we have
to demonstrate that a group of type I, I1a or ITb is inertial. This is done in
two lemmas.

LeEmMA 10.1.  Let G be an extension of a finite group by a group of split
extension type 1. Then G is an inertial S, F-group.

ProoF. We can assume that G is of split extension type, so that
G=QxD:

here D is a divisible abelian p-group of finite rank, @ is finite-by-# or finite-
by-Dih (¥), with F' a torsion-free abelian group of finite rank such that
p & sp (Cp(D)) and Q acts as a group of power automorphisms on D. Clearly
G is an S F-group—what needs to be shown is that G is inertial.

Let H < G and put Dy = HND<«G. If Dy = D, then H is inert since
G/D is inertial: assume that Dy < D. Then Cyp(D/Dy) = Co(D) and as a
consequence we can assume that

HnD=1

By Proposition 6.1 there is a normal subgroup A of finite index such
that A/D is torsion-free abelian with elements of G inducing power auto-
morphisms in it. Since |H : H N A| is finite, it is enough to show that H N A
isinert in G. Thus it is permissible to assume that H < A, and hence HD /D
is abelian.

Suppose that [D, H] # 1. Then [D, H] = D and it follows from [5, 10.3.6]
and [5, 10.1.10] that, modulo a finite subgroup of D, the complements of D in
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HD are conjugate to H. Now HD = (HD N Q)D, so H and HD N @ are con-
jugate, which shows that we may assume that H < @). Hence H is inert in Q.

Let x€@ and deD. Then HNH? =Cyx(d) and |H:HNHY <
< |[H,d]| < |d|, which is finite. Thus |H:HNH? is finite. Also
|H : HN H*| is finite, as is |[H? : HY N H*|, from which we deduce that
|[HNH?: HNH? N H"| is finite. Hence |H : HN H? N H*| is finite, as
must be |H : H N H*¥|. Thus H is inert in G.

Now assume that [D, H] = 1, so that HD = H x D, which is abelian. If
g € G, then @ = a*(mod D) for a € A, where ¢ = + 1. Therefore

HnH={heH|W =h%}
and
H : HNHY) < |H),
since & — h9~¢ is a homomorphism from H to D. Finally,
sp(H) = sp(HD/D) C sp(Cq(D)),

so p ¢ sp (H). Consequently HY~# is finite and again H is inert.

LemMa 10.2. Let G be an extension of a finite group by a group of
central type Ila or I1b. Then G is an inertial S1§-group.

ProorF. We may assume G is of type IIa or IIb, so there is a central
extension

D—G—Q

with D a divisible abelian p-group of finite rank and @ = F or Dih (), where
F is a torsion-free abelian group of finite rank. Let the cohomology class of
the extension be

0 € Hom (M(Q), D);

here ¢ satisfies the conditions for the type I1a or IIb.

Let H < G and write Dy = H N D <G. 1t suffices to show that H/D, is
inert in G/Dy. Suppose first that Im(dp,) is infinite; then we can pass at
once to G/Dy, i.e., we may assume that H N D = 1. In addition we may
suppose that HD/D is abelian, so HD = H x D is abelian. If g € G, the
usual argument shows that |H : H N HY| = |HY*| where h?Y = h*(mod D),
h € H, and ¢ = +1. Also h— h9~* is a homomorphism from H to D. Let
Fo=HD/D. If Q is dihedral, then, since HD is abelian, dr, =0 and
p & sp (Fy) = sp (H) and thus |HY~¢| is finite.
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If, on the other hand, @ is abelian, then ¢ =1 and Jp, = 0 where
Fy = HD/D. Therefore for any g € G the group (HD/D) A (¢D))’ is finite,
i.e., [H,g] = H'"! is finite. Thus |H : H N HY| is finite in both cases.

Now suppose that Im(dp,) is finite, i.e., (G' N D)Dy /Dy is finite. Passing
to the quotient group modulo (G’ N D)D,, we may assume that Dy =1 =
= G'ND. Thus 6 = 0 and G splits over D. We now have G = D x @ and
HnND=1. Also we may assume that = Dih(F) and H <D x F. If
teQ\F, then HNH'={h e H |k =h"'} and |H:HNH'|=|H"|.
Now p ¢ sp (H) since § = 0, so the image of the homomorphism £ — k!*1,
(h € H), is finite, i.e., |[H'"!| is finite and again |[H : H N H'| is finite.
Therefore H is inert in G.

This completes the proof of Lemma 10.2, and thereby Theorem C.

11. Existence Questions.

In this section we discuss the existence of the non-elementary inertial
©1&-groups. There is little difficulty in constructing examples of groups of
split extension type I for any given prime p, in both the dihedral and non-
dihedral cases. On the other hand, a group of central type IIa or IIb in-
volves a torsion-free abelian group of finite rank which must satisfy some
complex conditions. It is essential to produce explicit examples showing
that groups of both types exist.

Constructing groups of central extension type
Let p be an arbitrary prime and D a group of type p>. Denote by Q, the
additive group of p-adic rationals {% | m,n € Z} The torsion-free abe-

lian group F' that we require is to be an extension of Z by (Q,, with extension
class ¢ of infinite order,

e: C=F—0Q,

where C is infinite eyclic.
In fact such groups abound. For by standard homological calculations it
can be shown that

Ext(Qp, 7) ~ 7,/7
where Zp is the additive group of p-adic integers. Since ¢ has infinite order,

the extension does not nearly split over C, i.e., there is no subgroup of finite
index in F' which splits over C.
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A group of the above type may be constructed explicitly as follows. Let
V be a 2-dimensional rational vector space with basis {u,v}. Let a be an
irrational p-adic integer, written a = ag + a1p + agp® +---, (0 < a; < p).
Define elements v; in V by

Y9 = v and v; = p’i(vo +(ap+aup+---+ ai,lpi’l)u).
Thus pv;1 = v; + a;u. Let
F={uwvl|t=012..).
Then F'/(u) ~ Q, and it is not hard to show that F' does not nearly split over

C = (u), so F' is an example of the kind of group required.
We note some properties of abelian groups of this sort.

Lemma 11.1. Let C— F — Q) be an abelian extension with extension
class of infinite order, where C ~ 7. Then the following hold.
) MF)=FAF ~ Q.
(ii)) If H < F, then H is either finitely generated or of finite index.
(iii) The group F' has no subgroups isomorphic with (.

Proor. Let F/C ~ Q, with C infinite cyclic. Then M(F) can be
computed using the Lyndon-Hochschild-Serre spectral sequence for
C—F —Q,. Clearly E3 =E?3,=FE% =0; therefore M(F)~ E? ~
~Qp® 7= Q.

Next let H < F. Suppose first that |[F' : HC| is finite. Then HNC # 1,
otherwise F' would nearly split over C. Hence |[HC : H| is finite and |F' : H|
is finite. If |F : HC] is infinite, then HC/C'is cyclic since F'/C ~ (,,. Hence
H is finitely generated.

Finally, (iii) follows directly from (ii).

The group F' will now be used to construct examples of groups of types
ITa and IIb. Since M(F') ~ (), there is a surjective homomorphism

0 € Hom(M(F), D),
where D is of type p*°. This determines a central extension
0: D—Gy—F.

Next the inversion automorphism of F' acts trivially on M(F) = F A F,
so it lifts to an automorphism 7 of G acting trivially on D. Now define

Gz = (1) x Gy.
Regarding the groups G, G2 we prove:
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LEmMMA 11.2.  The group Gy is an inertial ©1F-group of type Ila and Gy
is an mertial S1§-group of type 11b.

Proor. Itis sufficient to check the validity of the conditions on F' and &
in the definitions of types IIa and IIb.

Suppose that @ = Gz/D = Dih(F). If Fiy < F and Jp, is not surjective,
then Jp, has finite order and Fy cannot have finite index in F'. Hence F| is
finitely generated by Lemma 11.1, which shows that sp(¥) is empty. Thus
Gy is of type Ilb.

Now assume that @ = G1/D = F, and let Dy < D and Fy < F’; then Dy
is finite. Assume that dp, r, = 0. Then Jr, has finite order and |F" : F| must
be infinite. Hence FY is finitely generated and therefore (Fy A £)° is finite
for all f € F. It follows that G is of type Ila.

That the groups G; and G are inertial follows from Lemma 10.2.
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