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On some Classes of Divisible Modules.

LuUIGI SALCE - PETER VAMOS

Dedicated to Guido Zappa on his 90th birthday

ABSTRACT - Commutative integral domains satisfying the property that k-divisible
modules are finitely injective are characterized, as well as those Priifer domains
such that FP-injective modules are finitely injective. The latter property is also
investigated for almost perfect domains.

0. Introduction.

It is a classical result due to Kaplansky [8] in 1952, that a commutative
integral domain R is a Dedekind domain if and only if the two classes D(R)
of divisible modules and Z(R) of injective modules coincide. Thus, given a
domain which is not a Dedekind domain, there is a strict inclusion Z(R) C
C D(R). In this case there are three further notable classes of R-modules
falling between the classes Z(R) and D(R), all attracting the interest of a
number of researchers.

The first class, denoted by FI(R), consists of the finitely injective
modules M (also called locally injective in [1] and [5]), defined by the pro-
perty that every finite subset of M is contained in an injective submodule.

(*) 2000 Mathematics Subject Classification. Primary: 13A05; Secondary 13C11;
13F05.

The research of the first author was supported by MIUR, PRIN 2005. The
second author was visiting professor in Padova supported by INDAM during the
preparation of this paper. He thanks INDAM, and the Department for their
hospitality.

(**) Indirizzo dell’A.: Dipartimento di Matematica Pura e Applicata, Universita
di Padova, via Belzoni 7, 35131, Padova, Italy; E-mail: Salce@math.unipd.it

(***) Indirizzo dell’A.: School of Mathematical sciences, University of Exeter,
North Park Rd., Exeter EX4 4QE, England.

E-mail: P.Vamos@exeter.ac.uk

http://www.maths.ex.ac.uk vamos



126 Luigi Salce - Peter Vamos

The second class, denoted by 2ZD(R), consists of the h-divistble mod-
ules, which are the epimorphic images of injective modules.

The third class, denoted by FPI(R), is the class of the FP-injective
modules; it consists of the modules A such that Ext}z(F,A) =0 for all
finitely presented modules F. It is well known that the inclusions
Z(R) C FI(R) C hD(R) N FPI(R) C D(R) hold (see Corollary 1.3 below).

The containment relations between these classes of modules is shown in
the diagram below. (Thanks to Dr D. K. Smith, Exeter, for the LaTeX code
of this diagram.)

In general, all these inclusions are strict, so one obtains genuine char-
acterizations of integral domains by equating certain pairs in the diagram.
We have already mentioned that Z(R) = D(R) characterizes Dedekind do-
mains. The equality Z(R) = FI(R) characterizes Noetherian domains (this
latter result holds for arbitrary rings R, see [15]); for these domains the
equality FI(R) = FPI(R) also holds (see [6, IX. 3.2]). The equality hD(R) =
= D(R) characterizes Matlis domains, that is, the domains whose field of
quotients @ has projective dimension < 1 (see [12]). Finally, the equality
FPI(R) = D(R) characterizes Priifer domains (see [13] and [6, IX. 3]).

The aim of this paper is to investigate the remaining two inclusions, that
is to say, the relationships between the three classes FI(R), hD(R) and
FPI(R) in the middle of the above diagram. Some results in this direction
were proved by Facchini [5] for valuation domains. More precisely, he
showed that, if R is an almost maximal valuation domain, then the equality
FI(R) = hD(R) holds, and that for such a domain R the equality FI(R) =
= FPI(R) holds precisely if R is a Matlis domain.

The first goal of this paper is to prove that, for an arbitrary domain R, the
two classes FI(R) and hD(R) coincide if and only if R is an almost maximal
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Priifer domain or, equivalently, an F'SI domain (i.e. the classical quotient ring
of every factor ring is self-injective, see [17]), this is our Theorem 2.4. This
theorem extends Facchini’s result to arbitrary domains and improves Olber-
ding’s result in [14], stating that a domain R such that all factor modules of its
field of quotients @ are injective is an almost maximal Priifer domain; in fact, in
Theorem 2.4 we reach the same conclusion just assuming that all the quotients
of @ are finitely injective. Our proofis inspired by the methods in [17] and uses
completely different techniques with respect to Olberding’s proof.

The second goal of this paper is to investigate when FP-injective
modules are finitely injective. An easy consequence of Theorem 2.4 is that,
for a Priifer domain R, the equality FI(R) = FPI(R) holds if and only if R
is an almost maximal Matlis domain (Corollary 3.1). Furthermore, we will
show that the above equality forces an almost perfect domain R to be
Noetherian, provided that R is countable.

1. Preliminaries and review of known results.

All the rings considered are commutative with 1, even if some results in
this paper hold over arbitrary associative rings. For all unexplained ter-
minology and notation we refer to [6]. We recall the characterization of FP-
injective modules over arbitrary rings given by Megibben [13] (see also [6,
IX. 3.1]) that we shall use later on; recall that a module is absolutely pure if
it is pure in every module in which is contained as a submodule.

THEOREM 1.1 (Megibben [13]). For a module M over a ring R the fol-
lowing are equivalent:

1) M s FP-injective;
(2) M 1is absolutely pure;
3) M 1is pure i its injective hull.

In order to show that a finitely injective module is FP-injective, con-
sider the following strong notion of purity which first appeared in a paper
by Chase [4]. This notion was investigated by Rangaswamy and its colla-
borators [7, 15, 16], by Azumaya [1] and also by Zimmermann [19]. Fol-
lowing Zimmermann, we say that a submodule A of a module B is s-pure
(short for strongly pure) if for every finite set of elements x;,...,x, € A,
there exists a homomorphism ¢:B — A such that ¢x; =«; for all
1=1,...,n. (Note that s-pure submodules are called locally splitin [1] and
[5]). It is obvious that s-purity implies purity.
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A module M is said to be absolutely s-pure if it is s-pure in every module
in which is contained as a submodule (absolutely s-pure modules are called
strongly absolutely pure in [15]). Recall that an epimorphismz : N — M is
said to be locally split if, for every finite set of elements xy,...,x, € M,
there exists a homomorphsm ¢ : M — N such that nox; = x; for all
1 =1,...,n. The next theorem was partly proved in [15]. As usual, E(M)
will denote the injective hull of a module M.

THEOREM 1.2 (Ramamurthi and Rangaswamy [15]). For a module M
over a ring R the following are equivalent:

(1) M is finitely injective;

(2) if A is a finitely generated submodule of a module B, every
homomorphism from A to M extends to a homomorphism from B to M;

(8) M is absolutely s-pure;

(4) M s s-pure in its injective hull;

(5) M 1is a locally split epic image of a direct sum of injective
modules;

(6) every element of M is contained in an injective submodule of M.

Proor. The equivalence of (1), (2), (3) and (6) is proved in [15]. Trivially
(3) implies (4). Conversely, let M be a submodule of the module N. Then
E(N)=EWM)® B and, given a fixed finitely generated submodule X of M,
there exists a morphism ¢ : E(M) — M such that ¢(x) = x for every x € X.
Then ¢ extends to a morphism y : E(N) — M which, restricted to N, gives
the required map. So (4) implies (3). Next, (1) obviously implies (5); for the
converse, the same proof as in [19, Theorem 2.1, (6) = (5)] applies, replacing
the term “pure-injective” by the term “injective”. To finish, we give a simple
direct proof of (5) = (6). Let = : @ E; — M be a locally split epimorphism,

el
with E; injective for all 7, and le‘:; 0 # x € M. By our hypothesis, there is a
homomorphsm ¢ : M — @ E; such that n(a(x)) = x. So there is a finite

icl

subset J of I such that a(acl)ee P E; = E. Let E' be the injective hull of o(Rwx)
=

in K. Then n restricted to o(Rx), and hence to £’, is monic. It now follows

that x € n(#"), which is an injective submodule of M. O

CoROLLARY 1.3. If R is an integral domain, then the inclusion
FI(R) C hD(R) N F PI(R) holds.

ProoF. The inclusion FI(R) C FPI(R) follows from the equivalence of
(1) and (3) in Theorem 1.2, the equivalence of (1) and (2) in Theorem 1.1, and
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the obvious fact that an absolutely s-pure module is absolutely pure. The
inclusion FI(R) C hD(R) follows from the equivalence of (1) and (5) in
Theorem 1.2.

The next Proposition 1.5 was recently proved by Laradji [11], who
answered Problem 33 in [6]; it improves the well known result (see [14,
Lemma 2.4]) stating that a domain R is Priifer provided that Q/I is in-
jective for every ideal I of R (Q always denotes the field of quotients of R).
We include the core of its proof for sake of completeness, making use of a
lemma with a standard shifting argument. We will write Ext(—, —) for
Extg(—, —), this will cause no ambiguity since we’ll keep the ring R fixed.

LEmMA 1.4. Given anideal J of the domain R, Q/J is FP-injective if and
only if Ext®(F, J) = 0 for all finitely presented modules F.

Proor. From the exact sequence 0 — J — @ — Q/J — 0 one gets
Ext'(F,Q) = 0 — Ext'(F,Q/J) — Ext*(F,J) — Ext?(F,Q) = 0
so Ext'(F,Q/J) = 0 if and only if Ext*(F,J) = 0. O
ProposiTiON 1.5 (Laradji [11]). Let R be a domain with field of

quotients Q. All the quotients of Q of the form Q/(aRNbR) (a,b € R)
are FP-injective if and only if R is a Priifer domain.

Proor. The sufficiency is well known (see, e.g., [6, IX. 3.4]). For the
necessity it is enough to prove that a two-generated ideal aR + bR of R is
projective (see [6, I. 2.8]). Apply the functor Ext!(—, aR N bR) to the exact
sequence

0—aR+bR—R— R/(aR+DR)— 0
yielding
0=ExtY(R, aRNbR)— Ext(aR+bR, aRﬂbR)ﬁExtz(R/(aR—I—bR), aRNbR).

The last term vanishes by Lemma 1.4, since @/(aR N bR) is FP-injective,
hence the second Ext vanishes and consequently the exact sequence

0 —-aRNOR - aR® bR — aR +bR — 0

splits. Therefore aR + bR is projective. O

In the proof of the main Theorem 2.4 of the next section, a crucial role is
played by commutative (von Neumann) regular rings R; recall that these
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are defined by the equational property that, for every a € R, there exists
an x € R such that @ = a?x. The following facts concerning commutative
regular rings, freely used in the sequel, are well known: each factor ring
and each localization at a multiplicative set of a regular ring is still regular;
a local regular ring is a field. We will use also the two following results
concerning regular rings. The first one is attributed by Lambeck to
Johnson and Utumi.

LeEmma 1.6 ([10, Prop. 1, p. 102]). Let E be an injective module over a
ring R and A its endomorphism ring. Then the Jacobson radical J = J(A)
of A consists of the endomorphisms annihilating some essential sub-
module of E, A/J is regular and idempotents lift modulo J.

The next result is attributed by Klatt and Levy to Osofsky.

Lemma 1.7 ([9, Lemma 3.3]). Let T be a commutative regular ring such
that all its factor rings are self-injective. Then T is a finite direct product of
fields.

2. h-divisible versus finitely injective modules.

This section is devoted to providing the characterization of those do-
mains for which A-divisible modules are finitely injective.
Our next lemma deals with the regular factor rings of Priifer domains.

LEmMMA 2.1. Let R be a Priifer domain with an ideal I such that the factor
ring R/ is reqular. Then I : I = R.

Proor. WehavethatI:1= () Iy : Iy (see[6, 1.2.6]). If I is not
MeMax(R)
contained in M, then Iy = Ry, hence Iy : Iy = Ry If 1 C M, then

Ry /Iy = (R/1)y is a field, therefore I is a maximal ideal of the valuation
domain Rj;. Hence we see that Iy : Iy = Ry in all cases. Therefore

I:1= ﬂ IMIM: n RM:R O
MeMax(R) MeMax(R)

In Lemma 2.1, we have considered ideals / whose endomorphism ring is
canonically isomorphic to R. This property will be crucial in the proof of
Theorem 2.4. Further examples of ideals I of a Priifer domain R satisfying
the condition 7 : I = R are the locally archimedean ideals. We will also use
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the simple fact that, if I satisfies this condition then so does the product of 7
and an invertible ideal. The following lemma shows a consequence of this
condition and the fact that the R-module @/ is finitely injective. Note that
for a module M and subset A of R, M[A]denotes the annihilator of A in M.

LEmMMA 2.2. Let I be an ideal of @ domain R such that I : I = R and Q/1
1s finitely injective. Then R/I is self-injective.

Proor. Since Q/I is finitely injective, R/I is contained in an injective
summand £ of @/I. So we have the inclusions:

R/I CEC @Q/DU1 = : D/I =R/
Therefore R/I equals E[]], which is an injective R/I-module. O

Recall now that a proper non-zero ideal / of a ring R is said to be a wazist
ideal if, given any ideal J of R, either J D [ or J C I; this is equivalent to
saying that, given an element ¢t € R\ I, tR D I. The next lemma is well
known, but we include its proof for the sake of completeness.

LEmMA 2.3. A ring R containing a waist ideal I is indecomposable.

Proor. Assume that R = A @ B, with A and B ideals and A # 0. If
A C I, then necessarily B C I, so I = R but this is absurd, since I is proper
by definition. If A D I, then B C I, otherwise 0 £ CANB. Thus BC A
and consequently B = 0, therefore R is indecomposable. O

We are now in position to prove the main result of this section.

THEOREM 2.4. For a domain R with field of quotients @ the following
are equivalent:

1) R is an almost maximal Priifer domain,
(2) h-divisible modules are finitely injective;
(3) every epic image of Q is finitely injective.

Proor. Assume that (1) holds. As the torsion part of an h-divisible
module splits and a torsion-free /-divisible module is injective, it is enough
to prove that torsion -divisible modules are finitely injective. If R is an
almost maximal Priifer domain, torsion modules have primary decom-
position, so it is enough to consider the local case of R an almost maximal
valuation domain. But then (2) follows from [5, Theorem 3].
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Clearly (2) = (3).

Let us assume (3), that is to say suppose that @ /K is a finitely injective
module for every submodule K C Q. Since finitely injective modules are
FP-injective, R is a Priifer domain by Proposition 1.5. We claim that every
localization Rg at a multiplicative subset S of R also satisfies condition (3).
In fact, let K be an Rg-submodule of @ and x € Q/K. Then Q/K =B & C,
with B an injective R-module containing x. For each s € S, the multi-
plication by s induces an automorphism of B, as sB = B and B[s] = 0, since
(Q/K)[s] = 0; hence B is an Rg-submodule of @ /K, so it is injective also as
Rg-module (see [6, IX.1.(F)]). Thus Q/K is a finitely injective Rg-module,
as desired. As a consequence of this, we infer that every localization Rp of
R at a maximal ideal P is an almost maximal valuation domain. Indeed, Rp
is a valuation domain satisfying condition (3); the finitely injective Rp-
module @/Rp is indecomposable, hence injective; this implies that Rp is
almost maximal (see [6, IX. 4.4]). In view of the characterization of almost
maximal Priifer domains in [3] as locally almost maximal k-local domains
(see also [6, IV. 3.9]), it will now be enough to prove that R is /-local, that is
to say, it is of finite character and every non-zero prime ideal is contained
in a unique maximal ideal.

Let 0 £ x € R. As Rx : Rx = R, R/Ru is self-injective by Lemma 2.2.
Let J/Rx denote the Jacobson radical of the ring B/Rx. Then, applying
Lemma 1.6 to the injective module R/Rx over itself, we deduce that the
ring R/J is regular. Since R/J has the same number of maximal ideals as
R/Rx, in order to prove that « belongs to only finitely many maximal ideals
of R, we must prove that R/J has only finitely many maximal ideals,
namely, it is a finite product of fields. By Lemma 1.7, it is enough to show
that all the factor rings of R/J are self-injective. So, let / C I C R and
consider the factor ring R /I, which is still regular. Lemma 2.2 implies that
R /I is self-injective, provided that [ : I = R. But this is ensured by Lemma
2.1. Henceforth we conclude that R has finite character.

Finally, we will show that every non-zero prime ideal P of R is
contained in a unique maximal ideal. Let us assume, by way of contra-
diction, that there are two maximal ideals M; # Ms containing P. Let
S =R\ (M; UM;) and consider the localization Rg of R at S. The ring
Ry has exactly two maximal ideals and satisfies condition (3), as shown
above. So we may assume that M; and M are the only maximal ideals of
R. Let J = M; N M, be the Jacobson radical of R and pick a non-zero
element © € P C M; N Ms. Then, as in the preceding proof, R /R« is self-
injective with J/Rx as its Jacobson radical, so R/J is regular whence
J :J = R by Lemma 2.1. Since Jx : Jx = J : J, R/Jx is also self-injective,
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by Lemma 2.2, and contains Rx/Jx = R/J = R/M; @ R/M; inside its
socle. Thus R/Jx contains as a proper direct summand the injective
envelope of R/Mj, hence it is not indecomposable. In order to obtain a
contradiction, it is enough to show, by Lemma 2.3, that P/Jx is a waist
ideal in R/Jx. Actually, we will prove the stronger condition that P is a
waist ideal of R. To this end pick a ¢t € R\ P, then we have that
Ryt O Ry, P, i=1,2 since these localisations are valuation rings and
P C M;nNM,. So Rt O P showing that P is indeed a waist ideal. This
completes the proof of the theorem. O

REMARK. Looking carefully at the proof of (3) = (1) in Theorem 2.4
above, one can see that the following condition, weaker than (3), need only
be assumed: the quotients of @ of the form @ /(aR N bR) are FP-injective,
and, given any localization Rg at a multiplicative subset S of R and an ideal
J of Rg satisfying the condition J : J = Rg, Q/J is finitely injective as an R-
module or, equivalently, as an Rg-module.

We already recalled in the Introduction the theorem by Brandal [3] and
Olberding [14] stating that a domain R is an almost maximal Priifer domain
if and only if all the quotients of @ are injective (see also [6, 1X.5.3]). Ol-
berding characterized almost maximal Priifer domains in [14] in many
different ways, weakening the preceding characterization, but always
dealing with injective quotients of Q. We also note that the domain case of
[17, Theorem B] characterizes almost maximal Priifer domains as the
fractionally self-injective domains.

3. FP-injective versus finitely injective modules.

This section is devoted to the investigation of those domains whose FP-
injective modules are finitely injective. We start with an easy consequence
of Theorem 2.4, which characterizes these domains among Priifer domains.

COROLLARY 3.1. Let R be a Priifer domain. Then all FP-injective
modules are finitely injective if and only if R is a Matlis almost maximal
domain.

Proor. Recall that over Priifer domains the equality FPI(R) = D(R)
holds. Assume that R is a Matlis almost maximal Priifer domain. Then all
divisible modules are /-divisible, and &-divisible modules are finitely in-
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jective by Theorem 2.4; hence FP-injective modules are finitely injective.
Conversely, assume that all the FP-injective modules are finitely injective.
Then all divisible modules are such, hence R is almost maximal by Theorem
2.4, and is Matlis as divisible modules are h-divisible. O

We derive immediately the following noteworthy consequence.

COROLLARY 3.2. For a domain R all divisible R-modules are finitely
myjective if and only if R is a Matlis almost maximal Priifer domain.
O

Corollary 3.1 extends to Priifer domains Facchini’s result in [5] for
valuation domains. As Facchini already noted, answering a question
posed by Azumaya [1], Corollary 3.1 shows that the equality FI(R) =
= FPI(R) does not force a domain R to be Noetherian, even if it is a
Matlis domain. However, this happens for certain Matlis domains,
namely, almost perfect domains satisfying some cardinal conditions, as
we are going to show.

We introduce the following notation: if P is a maximal ideal of a com-
mutative ring R, let us denote by x(P) the cardinality of Rp/PRp = R/P,
and by a(P) the dimension of P/P2 as R/P-vector space.

LEMMA 3.3. Let R be a commutative ring of cardinality x > No. If
k(PP > for some maximal ideal P, then the strict inclusion FI(R) C
C FPI(R) holds.

Proor. Firstwe note that x > x(P), hence K(P)“(P ) > K can happen only
ifa(P) > Ny. By [6, 1.8.8], there exists a pure submodule N of £ = E(R/P) of
cardinality < r, which is FP-injective by Theorem 1.1. If we prove that £
has cardinality strictly bigger than x, then N is a proper submodule of £
and, from this fact, it will follow that N cannot be finitely injective, since £ is
indecomposable. Hence N € FPI(R) \ FI(R), as desired.

In order to prove that £ has cardinality strictly bigger than x, it is
enough to show that E[P?] has cardinality > x. Now we have:

E[P*)/E[P] = Homg(P/P*,E) = [ [ R/P
a(P)

and the cardinality of [[ R/P is x(P)"®) > .. Hence E[P?] has cardinality
a(P)
strictly greater than « as required. O
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We are now in the position to prove that for a countable non-Noetherian
almost perfect domain R the strict inclusion FI(R) C FPI(R) holds. Recall
that a domain R is said to be almost perfect (see [2]) if all its proper
quotients are perfect; as proved in [2], this amounts to say that R is h-local
and locally almost perfect.

THEOREM 3.4. For a countable almost perfect domain R the equality
FI(R) = FPI(R) holds if and only if R 1s Noetherian.

Proor. Only the proof of the necessity is needed. Thus, let us assume
that R is a countable almost perfect non-Noetherian domain. Since R is h-
local, there is at least one maximal ideal P such that Rp is non-Noetherian.
Note that Rp has cardinality X as well. Recalling that torsion Ep-modules
are semiartinian, from [2, Theorem 5.2] there follows that PRp/P?Rp has
infinite dimension over Rp/PRp, hence a(P) > X,. There follows that
K(P)"®) > 2% > R, so Lemma 3.3 applies. 0

We can now furnish an easy example of a domain such that four of the
five classes of divisible modules described in the Introduction are different.

ExampLE. Let R be a local non-Noetherian countable almost perfect
domain. Then the strict inclusions Z(R) ¢ FI(R) ¢ FPI(R) C D(R) hold:
the first one since R is non-Noetherian, the second one by Theorem 3.4, the
latter since R is not Priifer (see [2]). However, as almost perfect domains
are Matlis domains, A”D(R) = D(R). Two concrete examples for such a
domain R are obtainable in the following way. Let K be a countable field
containing a subfield F' such that [K : ] =%y. The domain R = F +
+ XK[X]x) satisfies the required conditions (see [2]). The latter example
for such a domain R is taken from [18]. Let V be a countable non-discrete
archimedean valuation domain. If V contains a field K, set R = K + 2V,
where z is an element of V' of positive value; otherwise V' contains a prime
number p of positive value, in which case set R = Z, + pV. For the proof
that in both cases R is almost perfect see [18].

Note that Lemma 3.3 does not apply, for instance, to the local almost
perfect domain R = F + XK[X]x), where F' = C and K = C(Y). In this
case x = 1(P) = 2% and a(P) = [K : F] = Ry, so that x(P)"? = 2% = x.

The characterization of general domains R such that the equality
FI(R) = FPI(R) holds remains an open problem. It is easy to see that this
happens if and only if all torsion FP-injective R-modules are finitely in-
jective and the torsion submodules of the FP-injective modules split.
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