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Zeta functions of totally ramified p-covers of
the projective line.

HANFENG L1 (*) - Hut JUNE ZHU (¥%)

ABSTRACT - In this paper we prove that there exists a Zariski dense open subset
U defined over the rationals Q in the space of all one-variable rational
functions with prescribed ¢ poles with fixed orders, such that for every
geometric point f in /(Q), the L-function of the exponential sum of f at a
prime p has Newton polygon approaching the Hodge polygon as p ap-
proaches infinity. As an application to algebraic geometry, we prove that the
p-adic Newton polygon of the zeta function of a p-cover of the projective line
totally ramified at arbitrary ¢ points with prescribed orders has an asymp-
totic generic lower bound.

1. Introduction.

This paper investigates the asymptotics of the zeta functions of p-
covers of the projective line which are totally (wildly) ramified at arbi-
trary ¢ points. Our approach is via Dwork’s method on one-variable ex-
ponential sums.

Throughout this paper we fix positive integers ¢,ds,...,d,, and let
d:= Zle d; + ¢ — 2. For simplicity we assume d > 2if ¢ = 1. Let P; = oo,
Py, =0, Ps,...,P; be fixed poles in Q of orders dy,...,d,, respectively.
Let f be a one-variable function over Q with these prescribed ¢ poles. It
can be written in a unique form of partial fractions: f = Z,‘f; L 01,20+
+30, Z‘j’: L@@ — P)~" with a;; € Q. (We assume that f has a vanish-
ing constant term because this does not affect the p-adic Newton poly-
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gons of f [13, Introduction]). Let A be the space of a;;’s with
Hle ajq #0. It is an affine (Zf:l dj)-space over Q. Let the Hodge
polygon of A, denoted by HP(A), be the lower convex graph of the pie-
cewise-linear function defined on the interval [0, d] passing through the
two endpoints (0,0) and (d,d/2) and assuming every slope in the list
below of (horizontal) length 1:

A non-smooth point on a polygon (as the graph of a piece-wise linear
function) is called a vertex. We remark that the classical and geometrical
‘Hodge polygon’ for any curve (including Artin-Schreier curve as a special
case) is the one with end points (0, 0) and (d, d/2) and one vertex at (d/2, 0).
So the Hodge polygon in our paper is different from the classical Hodge
polygon. We anticipate a p-adic arithmetic interpretation of our Hodge
polygon, but it remains an open question.

In [13] it is shown that in the case ¢ = 1 there is a Zariski dense open
subset U defined over Q) such that every geometric closed point f in 2(Q)
has p-adic Newton polygon approaching the Hodge polygon as p ap-
proaches oo. Wan has proposed conjectures regarding multivariable ex-
ponential sums, including the above as a special case (see [10, Conjecture
1.15]). This series of study traces back at least to Katz [4, Introduction],
where Katz proposed to study exponential sums in families instead of ex-
amining one at a time. He systematically studied families of multivariable
Kloosterman sum in [4].

Let Qy be the extension field of QO generated by coefficients and poles
Py,...,P; of f. For every prime number p we fix an embedding Q—Q,
once and for all. This fixes a place P in (O lying over p of residue degree a
for some positive integer a. As usual, we let E(x) = exp (> 2 a? /p’) be
the p-adic Artin-Hasse exponential function. Let y be a root of the p-adic
log E(x) with ord, (y) = p%l. Then E(y) is a primitive p-th root of unity and

we set {, := E(y). Let I, be the prime field of p elements. Let I, be a finite
field of p* elements. For k > 1, let ;. : F ¢ = Q(Cp)x be a nontrivial ad-

ditive character of Fg. Henceforth we fix y;,(-) = CZIKWW(). Let Hf:l dj,
and all poles and leading coefficients a;q, of f be p-adic units. Let all
coefficients a;; of f be p-adically integral. (These are satisfied when p is
large enough.) Let Sy.(fmod P) = > w,.(f(x)mod P) where the sum ranges
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over all & in Fy\{Py,..., P} (where P; are reductions of Pjmod P). The L-
function of f at p is defined as

L(fmod P; T) = exp ( > Si(fmod P)T* /k) .
k=1

This function lies in Z[{, ][T'] of degree d. It is independent of the choice of P
(that is, the embedding of Q—Q,) for p large enough, but we remark that
its Newton polygon is independent of the choice of P for all p (see [15,
Section 1]). One notes immediately that for every prime p (coprime to the
leading coefficients, the poles and their orders) we have a map NP,(-)
which sends every p-adic integral point f of A(ip) to the Newton polygon
NP,(f) of the L-function of exponential sums of f at p. Given any f € A(Q),
we have for p large enough thatf € A(7,,) and hence we obtain the Newton
polygon NP, (f) of f at p. Presently it is known that NP, (f) lies over HP(A)
for every p. These two polygons do not always coincide. (See [15, Intro-
duction].) Some investigation on first slopes suggests the behavior is ex-
ceptional if p is small (see [7, Introduction]). There has been intensive in-
vestigation on how the (Archimedean) distance between NP,,(f) and HP(A)
on the real plane R? varies when p approaches infinity. Inspired by Wan’s
conjecture [10, Conjecture 1.15] (proved in [13] for the one-variable poly-
nomial case), we believe that «almost all» points f in A(Q) satisfy
lim,_,o NP, (f) = HP(A). Our main result is the following.

THEOREM 1.1.  Let A be the coefficients space {a;;} of the f's as in the
beginning of the paper. There is a Zariski dense open subset U defined over
Q in A such that for every geometric closed point f in U(Q) one has
f € U(Zy) for p large enough (only depending on f), and

lim NP,(f) = HP(A).
p—oo

The two polygons NP,(f) and HP(A) coincide if and only if
p = 1mod lem(d;) (see [15, Theorem 1.1]). The case £ = 1 is known from [13,
Theorem 1.1]. For p # Imod lem(d;), the point f = x4+ Zf;l (x — P]-)’d"
does not lie in /. This means U/ is always a proper subset of A.

For any fec A(F,) and the (generalized) Artin-Schreier curve
C— Y’ —y=f, let NP(C I¥;) be the usual p-adic Newton polygon of the

numerator of the zeta functlon of C; / [Fy. If it is shrunk by a factor of

NP c i
1/(p — 1) vertically and horizontally, we denote it by i)

COROLLARY 1.2. Let notation be as in Theorem 1.1 and the above. For
any f € A(Fy) we have NP(f T”) lies over HP(A) with the same endpoints, and
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they coincide if and only if p = 1mod (Iem(d;)). Moveover, there is a Zariski
dense open subsetU defined over Q in A such for every geometric closed point
FinUQ) one has f € U(Z,,) for p large enough (only depending on f), and
NP(C];; Iy
lim ———— = HP(A).
p—o p—1
ProoF. This follows from the theorem above and a similar argument

as the proof of Corollary 1.3 in [15], which we shall omit here. O

REMARK 1.3. (1) The results in Theorem 1.1 and Corollary 1.2 do not
depend on where those ¢ poles are (as long as they are distinct).

(2) By Deuring-Shafarevic formula (see for instance [3, Corollary 1.5]),
one knows that NP, (f) always has slope-0 segment precisely of horizontal
length ¢ — 1. By symmetry it also has slope-1 segment of the same length.
See Remark 1.4 of [15].

Plan of the paper is as follows: section 2 introduces sheaves of (infinite
dimensional) p-modules over some affinoid algebra arising from one-vari-
able exponential sums. We consider two Frobenius maps a; and a,. Section
4 is the main technical part, where major combinatorics of this paper is
done. After working out several combinatorial observations we are able to
reduce our problem to an analog of the one-variable polynomial case as that
in [13]. Now back to Section 3 we improve the key lemma 3.5 of [13] to make
the generic Fredholm polynomial straightforward to compute. Section 5
uses p-adic Banach theory to give a new transformation theorem from a; to
aq for any a > 1. This approach is very different from [9] or [14]. It shreds
some new light on p-adic approximations of L-functions of exponential sums
and we believe that it will find more application in the future. Finally at the
end of section 5 we prove our main result Theorem 1.1.

Acknowledgments. Zhu'’s research was partially supported by an NSERC
Discovery grant and the Harvard University. She thanks Laurent Berger
and the Harvard mathematics department for hospitality during her visit in
2003. The authors also thank the referee for comments.

2. Sheaves of p-modules over affinoid algebra.

The purpose of this section is to generalize the trace formula (see [14,
Section 2]) for an exponential sum to that for families of exponential sums.
See [2] for fundamentals in rigid geometry and see [1] for an excellent
setup for rigid cohomology related to p-adic Dwork theory.
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Let Or := Zp[{,] and 2, := Q,(,). Fix a positive integer a. Let 2, be
the unramified extension of ©; of degree a and O, its ring of integers. Let
131, .. P( in O; be Telehmuller lifts of Py,...,P;in [Fpe. Similarly let A;;
be that of a;; and let A denote the sequence of A] i (we remark that for most
part of the paper A will be treated as a variable). Let 7 be the lift of Fro-
benius to £, which fixes €. Then (4;;) = Ap Let 1 <j < 4. Pick a root

7% of yin Qp (or in 7, all the same) for the rest of the paper, and denote
.Q’ =Q V%, ... %), Let O be its ring of integers. Let Q;‘ =Q, Q’
and let O, be its ring of integers. Then the affinoid algebra O, (A) (with A
as variables) forms a Banach algebra over (’); under the supremum norm.

Let 0<r <1 and re |Q’ |,- Let A, be the affinoid with ¢ deleted
discs centering at Py, ..., P, each of radius r on the rigid projective line
P! over Q. (as defined in [15]). The topology on A, is given by the
fundamental system of strict neighborhood A, with » <+ <1 and
' € |2,],. Let A be A, for some unspecified r sufficiently close to 1~ (the
precise bound on the size of » was discussed in [15, Section 2]). Let
H(€2,) be the ring of rigid analytic functions on A over €. Then it is a p-
adic Banach space over €. It consists of functions in one variable X of
the form &= ¢;. X" + Zf’:z S, ¢i(X — Py~ where ¢;; € €, and

Vi > 1,lim;_ ‘C';i:lp =0. Its norm is defined as ||¢|| = max;(sup; ‘c;;"’)
(See [15, Section 2.1].) Let H(Q;(AD = H(Q,) ®Q:!Q;<ﬁ) where ® means
p-adic completion after tensoring. It is a p-adic Banach modules over
Q. (A> with the natural norm on the tensor product of two Banach
modules defined by the followings. For any > v ®@w € H(Q2,) ® Q,(A A)
let || >°v®@w| = inf (max; (||v;] - ||wil])), where the inf ranges over all
representatives >, v; @ w; with Y v ®@w =", v; ® w;. From the p-adie
Mittag-Leffler decomposition theorem derived in [15, Section 2.1], we
can generalize it to the decomposition of Q (Zl) as a Banach Q (Zl}
module. Write X; =X or X; = (X — P))"" for 2 <j < (. Let Z; —yl/duX
Note that by = = {1, VATRER /}Z>1 is a formal basis of the Banach Q (A>
module H(Q’ A >) that is, every vin H(Q' ( )) can be written uniquely as

an infinite sum of cﬂZ”s with ¢;; € 2, (A ) and ‘c“l” — 0 as 1 — oo. The

Banach module H(€2, (A A)) is orthonormalizable (even though b, is not its
orthonormal basis).

In this paper we extend the t-action so that it acts on de trivially for any
J. Below we begin to construct the Frobenius operator a; on H(Qa< )).
Recall the p-adic Artin-Hasse exponential function £(X). Take expansion
of E(yX) at X one gets E(X) = >~ ; AnX" for some 4, € O;. Clearly
ord, Ay > z% for all m > 0. In particular, for 0 < m < p — 1 the equality
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holds and 4, = Let Fi(X;) := Hl 1 EQA;, LXZ) Then

/7
m!

FiX;) = ZE;‘7n(A7'.17 e aA?ldj)XJn’
n=0

where F},, := 0 for n < 0 and for n > 0

Mg .
(1) Fini=2% dum A Af% - Aj g,
where the sum ranges over all my,...,mq > 0 and Zz' Lkmy, =n. It is
clear that Fj, lies in Oil4;1,...,4;4]. One observes that Fj;(X;) €
€ O1{41,. .-, 4Ajq, )(X ), the affinoid algebra in one variable X; (actually it
liesin Ol[A, 1se-- 7d 1(X)). Takmg product overj =1, ..., ¢, we have that
FX) .= H] F; (X)hes in H(O4(A)). Let -1 be the push forward map of
%71, that is, for any function f, o= 1(f) =qt1lo f ot1. For example,
“Y(B/(X — Pp)) =" Y(B)/(X — P) for any B € (’)1<A) and P a Teich-
muller lift of some P. Let U, be the Dwork operator and let F(X) denote the
multiplication map by F(X), as defined in [15, Section 2]. Let
a1 :=1""1oU,oF(X) denote the composmon map. Then a; is a 7 -linear
endomorphism of H(2,, (A)) as a Banach @/, (4)-module.

Let S be the affinoid over Q. with affinoid algebra Q) (A A). If £ is a sheaf
of p-adic Banach &/ (A>—rnodule (with formal basis) and a; is the Frobenius
map which is 7%~ !-linear with respect to Q/ (A) then we call the pair (£, 1)
a sheaf of p-module of infinite rank. Note that the pair (H(2, (A )), a1) can
be considered as sections of a sheaf of <A>—module of infinite rank on A.
This is intimately related to Wan'’s nuclear a-module of infinite rank (see
[11]) if replacing his ¢ by our t%~!. Wan has defined L-functions of nuclear
g-modules and he also showed that it is p-adic meromorphic on the closed
unit dise (see Wan’s papers [11, 12] which proved Dwork’s conjecture).
Finally we define a4 := af.

Recall that a; is a 1% !-linear (with respect to Q) (A)) completely con-
tinuous endomorphism on the p-adic Banach module H(2, (A)) over Q;(A).
Let 1 < J;,J < {. Write (alZf,)P =30 (raflcyﬁ,)zn for some C””’J in
Q. (A). The matrix of aj, cons1st1ng of all these t*"'C}"’s, is a nuclear
matrix (see section 5). This matrix is the subject of the next section. Below
we extend Dwork, Monsky and Reich’s trace formula to families of one-
variable exponential sums.

THEOREM 2.1. Let f =1 @ +Zj o 0 G — P~ e A
and let f be its Teichmiiller lift with coeﬁ%czent a;; being lifted to Aj;. Let
H(Q, (A ))T be the Banach module H(, (A )) for some suitably chosen
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0 <r < lwithre |2, close enough to1-. Then

det (1 — Tay[H(Q, (A))
det (1 — Tqa,|H(Q, (A)))

lies in Oy (A}[T] as a polynomial of degree d. Its Teichmiiller specializa-
tion of A in Oy lies in Z[E,1[T].

|p

LQ_F/FqJ T =

Proor. The proof is similar to that of [14, Lemma 2.7]. Let
M= Upeyper H(E, (A)),. Then it is the Monsky-Washnitzer dagger space.
Then a, is a completely continuous endomorphism on H' and the de-
terminant det(1 — Taa|HT) =det(1 — Taa|H(.Q; (Zl)),ﬂ) for any 7 within
suitable range in (0,1) is independent of . Finally one knows that the
coefficients are all integral so lie in O, and coefficient of 7™ vanishes for all
m > d. We omit details of the proof. O

3. Explicit approximation of the Frobenius matrix.

This section uses some standard techniques in p-adic approximation
and it is very technical. The readers are recommended to skip it at first
reading and continue at the next section.

3.1 — The nuclear matrix.

Let notatlon be as in the previous section. Assign $(1) =0. Let
¢(Z”) = for] <2or ”d 1 for j > 3. Order the elements in by as e1,6e,

such that ¢ler) < dleg) < - Conmder the 1nf1n1te matrix representing the
endomorphism a; of the .Q’ WA >-module H(Q, (A >) with respect to the basis
by This matrix can be written as t°"'M, where each entry is t% 1C”” for
1<Jy,J <4

Our goal of this section is to collect delicate information about entries of
the matrix M. Recall the polynomial F' ,,, in (’)1[21] as in (1), which we have
already built up some satisfying knowledge. Below we will express C}'* 7 as
a polynomial expressmn in these Fj, 5, ’s. In this paper the formal ex-
pansion of C7* T will always mean the formal sum in O, [A] by the com-
position of (2) and the formula in Lemma 3.1.

For n,7 > 1, and if J/ =1 or J; = 1 then for 7 > 0 or for n > 0 respec-
tively one has

2) o {VH” Ji=12

i

T nan P np o rmi
IZm nC HJ,']J Ji >3
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where C** € 7, is defined in [15, Lemma 3.1] and H}l* ;€ Oa@) is for-
mulated in Lemma 3.1 below. Indeed, we recall that C"™ is actually a
rational integer and it only depends on %,m and p.

LEMMA 3.1 Let ii := (ny,...,ng) € 75,
(1) For i,n > 0, then H’f} is equal to

Ny +1— 1\ png—m
o (5 (o

JA
nj
- Wi — 1\ ~nj—m;
' H (Z Fim, <m7 _ 1>Pj] ]> ) ’
J#1J \'mj=0 7

0<m;<n,;
where the sum ranges over all 1 € ZZZO such thatn =ny 1 — Zj:g n; and
the + or — depends on J =1 or J # 1, respectively.
) For Jy1,J # 1, one has that HZ? ; is equal to

my+i 7’LJ-|-7’VLJ+7:—1 3 > —(ng+my+1i)
Z FJl,nJl' ;FJ,WLJ(_I) / < my+i—1 >(PJ—PJ1) T

my>0
00
M1\ »myi—ng
. ( E Flﬂ’VLl ( )PJI >
— (o1
m1=ny

H i F7 m( _ l)le (n] + m; — 1> (PJ o PJI)—(ﬁj+m]')
G \m=0 mj — 1

where the sum ranges over all 1 € 7’520 such that n=mny, +1i—3 .5 n if
J:Jl(mdn:ml—Z#JlnjifJ;AJl. .
3) For J1 # 1 and J = 1 we have that H}'; is equal to

my +'L A My +i—N
Z(FJl,nJl ' ( Z Fl,m1< n )PJl 1)

Mm1=n1—1
I Fa- 1 <"J' e 1) (Py — Pyt
Jj#J1,1 \ ' mi=0 . mj — 1

where the sum ranges over all 7 € Zéo such that n =y, — > 5, 1.
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P, .
Proor. We shall use «=» to mean expansion at P;. Clearly for any J;

one has FJI (AXJI)AXZ Zw OFJl nX” 7
For J > 2 one has the expansion at Py =

Fi(XpX) = Fr,X 11 -Px "y
m=0

k-1 & k= (mA4) g
F m . P X

k=m+1

_Z(ZFJM<TL+Z.]].->A7L m)X n— 7

n=0 m=0

For J; # 1 and J # 1,J3, its expansion at PJI is:

FJ(XJ)Xi = ZFJ’”Z(X.I_ll _ (PJ _ PJI))—(WH—Z')
m=0

P .
= Z FJ m( — 1)m+1 Z (% tmti- )(PJ _ Jl)—(%+m+1)XJ—ln

popr m+1—

m=0

i iFJm( 1)m+1 n+m+l (PJ P ) (n+m-+1) X n
m+1i—

For J; # 1 and J = 1 then one has

F XXl 1 o< o F, m—l—l)PmH n>Xn'
J( ) ;(m;_l J,z( n J1 J1

By FX)X! = (F;(X J)Xf,) H7 4 7 F;(X;), and Key Computational Lemma
of [15], one can compute and obtain (F(X)X})P for the case J; =1 or
J1 # 1 presented respectively in the two formulas in our assertion. This
proves the lemma. O

REMARK 3.2. If we are dealing with the case of unique pole at co then
one sees easily that C;’f lies in O[A]. This greatly reduces the complexity
of situation. '

The following results were presented in [15]. See Section 3 and in
particular, Theorem 3.7 of [15] for a proof. We shall use ¢;, to denote the
lower bound in Lemma 3.3 ¢).
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LEMMA 3.3.  Let notation be as above.

[z
(a) For all J and ny we have ord, (Fy,,) > %5 > go- D

(b) For all J1,J, and all n,© we have ord, (H" J) 270D (p -

nJ.I

(c) For any J1 and any n we have ord, (Cfl’**) > R - or % depending
T 1
on J1=1,2 or 3 <Jy <L Moreover, ord,(C;';)>["F=]/(p—1) or
. 7 1
’—(n—l)gzl)g(zfl)" /(p — 1) depending on J1 = 1,2 or 3 < J; < 4, respectively.

3.2 — Approximation by truncation.

From the previous subsection one has noticed an unpleasant feature of
C} * J for the purpose of approximation by F, ,, 7 ’s. First, in the sum for (2)
When J1 > 3, the range of m is too «large» Second H”; of Lemma 3.1 is
generally an infinite sum of Fy, , " ’s. In this subsectlon we will define an
approximation in terms of truncated finite sum of 'y, ,, " ’s. Below we prove
two lemmas which will be used for appr0x1mat10n in Lemma 4.3.

For any integer 0 <t < p, let *C}" 7, be the same as cht 7.y except for
J1 >3 its sum ranges over all m in the sub-interval [(n — 1)p+1,
(m—1p +1l.

LEMMA 34. Let3<J;<{1<J </ Letn<dj andi <dy.
(1) For p large enough, one has
i niy =1 d
(3) ordp (Cj;llj —pCJIFL’J) >d—e]1+]?1
(2) There is a constant f > 0 depending only on d such that fort >
one has

127 1 d
4 d, PC™, —'C —_—
(4) ord,, ( JiJ J1J) dJ1 +p—1
Proor. (1) By [15, Lemma 3.1], one knows that for any m < (n — 1)p
one has ord, (C"™)>1 and hence ord, (C}ZJ) > 14—(——’—Z L. For
n <d;, and for p large enough one has 1+( T J1 p% > ’ghl—k%.

Combining these two inequalities, one concludes.
(2) We may assume J; > 3. Then for any 1 < v < p, by Lemma 3.3,

m—Dp+v—1 (i_i) 1 n—1+ d
d,(p—1) dy, dy)p-— dr, p-1

)

ord, (Hf,f:]l)p”’i) >
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if v > f for some S > 0 only depending on d. Therefore,

; -1 d
OI‘dp (p C//LJIZ J Jl J) dJ + j

1

This finishes our proof. O

Fix 8 for the rest of the paper. We will truncate the infinite expansion of
Hj” ;. Let w > 0 be any integer. For J; = 1,2 let "H;"; be the sub-sum in
Hm “ where 7 = (n1, . ..,mn,) are such that n, J — NP and n; lie the interval
[— w w] for j # Ji. Slmllarly, for J; > 3 let wa}lf, be the sub-sum of H}"f]
where 7% ranges over the finite set of vectors (ni,...,7n¢) such that

7, — (n — 1)p and n; lie in the interval [ — w, w] for j # J;. Consider ﬁC;Ll’% J
as a polynomial expression in H",’s, then we set WK”JII ;= ﬁCf,lll J(wH"Jf 1)

LeEmMa 3.5.  There is a constant a depending only on d such that

-1
it _agn LJ) > + da

5 ord, °C;”, — .
(5) 4 Tpoi

Proor. This part is similar to Lemma 3.4 2), so we omit its proof. O

3.3 — Minimal weight terms.

The weight of a monomial (with nonzero coefficient) (H 1 Hl 1A ki, l) in
OL[A]is defined as Z i1 Zl L ik; ;. For example, the weight of A{,A} is
equal to 2a + 3b. We Wﬂl later utilize the simple observation that every
monomial in Fy,, is of weight n;.

We call those entries with J; = J the diagonal one (or blocks). As we
have seen in Lemma 3.1, the off-diagonal entries are less manageable
while the diagonal entries behave well in principle. For any integer
0<t<p, let 'M := (tC}L;Z_ ;) with respect to the basis arranged in the
same order as that for M. Consider the diagonal blocks, consisting of
PCy7y’s. Despite PC} lives in 0! (A), its minimal weight terms live in

7, i-n -
Py Oi[Ay]

LEMMA3.6.  Letp > d; for all j. The minimal weight monomials of P C%
(with J = 1,2) live in the term yzd;lnFan_i where dy > n,1 > 0 unlessn =0
and 1 > 0. For J > 3 and n > 2, the minimal weight monomials of T’C}Lf,
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live in the term
i—n ~p—1
(—1)p+1
y T PP ey

where dy > n,1 > 1.
Proor. This follows from Lemma 3.1. We omit its proof. O

Given a k x k matrix M := (mij)1<; j<x With a given formal expansion of
my; € O, <A> the fownal expansion of det M means the formal expansion
as desk sgn(o) Hn 1 mj; where the product is expanded according to the
given formal expansion m;. For example, if m;; = C}*J then its formal
expansion is given by composition of (2) and formulas in Lemma 3.1.

LEmMA 3.7.  Let notation be as above and let p > d; for all j. Then in the
Sformal eocpanszon of det (M) ki O (A (A ), all mmzmal weight terms are
from H 71 det pC}Lf] (with n,1 > 1 in a suitable range for J = 1,2 and with
n,t > 2ford >3) of the diagonal blocks.

Proor. We will show that picking an arbitrary entry on the diagonal
block, every off-diagonal entry on the same row has strictly higher minimal
weight among its monomials.

Let A 7 stand for the vector (As1,...,Ar54,). As we have noticed earlier
the polynomial F';,,, in Oy [A;]has every monomlal of equal weight 77 for any
J. For simplicity we assume %,% > 1 here. Using data from Lemma 3.1, we
find all minimal weight monomials in H}l* ;s illustrated below by an arrow:
Hﬁ’l = Fiap- 1,H’le>2 - Fl,anaH;zl — Fy np*i’H;fI% — Fzp. One also
notes that for J; > 3 one has that Hf,">§)§+1 b Fy wvpinifJ1 = J, and
HZ‘>§)§“ P Fy opi1 if J1 # J. One notices from (2) and the above that
the minimal weight monomials of PC“” live in H" } if J; =1,2 and in
H(n Dp+1,2 if3 < Jy < /.

Recall that for J = 1 the range for 7is ¢ > 0. In all other cases the range
is 7 > 1. From the above we conclude our claim in the beginning of the
proof. Consequently, all minimal weight monomials in the formal expan-
sion of the determinant det M come from the diagonal blocks. By Lemma
3.6, Coi and C}ZJ (with J > 3) both have their minimal weight equal to 0 if
t=0and >0 if ¢ > 0. Then it is not hard to conclude that the minimal
weight monomials of det(C}y Veiso (resp. det Cy ; hni>1) are from
det (Cl 1)n i>1 (resp. det (CJ J)n z>2) O
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For1<J </ let D := det (Fy ) i<ijer € O1lA1, ..., Ag).

PROPOSITION 3.8.  Let p > d; for all j. The minimal weight monomials
of det (*C'} )< j<) for J = 1,2 (resp. det (*C'} oz j<) for J > 3 ) lie in

’“ 1 (resp. D k’”) Every monomaial of D L] (resp. D (-=11) corresponds to a
monomzal i the formal expansion of det((pCl J ])1<L ,<A) for J =12 (resp.
det (°C"; 7 ])2<Z j<k) for J >3) by the same permutation o € Sy in the
natural way.

Proor. It follows from Lemmas 3.6 and 3.7 above. O

3.4 — Local at each pole.

For ease of notation, we drop the subindex J for the rest of this sub-
section. One should understand that d,A; F;,_;, D, stand for
dj,A J_i,FJ,ip,j,DBZ], respectively. Let 1 <n <d—1 and let S, be the
permutation group. Let D), := det (Fj,_j)i<;j<, € O1[A1,...,Agql. Then we
have the formal expansion of D"!:

D" = Z Sgn(a)z Hg(727

geS,,

where the second ) runs over all terms g,; of the polynomial F;,_, in
OilAy,. .., Aql.

PRrOPOSITION 3.9. Let 1 < n < d. Then there is a unique monomial in
the above formal expansion of D™ with highest lexicographic order
(according to Ay, ..., Ar). Moreover, the p-adic order of this monomial
(with coefficient) is minimal among the p-adic orders of all monomials in
the above formal expansion.

REMARK 3.10. We shall fix the unique oy found in the proposition for
the rest of the paper. The minimal p-adic order of this monomial (with
coefficient) is equal to (7) while every row achieves its minimal order in
Lemma 3.3c). We shall use this fact later.

Proor. Denote by r the least non-negative residue of pmod d. Recall
the n by n matrix r, := {r;},.;;., where ry = d["] — (i — j). The
properties of this matrix can be found in [13, Lemma 3.1]. Let [}, &, be a
highest-lexicographic-order-monomial in the formal expansion of D!,
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Then %,; must be the highest-lexicographic-order-monomial in Fj, .,
ip—a(i) ip—a(i)

which is easily seen to be ¢;,_s»A,; * or ¢ip_sAy * JAd,,nj.
7i06) = 0 or not, where ¢;,_,i;) € Q1. We show first that

.« depending on

(6) o(1) = k for any 1 < 1,k < n with 7y = 0.

Suppose that (6) does not hold. Pick a pair (i, k) among the pairs failing
(6) such that |o(?) — k| is minimal. Say ¢(j) = k. Define another permutation
d €8S, byd (i) =kand d'(j) = (i) while ¢’(s) = a(s) for all other s. Denote
by he s the highest-lexicographic-order-monomial in Fy, g ). Then it is
easy to see that the lexicographic order of [, /,; is strictly higher than
that of [} /s, which is a contradiction. Therefore (6) holds.

Notice that for permutations ¢” € S, satisfying (6), the degree of A4 in
[T} %o+ does not depend on the choice of ¢”, where h,; is the highest-
lexicographic-order-monomial in Fy,_,. Then the proof of [13, Lemma
3.2] shows that there exists a unique gy € S,, such that [}, A, has
highest lexicographic order among the corresponding monomials for all
' € S, satisfying (6). In fact, oy is exactly the permutation in [13, Lemma
3.2]. By the above discussion, this monomial [}’ ; &, also has the unique
highest lexicographic order in the formal expansion of D",

Next we show that the p-adic order of ]} &, ; is minimal (among the
p-adic orders of the monomials in the formal expansion of D). Let
[1% 95 be an arbitrary monomial in the formal expansion of D). Then
clearly ord,, (g, ;) > [2-7?] =2 Z_”(ZO)ZML“(“ for all 1 < i < n. Since k,, ; is the
highest-lexicographic-order-monomial in F;, ; i, one sees easily that
ord, (g, ;) = % for all 1 <17 <mn. From (6) it is easy to see that
Tij — Tig) = J — 00(@) for all 1 <i,j <mn. It follows that ord, ([[}; ¢s.)
> ord, (TT7; gy i)- O

REMARK 3.11.  In the proof of Proposition 3.9 we have noticed that the
0y is exactly the pemu‘@tion in [13, Lemma 3.2]. Therefore, one can always
take ty = 0, that is, f2(A) # 0 in [13, Lemma 3.5].

4. Newton polygon of a;.

Recall that HP(A) lives on the real plane over the interval [0, d]. Be-
cause of Remark 1.3, one only has to consider the part of NP, (f) with slope
< 1, that is, to consider the part of NP, (f) over the interval [0, d — ¢]. This
part is our focus of this section. Suppose for some 1 < k < d — ¢, the point
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(k, cp) is a vertex on HP(A). Then one notices that

2 ky ¢ Ky
ZZz/dJ +3°5N G- 1)/dy
J=1 i=1 J=3 i=1
for a sequence of nonnegative integers ki,...,k; such that
ki+ ...+ k,=k. This sequence is unique because (k,cy) is a vertex.
From now on we fix such a k.

For our purpose we also fix the residue classes of pmod d; for all J. Let
774 be the least nonnegative residue of —(ip —j)modd;. Let oy be the
permutation in S; which is the union of those permutations found in
Proposition 3.9 locally at each pole P;. Let sy, be the rational number
defined by

(p — Dk, (kj,+£1)/2 Zl 1L 14 o)
dy, dy,

(7) Sn =

where + and — is taken according to J; =1,2 or J; >3. Let
so:=81+ -+ Clearly so —colp — 1) <k < d — ¢

Let a and f be the integers chosen in Lemmas 3.4 and 3.5 (they depend
only on d). Let Q' := QY% ... yl/de),

Lemva 4.1, ForanyJ; =1,2,1 < J < Land for anyn, 11m their range,
for p large enough, there is a polynomial G; 5 g Q'(P)[A] such that

aan (p 1)17/0l;1 U Gw K mod y(p 1)n/dJ1+d+1

For the case J1 > 3, one has a similar G?’l  such that

aan (p D(n—1)/d, UJ nGn 7,] mod 7(p 1(n— 1)/d/1+d+1

where Uy, » is a p-adic unit depending only on the the row index (J1,n).

Proor. We use the same technique as [13], so we only outline our
proof here for the case J; =J =1. Let n; € [ —a,a] for j# J;. Let
ny, =np+ Z#Jl n; — 1. For any % = (ny,...,n,) in this range, we have

7
an =7 7Qj mod y* g
and

17J1 n‘]l

T d—+d+1
FJl,nJl = V N1 VJ1QJ1 mOdV N
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where Q;’s and @, are in Q'IA] independent of p and V, is some p-adic
unit depending only on the row index J;. Now let % be in the range for
”KZ’f , such that n;’s vary in [ — a, a] and

1 n %p-f—zj#] %j—i n;

——— ! > (p—Dn/dy,.

R s h +];1 g, > 0= n/dy

Then by the formula of Lemma 3.1 (1), and for p large enough,

n(p—1)

i n . .
agnt Ay dapgmpst — |, dy n,i (p—Dn/dy, +d+1
Kp'y =" S HyP =y WG mod y Lo

where W is a suitable p-adic unit. The rest of the cases are similar. O

ProPOSITION 4.2. Let notation be as in Lemma 4.1. Let K == (“K "}12 7

Forp large enough, there are a polynomial Yy, in Q' (ﬁ)[[f] and some p-adic
unit U such that

det K = y0@-Dyy,mod yo® D+,

Proor. By Lemmas 4.1 and 3.3(c) we have
det K™ = 0@~V det G*mod yo@— D+

where G'*! is the matrix we obtain via replacing “Kf}f by Gf,‘l’f ;inK I and U
is the product of the Uy, ,’s for the pairs (J1,%) whose corresponding row
appears in M " Now just set Y, = det G, O

LEmMa 4.3. Let1 <k < d — ¢ (1) For p large enough one has
8) ord, (det M™ — det?M™) > p%"l .
(2) Let a and f be the integers chosen in Lemmas 3.4 and 3.5 (they depend
only on d). Then
S0

9 ord, (det?M™ — det Ky > .
/4 p _ 1

Proor. (1) Notethatd >k > sy — co(p — 1). Note that in PM™ the row
minimal p-adic order is the same as that for Cf}l’f 7 in Lemma 3.3 (c). By
Lemma 3.4, for p large enough one has

(10) ord, (det M — det?M™) > ¢, + 4 > %0
p—1—"p-1
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0,0 1,0 —1 d
(2) By Lemma 3.5, one knows that ord, (C/Jl,J _KJI‘J) > @Tl—&-—

p—1
Thus
(11) ordp(detpM[k] — det K™ > ¢y + 4 > 50 ,
p—1"p-—1
since sy — co(p — 1) < k. O

In any formal expansion we group the terms with same p-adic orders
together and then write this in increasing order. For any number ¢ in Q if a
term can be written as y'u for some » with ord, « = 0, then u is called the
yt-coefficient of this term. Let M( f ) denote the specialization of M at
variables A by assigningzzl as the Teichmiiller lifts of coefficients of fmod P
(see [14, Section 1] for more details).

ProprosiTiON 4.4. Let1 <k <d— ¥ Let (k,c) € R? be a vertex of the
slope < 1 part of HP(A), where 1 < k < d — {. There is a Zariski dense
open subset U, defined over Q in A such that if f € U(Q) and if P is a
prime ideal in the ring of integers of Q(f) lying over p, one has
lim, ., ord, det M( f)*) = .

Proor. Without loss of generality, we fix the residues of p as above.
Consider the y-expansions of det M det?”M™, and det K*!. By Lemma
4.3, their y*-coefficients are the same. Proposition 4.2 implies that for p
large enough there is a polynomial G in Q(P)[A] such that the y%-coeffi-
cient is congruent to U Gmod y for some p-adic unit U. Moreover, from the
proofs of Lemma 4.1 and Proposition 4.2, one observes easily that the
monomials of G are a subset of all monomials in the formal expansion of
det?M™ (with all y°-factors squeezed out from its coefficients at appro-
priate places).

We claim that the y*-coefficient in det”M"™ is nonzero because it has a
unique monomial (in variable A) among all monomials of minimal weight in
its formal expansion. We first look locally at an arbitrary pole P; where
1 < J < {. By Proposition 3.9 there is a unique local monomial among all
terms in det Dg” or J = 1,2 and det Dg” ~HforJ > 3. This local monomial
corresponds to a permutation g9 € S;,. Note that the composition of these
as,’s for all J is equal to gy defined in the beginning of the section. Then
the unique monomial we desire is precisely the product of these local
monomials (see Lemma 3.7 and Proposition 3.8). By the remark in last
paragraph, it is not hard to see that G # 0.

Let y~>% denote all those terms with p-adic order > psT"l. Recall from
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Lemma 4.3 and Proposition 4.2 that one has the p-adic unit U, (as in the
above paragraphs) and some polynomials G/, and G’ (in Q,(P)[A]) such
that

det (M) = Z Y'UG, +y°UG +y®

Co<m<sg

and G’ = Gmod y for the polynomial G (same G as in above paragraphs)
in Q(ﬁ)[]l] independent of p. If G(f) # Omod P (the specialization of G at
f over @(f’)) then ord, (G’(f)) = 0. For m < sy one has ord, G;n(f) =0
or >1. Thus if G(f) #0 then for p Ilarge enough one has
co < ord, (det M( f )[k]) < psT“l. But we already know from the beginning
of this section that 0 < % —cp < ;‘f%{ and hence by simple calculus one
has that lim,_ ordp(detM(f)[k]) = ¢p.

Last, taking the norm of G from Q(ﬁ)[ﬁ] to Q[;l] with the auto-
morphism acting on A trivially, one gets a polynomial g in Q[A]. Let V be
the complement of the variety defined by g = 0in A. It is Zariski dense in
A because g # 0. O

5. A transformation theorem from Newton polygons of a; to a,.

We refer the reader to [8, 5] for basic facts about Serre’s theory of
completely continuous maps and Fredholm determinants. Let C, be the p-
adic completion of Q. For any C,-Banach spaces E and F that admit
orthonormal bases, denote by C(¥, I') the set of completely continuous C,,-
linear maps from  to F'. We say that a matrix M over C,, is nuclear if there
exist a C,-Banach space £ and au € C(, E) such that M is the matrix of »
with respect to some orthonormal basis of E. If M = (m;); j>1 is a matrix
over C,, then M is nuclear if and only if lim; . (inf;>; ord, m; ;) = +oc.
Recall ord, (-) = ord, (-)/a for g = p®.

LemMA 5.1, Let M = My, My,--- .My 1) be an a—tuple of nuclear
matrices over Cp. Set

0 e 0 M,
My, 0 0
Mag:=| 0 M o0
0

0 -+ 0 M, 0
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Then det (1 — (M1 - - - MiMo)T®) = det (1 — Moy T).
Lemma 5.1 follows directly from

LEMMA 5.2, Let {Ei};cy, 47 be a family of Banach spaces over C), that
admit orthonormal bases. Set E =Ey D E1 @ --- ® E,_1 equipped with
the supremum mnorm, that is for v= (vy,...,v4-1) m E one has
|[v]| = max¢—}! v, where || - || are the norms on E and E;’s, respectively.
Let w; € C(E;, Eiy1) and set w € C(E, E) such that u|p, = u;. Then

det (1 — (ug_1---urug)T*) = det (1 — uT).
Proor. By [8, page 77, Corollaire 3] we have det(1 —uTl) =
=exp(— Y .o, Tr(w*)T%/s). Notice that for any se 7, the trace

Tr((iyq_1- - uip1%;)°) is independent of i € 7 /a’Z. Clearly Tr(u®) = 0 un-
less a|s. Thus

det(1 — uT) =exp (— > Trh)T* /s> = exp (— > Tr™)T* /(as))
s=1 s=1

=exp| =Y > Tr((Wira1- - uiaus))T™/(as)
s=1ieZ/a’Z

=exp (— Z Tr((ue—_q - - - uluo)s)T“S/s>
s=1

=det(A — (ug_1-- - urue)T®).

This concludes our proof. O

REMARK 5.3. Lemmas 5.1 and 5.2 still hold when C,, is replaced by any
field K equipped with a nontrivial complete non-Archimedean valuation.
But we shall not need this more general fact in the present paper.

For any nuclear matrix M = (m;j); ;> and k € Zs1, denote by M'¥! the
k x k submatrix of M consisting of its first k¥ rows and columns.

PROPOSITION 5.4. Let M = (m;)); j>1 be a nuclear matrix over C,
and let g € Gal(Q,/Q,). Fix k € 75, and denote by Cj, the coefficient of
TF in det (1 — (M9 --- MIM)T). Denote by A the set of k x k subma-
trices of M contained in the first k rows of M, and denote by B the set of
all other kxk submatrices of M. Set t, =infycqo0rd,detW and
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tp = infyyepord, det W. Consider the following conditions:
i) 2ord, det M) < ¢4 + tg;
ii) ZOI'dq Cr <tjy+itgandty <ts;
iii) ord, Cj, = ord, det M.

Then (1) <= (11)=(111).

Proor. Notice that ord, det M > ¢ 4. So (i) is equivalent to

(12) min (t*‘ - s t5> > ord, det M,
It suffices to Ehow that (ii)=(12)=-(iii). Let M = M, MY, -~-7M9H).
Then we have M|,; in Lemma 5.1 and

det (1 — MiyT) = det 1 — (MY - - MIM)T®).

Thus C,, is the coefficient of 7% in det (1 — M[a]T), which is the infinite
sum of ( — 1)** det N for N running over all principal ak x ak submatrices
of M, (a]- Let N be such a matrix, and let N be the intersection of N and MY
as submatrices of M[a] for all 0 <s<a-—1. It is easy to see that
detN = (— 1)(a_l)k [ly<s<q_1 det N or 0 depending on whether every Ny is
a k x k matrix or not. So we may assume that every N is a k x k matrix.
Think of N, as a submatrix of M? from now on. Let

X={s:0<s<a—1and (N, eA\{M"}}

andY ={s:0<s<a-—1and N, e B}. We shall think of the families
{M7}scuq and {Ns}y ., ; as parameterized by 7 /a7Z. Then X and Y
are disjoint subsets of ,’73/&74. Since N is principal, the set of the columns
of N as a subset in Z>; is exactly the same as the set of the rows of N;_;.
Consequently, if s€ X, then s—1€Y. Let YY={s—1:5€ X} and
Z = (7/aZ)\ X UY). Then 7Z/a7Z is the disjoint union of X UY’, Y\ Y’
and Z. If s € X, then ord, (det N - det Ny_1) > t4 + 5. If s € Y \ Y/, then
ord, det Ny > t5. If s € Z, then ord, det Ny = ord,, det M*!. Therefore

(13) ord, det N > min (tA _2'— b , tg, ord, detM[k]>,
and hence

t t
(14) ord, Cj, > min< A "; 5 g, ord, detM[’“]).

(12)=(iii): Clearly there is a unique N with X =Y =0, ie.
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(N =M"* for all 0<s<a—1. Denote it by N. We have
ord, det N = ord, det M. If N # N/, then X or Y \ Y’ is nonempty and
hence from (12) and the derivation of (13) we see that ord,detN
> ord, det M. Now (iii) follows immediately.

(i))=-(12): (12) follows directly from (i) and (14). O

THEOREM 5.5. Let M, g,k and Cj be as in Proposition 5.4. Let
hi <hg<--- be a mon-decreasing sequence in R satisfying h;
< infj>q ord, my; for all i > 1. Consider the following conditions:

D) ord, det MM < S0,y hy + Mt
i) ord, G < 3y i + M
iii) ord, Cj, = ord, det M'¥].
Then (i) < (11)=>(1i1).

ProoF. Let t4 and {5 be as in Proposition 5.4. Then },_; ;. h;
4 P < in (afts4). So (i) follows from (i) and (14). Thus Theo-
rem 5.5 follows from Proposition 5.4. |

REMARK 5.6. Theorem 5.5 is a Wan-type theorem in relating the
Newton polygon to its tight lower bound Hodge polygon: In [9, Theorem §],
Wan showed that the Newton polygon for a; (more precisely, the Fred-
holm determinant of the nuclear matrix representing a; with respect to the
specific basis) coincides with the Hodge one if and only if the Newton
polygon for g, does. Our result in Theorem 5.5 generalizes it and says that
the Newton polygon for a; is close to the Hodge one if and only if the
Newton polygon for q, is.

Proor. [Proof of Theorem 1.1] For any vertex (k, c¢y) € R? (but not the
right end point) of the slope < 1 part of HP(A), where 1 <k <d — ¢, let U
be the Zariski dense open subset in Proposition 4.4. Let f € U;(Q). Then
lim,)_. ord,, det (M( f Wy = co. Recall ¢(-) from the beginning of sec-
tion 3.1. Say the coefficients of fmod P lie in F,.. Set M := M( f ) and
h; := ¢(e;) for all 7 > 1 in Theorem 5.5. Notice that },_,_,. ki = co. Since
(k, co)is avertex of HP(A), we have hy, 1 > hy. In particulﬁr_, when pis large
enough, we have ord, det M¥ < ¢y + "2 Combining this with Lem-
ma 3.3(c), one observes that the hypotheses of Theorem 5.5 are satisfied.
Recall the maps a; and a, defined in Lemma 2.9 and section 2.5 of [15].
These maps are not the same as the maps defined in section 2 of this article,
but are the specialization of those maps in section 2 at the Teichmiiller lifts
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(a—1) a

of coefficients of fmod P. Then M* " and M* " ---M™“"M*" are the ma-
trices of a; and a, (over Q:;) with respect to the formal Dbasis
by = {1,Z1,---,Zi},., of H respectively. Notice that M* = M. By Theo-
rem 5.5 one has limp;OC ordy Ci, = co, where Cj is the coefficient of T* in

a—1 1

det(1—(M™ " MTMT)=det(1—(M" - -M" " M* ")) =detg (1 —a,T).

Set U/ to be the intersection of U/}, for all such vertices (k, ¢y). Then for any
f € U(Q), we have lim,,_.., NPy(dety (1 — a,T)mod T~*') = HP(A). Now
Theorem 1.1 follows from Remark 1.3 and the fact that the slope < 1 part of
NP, (f) coincides with NP,(dety (1 — a,T)mod 7% ") (see [15, Proposi-
tion 2.10]). O

REMARK 5.7. (1) Our main result Theorem 1.1 is related but not in-
cluded in a conjecture of Daqing Wan (see [10, Conjectures 1.12 and 1.14]).

(2) This paper is concerned with the space of all one-variable rational
function with fixed poles on the projective line. One naturally wonders if
there is a multivariable generalization of Theorem 1.1. We do not know the
answer.
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