Complements of the Socle in Almost Simple Groups.

A. Lucchini (*) - F. Menegazzo (**) - M. Morigi (***)

Assume that a finite group H has a unique minimal normal subgroup, say N, and that N has a complement in H. We want to bound the number of conjugacy classes of complements of N in H; in particular we are looking for a bound which depends on the order of N. When $N=\operatorname{soc} H$ is abelian, the conjugacy classes of complements of N in H are in bijective correspondence with the elements of the first cohomology group $\mathrm{H}^{1}(H / N, N)$. Using the classification of finite simple groups, Aschbacher and Guralnick [1] proved that $\left|\mathrm{H}^{1}(H / N, N)\right|<|N|$; therefore, when $\operatorname{soc} H=N$ is abelian, there are at most $|N|$ conjugacy classes of complements of N in H. To study the case when $N=\operatorname{soc} H$ is nonabelian we can employ a result proved by Gross and Kovács ([6], Theorem 1): there exists a finite group K containing a (non necessarily unique) minimal normal subgroup S which is simple and nonabelian (indeed S is isomorphic to a composition factor of N) and there is a correspondence between conjugacy classes of complements of N in H and conjugacy classes of complements of S in K. Using this result it is not difficult to prove that there exists an absolute constant $c \leqslant 4$ such that the number of conjuga-

[^0]cy classes of complements of N in H is at most $|N|^{c}$ (see, for example, [9] Lemma 2.8). We conjecture that one can take $c=1$, as occurs when N is abelian.

In this paper we deal with this conjecture in the case of finite almost simple groups. Let G be a finite simple group. As $G \cong \operatorname{Inn}(G)$, we may identify G with $\operatorname{Inn}(G)$. We will prove the following

Theorem. Let G be a finite non-abelian simple group and assume that $H \leqslant \operatorname{Aut}(G)$ contains G. Then the number of conjugacy classes of complements of G in H is less than $|G|$.

When $G=\operatorname{Alt}(n)$ with $n \neq 6$ or G is a sporadic simple group, it is well known that $|H: G| \leqslant 2$; if $H \neq G$, then the complements of G in H are in bijective correspondence with the involutions of H which are not contained in G; hence the number of complements for G in H is strictly smaller than $|G|$. The case $G=\operatorname{Alt}(6) \cong \operatorname{PSL}(2,9)$ is dealt with as a group of Lie type.

We may now assume that G is a finite simple group of Lie type over a field $K=G F\left(p^{m}\right)$ of order p^{m}, for some prime p. We will follow the definitions and notations of the book [4], unless otherwise stated. So G will be a group of the form $G=\Sigma_{l}(q)$ where l is the Lie rank of G and $q=p^{m}$, for some prime p.

Also, ϕ denotes the Frobenius map and Γ denotes the group of graph automorphisms of G.

If G has no complement in $\operatorname{Aut}(G)$ there is nothing to prove, so we may assume that there exists $C \leqslant H$ such that $H=G C$ and $G \cap C=1$.

Then we have that C is isomorphic to a subgroup of Out (G), whose structure is well known. In particular, C is at most 3 -generated. Also, if x, y, z are generators of C and C^{\prime} is any other complement for G in H, then C^{\prime} is generated by three elements of the form $x u_{1}, y u_{2}, z u_{3}$ satisfying the same relations as x, y, z and with $u_{i} \in G$, for $i=1,2,3$.

In the whole paper, C will be a fixed complement for G in H.

1. Preliminary results.

We collect in this section some results which will be very useful in the sequel. The first is actually a corollary of Lang's theorem, in the general form proved by Steinberg.

Proposition 1.1. Let G be an untwisted finite simple group of Lie type over the field K with p^{m} elements. Let $\phi^{r} a \in \operatorname{Aut}(G)$, with $a \in$ $\in \operatorname{InnDiag}(G) \Gamma$, and assume that $\left|\phi^{r} a\right|=m / r$. If $x \in \operatorname{InnDiag~}(G)$ is such that $\left|\phi^{r} a x\right|=m / r$ then $\phi^{r} a$ and ϕ^{r} ax are InnDiag (G)-conjugate.

Proof. Let $G=\Sigma_{l}\left(p^{m}\right)$ and let \bar{G} be the connected algebraic group over the algebraic closure \bar{K} of K such that \bar{G} is adjoint and $G=$ $=O^{p^{\prime}}\left(C_{\bar{G}}\left(\phi^{m}\right)\right.$) (see [4, Theorem 2.2.6 (e)]). By Lemma 2.5.8. (a) of [4] we have that $\operatorname{InnDiag}(G)=C_{\bar{G}}\left(\phi^{m}\right)$.

Let τ_{x} be the inner automorphism of \bar{G} induced by x. There exists $\bar{a} \in \operatorname{Aut}(\bar{G})$ such that \bar{a} is the product of a graph automorphism and an inner automorphism, and \bar{a} induces a on G. We note that $\left(\phi^{r} \bar{a}\right)^{m / r}=$ $=\left(\phi^{r} \bar{a} \tau_{x}\right)^{m / r}=\phi^{m}$. So $\phi^{r} \bar{a}$ is a surjective homomorphism ψ of \bar{G} whose set of fixed points in \bar{G} is finite. By the Lang-Steinberg theorem (see [Theorem 2.1.1] [4]) there exists $\bar{w} \in \bar{G}$ such that $x^{-1}=\bar{w}^{-1} \bar{w}^{\phi^{r}} \bar{a}$. Let $s=\frac{m}{r}$. We have that: $\phi^{m}=\left(\psi \tau_{x}\right)^{s}=\psi^{s} \tau_{x}^{\psi^{s-1}} \tau_{x}^{\psi^{s-2}} \ldots \tau_{x}^{\psi} \tau_{x}=$ $=\phi^{m} \tau_{x}^{\psi^{s-1}} \tau_{x}^{\psi^{s-2}} \ldots \tau_{x}^{\psi} \tau_{x}$, so $\tau_{x}^{\psi^{s-1}} \tau_{x}^{\psi^{s-2}} \ldots \tau_{x}^{\psi} \tau_{x}=1$. As $x=\left(\bar{w}^{-1}\right)^{\psi} \bar{w}$ we obtain that $\left(\tau_{\bar{w}}^{-1}\right)^{\psi^{s}} \tau_{\bar{w}}=1$, so $\tau_{\bar{w}}^{\phi^{m}}=\tau_{\bar{w}}$, that is $\bar{w} \in \operatorname{InnDiag}(G)$.

It follows that $\left(\phi^{r} a\right)^{\bar{w}}=\bar{w}^{-1} \phi^{r} a \bar{w}=\phi^{r} a\left(\bar{w}^{-1}\right)^{\phi^{r} a} \bar{w}=$ $=\phi^{r} a\left(\bar{w}^{-1} \bar{w}^{\phi^{r} a}\right)^{-1}=\phi^{r} a x$, as we wanted to prove.

We will also need a lemma proved in [8].
Lemma 1.2. Let G be a finite simple group of Lie type, and let $a \in$ $\in \operatorname{Aut}(G)$ then there exists $g \in G$ such that $|a| \neq|a g|$.

Our first results are easy consequences of the proposition and lemma above.

Proposition 1.3. Let G be a finite simple group of Lie type, $G \leqslant$ $\leqslant H \leqslant \operatorname{Aut}(G)$ and assume that a complement C for G in H is cyclic. Then the number of complements for G in H is less than $|G|$.

Proof. If $C=\langle a\rangle$, then any other complement C^{\prime} is generated by an element of the form $a g$, with $g \in G$ and $|a g|=|a|$, and lemma 1.2 applies.

Corollary 1.4. Let G be a finite simple group of one of the following types: ${ }^{3} D_{4}(q), G_{2}(q), F_{4}(q), E_{8}(q),{ }^{2} F_{4}(q)$ or ${ }^{2} G_{2}(q)$ and let $G \leqslant H \leqslant$ $\leqslant \operatorname{Aut}(G)$. Then the number of complements for G in H is less than $|G|$.

Proof. By Theorem 2.5.12 of [4] the groups listed above have cyclic outer automorphism group, so proposition 1.3 applies.

Proposition 1.5. Let G be an untwisted finite simple group of Lie type over the field K. Assume that $C=\left\langle\phi^{r} a, b\right\rangle$, with $a \in \operatorname{InnDiag}(G)$, $b \in \operatorname{InnDiag}(G) \Gamma \backslash \operatorname{Inn}(G)$ and $\left|\phi^{r} a\right|=\left|\phi^{r}\right|$. Then the number of G conjugacy classes of complements for G in H is less than $|G|$.

Proof. If C^{\prime} is another complement for G in H, then the first generator of C^{\prime} is of the form $\phi^{r} a g$, with $g \in G$ and $\left|\phi^{r} a g\right|=\left|\phi^{r} a\right|=\left|\phi^{r}\right|$, so by proposition 1.1 we have at most $d=|\operatorname{InnDiag}(G): G|$ choices for it, up to G-conjugation. Moreover, again by proposition 1.1, we may assume that $\phi^{r} a g=\left(\phi^{r}\right)^{x}$ for some $x \in \operatorname{InnDiag}(G)$. So $C^{\prime}=\left\langle\phi^{r},(b v)^{x^{-1}}\right\rangle^{x}$, for some $v \in G$. We now need to count the choices for the second generator, which is of the form $(y u)^{x}$, where $y=b^{x^{-1}}$ and $v=u^{x^{-1}}$. By lemma 1.2 we have less than $|G|$ choices for u, as $|y u|=|y|$. Moreover, as we are counting G-conjugacy classes of complements, we may count the elements of the form yu up to conjugation by elements of the centralizer of ϕ^{r} in G. If $G=\Sigma_{l}(q)$ then $\Sigma_{l}(p) \leqslant C_{G}\left(\phi^{r}\right)$. We have that $\left[y u, \Sigma_{l}(p)\right] \neq 1$ (see [Lemma 2.5.7] [4]), so that $C_{\Sigma_{l}(p)}(y u)$ is a proper subroup of $\Sigma_{l}(p)$. As the index of a maximal subgroup of $\Sigma_{l}(p)$ is at least d (see Table 5.2 A of [p. 175] [7]) each orbit of the set $\{y u \mid u \in G\}$ under the action of $\Sigma_{l}(p)$ by conjugation has at least d elements. This concludes the proof.

Proposition 1.6. Let G be an untwisted finite simple group of Lie type over the field K. Assume that $C=\left\langle\phi^{r} a, b\right\rangle$, with $a, b \in$ $\in \operatorname{InnDiag}(G) \Gamma$, InnDiag $(G) \leqslant H$ and $\left|\phi^{r} a\right|=\left|\phi^{r}\right|$. Then the number of G-conjugacy classes of complements for G in H is less than $|G|$.

Proof. If C^{\prime} is another complement, by proposition 1.1 we may assume that the first generator of C^{\prime} is $\left(\phi^{r} a\right)^{x}$, for some $x \in \operatorname{InnDiag}(G)$. Let $C^{\prime}=\left\langle\left(\phi^{r} a\right)^{x}\right.$, bu \rangle, where $u \in G$. As InnDiag $(G) \leqslant H=G C^{\prime}$ we have that $x=z y$ for some $z \in G$ and some $y \in C^{\prime}$, so that $C^{\prime}=\left\langle\left(\phi^{r} a\right)^{z},(b u)^{y^{-1}}\right\rangle$ is G-conjugate to a complement of the form $C^{\prime \prime}=\left\langle\phi^{r} a, v\right\rangle$. It follows that the first generator of C^{\prime} is uniquely determined, up to G-conjugation. By lemma 1.2 the number of choices for the second generator of C^{\prime} are less than $|G|$, and the conclusion follows.

We recall that if $a \in H$, then a is of one of the following types: inner, inner-diagonal, graph, field or graph-field (see [4], definition 2.5.13).

Proposition 1.7. Let G be a finite simple group of Lie type over the field K. Assume that $C=\langle a, b\rangle$, where the type of a is known and b normalizes $\langle a\rangle$. Then the number of conjugacy classes of complements for G in H is bounded by $r s$, where r is the number of G-conjugacy classes of elements of H of the same type and order as a and s is the order of a maximal subgroup of G.

Proof. If C^{\prime} is another complement for G in H, we have that $C^{\prime}=$ $=\langle a u, b v\rangle$, for some $u, v \in G$, where $|a u|=|a|,|b v|=|b|$ and if $a^{b}=a^{t}$ for some integer t, then $(a u)^{b v}=(a u)^{t}$. There are at most r choices for $a u$, up to G-conjugacy. Moreover, any two elements $b v^{\prime}$ and $b v^{\prime \prime}$ such that $(a u)^{b v^{\prime}}=(a u)^{b v^{\prime \prime}}=(a u)^{t}$ satisfy $\left(b v^{\prime}\right)^{-1} b v^{\prime \prime} \in C_{G}(a u)$, so there are at most $\left|C_{G}(a u)\right|$ choices for the second generator, and the conclusion follows.

2. The special linear groups.

Let K be the finite field with q elements, with $q=p^{m}$ for some prime number p. As usual $G L(n, q)$ (resp. $S L(n, q)$) will denote the general (resp. special) linear group of degree n over the field K. In the following we will identify the multiplicative group K^{\times}of K with the subgroup of $G L(n, q)$ consisting of scalar matrices. Then $\operatorname{PGL}(n, q)=$ $=\mathrm{GL}(n, q) / K^{\times}, \operatorname{PSL}(n, q)=S L(n, q) K^{\times} / K^{\times}$and if $g \in \operatorname{GL}(n, q)$ its image in PGL (n, q) will be denoted with \bar{g}. Also, as usual, $\operatorname{det}(g)$ will indicate the determinant of a matrix g and $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ will denote a diagonal matrix, whose entries on the diagonal are those listed between the brackets.

In the whole section, we will consider $G=A_{n-1}(q)=\operatorname{PSL}(n, q)$, for n and q fixed. Let ϕ be the Frobenius automorphism of $\operatorname{GL}(n, q)$, given by: $\left(a_{i j}\right)^{\phi}=\left(a_{i j}^{p}\right)$, for $i, j=1, \ldots, n$.

Let $\tau: \mathrm{GL}(n, q) \rightarrow \mathrm{GL}(n, q)$ be the automorphism defined by $g^{\tau}=$ $=\left(g^{\top}\right)^{-1}$, where g^{\top} denotes the transposed matrix of g.

Both ϕ and τ induce automorphisms of $\operatorname{PGL}(n, q)$, which we will still indicate by ϕ and $\tau . \phi$ generates the group of field automorphisms, τ is a graph automorphism if $n \geqslant 3$, and it is an inner automorphism if $n=2$. Also, $\operatorname{PGL}(n, q) / G$ is cyclic of order $d=(n, q-1)$.

We have that C is isomorphic to a subgroup of $\operatorname{Out}(G)=$ $=\langle\phi G, \tau G, a G\rangle$, where $a \in \operatorname{PGL}(n, q),(a G)^{\phi G}=a^{p} G,(a G)^{\tau G}=a^{-1} G$, $[\phi G, \tau G]=1$ and $|\alpha G|=d,|\phi G|=m,|\tau G|=2$.

Case A: C is 3-generated
In this case C has the group $Z_{2} \times Z_{2} \times Z_{2}$ as an epimorphic image and d is even, so that p is odd and $n \geqslant 4$ is even.

We may assume that $C=\left\langle\phi^{r} \bar{N}_{1}, \tau \bar{M}_{1}, \bar{U}_{1}\right\rangle$, where $M_{1}, N_{1}, U_{1} \in$ $\in \operatorname{GL}(n, q)$ and $r \mid m$. Also we have that \bar{U}_{1} has order d^{\prime}, with $2\left|d^{\prime}\right| d$ and we also have that $\left(\phi^{r} \bar{N}_{1}\right)^{m / r} \in\left\langle\bar{U}_{1}\right\rangle$.

Lemma 2.1. In the above setting, we may also assume that $\left[\phi^{r} \bar{N}_{1}, \tau \bar{M}_{1}\right]=1$ and $\tau \bar{M}_{1}$ has order 2.

Proof. As C is isomorphic to a subgroup of Out (G), it will be isomorphic to a subgroup T of the group $X=\langle a, b, c| a^{d}=b^{2}=c^{m}=1, a^{b}=$ $\left.=a^{-1}, a^{c}=a^{p}, b^{c}=b\right\rangle$ where p is a prime and $p^{m} \equiv 1$ modd. Since T is not 2-generated, $T \cap\langle a, b\rangle$ and $T\langle a\rangle /\langle a\rangle$ are not cyclic; in particular m is even. Set $\left\langle a^{l}\right\rangle=T \cap\langle a\rangle$. If $b \in T$, easy calculations prove that $T=$ $=\left\langle a^{l}, b, c^{k}\right\rangle$ where both a^{l} and c^{k} have even order. Assume that $b \notin T$ and $b a \in T$. Note that $C_{X}(b a)=\left\langle a^{d / 2}, b a, u\right\rangle$ where $u=c a^{-\frac{p-1}{2}}$. Similar computations prove that $T=\left\langle a^{l}, b a, u^{k}\right\rangle$, where l is even, and the orders of a^{l} and of $u^{k}\langle a\rangle$ are even. As any subgroup of X which is not 2-generated is $\langle a\rangle$-conjugate to a subgroup containing either b or $b a$, the result follows.

Observation. With the notation of lemma 2.1 we note that it is possible that T does not split over $T \cap\langle a, b\rangle$. Namely, $T=\left\langle a^{l}, b a, u^{k}\right\rangle$ is not 2-generated and does not split over $T \cap\langle a, b\rangle$ iff $p \neq 2, l, d, m / k$ are even, $\frac{p^{m}-1}{d}$ is odd, the order of a^{l} is divisible by 4 , and finally $r_{2}<$ $<\max \left(\left(p^{k}-1\right)_{2},\left(p^{k}+1\right)_{2}\right)$ where we denote by x_{2} the 2 -part of the integer x. Also, if T does not split over $T \cap\langle a, b\rangle$ we have that u^{m} has order 2.

CASE I: $\left(\phi^{r} \bar{N}_{1}\right)^{m / r}=1$
We may assume that another complement C^{\prime} for G in H is generated by $\phi^{r} \bar{N}_{1} \bar{X}, \tau \bar{M}, \bar{U}$, with $\bar{X} \in G, \bar{M}, \bar{U} \in \operatorname{PGL}(n, q)$, satisfying the same relations as $\phi^{r} \bar{N}_{1}, \tau \bar{M}_{1}, \bar{U}_{1}$. In particular $\left(\phi^{r} \bar{N}_{1} \bar{X}\right)^{m / r}=1$, so by proposition 1.1 there are at most d possibilities for the choice of $\phi^{r} \bar{N}_{1} \bar{X}$, up to conjugation by elements of G. Moreover, again by proposition 1.1, we have that $\phi^{r} \bar{N}_{1} \bar{X}=\left(\phi^{r}\right)^{\bar{S}}$, with $\bar{S} \in \operatorname{PGL}(n, q)$. Changing no-
tations for the last two generators, we may now assume that $C^{\prime}=\left\langle\left(\phi^{r}\right)^{\bar{s}}\right.$, $\left.(\tau \bar{M})^{\bar{S}},(\bar{U})^{S}\right\rangle$.

We now have to count how many possibilities there are for the other two generators. From the fact that $\tau \bar{M}$ has order 2 it follows that $\bar{M}^{\tau} \bar{M}=1$, so $M^{\top}=\alpha M$, with $\alpha \in K$ and as $\left(M^{\top}\right)^{\top}=M$ we have that $\alpha^{2}=1$, so that M is symmetric or skew-symmetric.

From the fact that $\left[\phi^{r}, \tau \bar{M}\right]=1$ it follows that $M^{\phi^{r}}=\beta M$, with $\beta \in$ $\in K^{\times}$. This implies that $m_{\imath j}^{p^{r}-1}=\beta$ for each $i, j=1, \ldots, n$ such that $m_{i j} \neq$ $\neq 0$. Choose h, k such that $m_{h k} \neq 0$. Thus, for each $i, j=1, \ldots, n$ we have that $m_{i j} m_{h k}^{-1} \in \mathrm{GF}\left(p^{r}\right)$, that is $m_{i j}=m_{h k} m_{i j}^{\prime}$ for some $m_{i j}^{\prime} \in G F\left(p^{r}\right)$. It follows that $M=m_{k k} M^{\prime}$, with $M^{\prime} \in \operatorname{GL}\left(n, p^{r}\right)$. Choosing M^{\prime} instead of M as a pre-image of \bar{M} we may assume that $M \in \operatorname{GL}\left(n, p^{r}\right)$.

As we are counting conjugacy classes of complements, we note that to count the possibilities for the second generator of C^{\prime} we are still free to conjugate it by an element \bar{H} of G centralizing ϕ^{r}, that is $H \in \operatorname{SL}\left(n, p^{r}\right)$. Note that in that case we have that $(\tau \bar{M})^{H}=\tau \bar{H}^{\top} \bar{M} \bar{H}$, and by [3] there exists $H \in \operatorname{GL}\left(n, p^{r}\right)$ such that $H^{\top} M H$ has one of the following forms: identity, $\operatorname{diag}(a, 1, \ldots, 1)$, where a is a non-square in $\operatorname{GF}\left(p^{r}\right)$, or a block-diagonal matrix whose blocks on the diagonal are all equal to $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

As we are allowed to conjugate by matrices in $\operatorname{PSL}(n, q)$ and not in $\operatorname{PGL}(n, q)$, we have at most $3 d$ possibilities for \bar{M}.

We now count the number of choices for \bar{U}. We have that $(\bar{U})^{\imath \bar{M}}=$ $=(\bar{U})^{-1}$, so $U^{\top M}=\gamma U$, with $\gamma^{2}=1$, and we have at most $q^{n(n+1) / 2}$ possibilities for U for each choice of γ. So we have at most $2 q^{n(n+1) / 2} /(q-1)$ possibilities for \bar{U}, and thus at most $\frac{6 d^{3} q^{n(n+1) / 2}}{(q-1)}<|G|$ possibilities for C^{\prime}, as $6 q^{n+1}<\left(q^{3}-1\right)\left(q^{n}-1\right)$ for $n \geqslant 4$ and $q \geqslant 9$.

Case II: $\left(\phi^{r} \bar{N}_{1}\right)^{m / r} \neq 1$
In this case $\frac{m}{r}$ is even. Actually, if $\frac{m}{r}$ is odd, putting $x=\tau \bar{M}_{1}$, $y=\phi^{r} \bar{N}_{1}$, if $m=2^{t} s$, with $\left.\frac{m}{r} \right\rvert\, s$, then $C=\left\langle x, y^{2^{t}}, y^{s}, \bar{U}\right\rangle=\left\langle x y^{2^{t}}, \bar{U}\right\rangle$, as $y^{s} \in\left\langle y^{m / r}\right\rangle \in\langle\bar{U}\rangle$. So C is 2-generated, contradicting the assumptions.

Again, we may assume that another complement C^{\prime} is generated by $\phi^{r} \bar{N}, \tau \bar{M}, \bar{U}$, satisfying the same relations as $\phi^{r} \bar{N}_{1}, \tau \bar{M}_{1}, \bar{U}_{1}$. In particu$\operatorname{lar}(\tau \bar{M})^{2}=1$. As in Case I, it follows that M is symmetric or skew-symmetric, and conjugating by a suitable element of $\operatorname{PSL}(n, q)$ we have at
most $3 d$ possibilities for \bar{M}. Namely, we may assume that $\tau \bar{M}$ is of one of the following types:
i) $\tau^{\bar{S}}$,
ii) $(\tau \bar{A})^{\bar{s}}$, with $A=\operatorname{diag}(a, 1, \ldots, 1)$, where a is a non-square in K,
iii) $(\tau \bar{B})^{\bar{J}}$, where B is a block-diagonal matrix whose blocks on the diagonal are all equal to $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

Changing notations for the generators, we may assume that $C^{\prime}=$ $=\left\langle\left(\phi^{r} \bar{N}\right)^{\bar{s}},(\tau \bar{M})^{\bar{s}},(\bar{U})^{\bar{S}}\right\rangle$, with $\bar{M} \in\{\bar{I}, \bar{A}, \bar{B}\}$. Also, there is no loss in generality in assuming $\bar{S}=1$, as this does not affect calculations.

We now consider the generator $\phi^{r} \bar{N}$. Let $\mu=\operatorname{det}(N)$ and $\left(\phi^{r} N\right)^{m / r}=$ $=L$.

In cases i) and iii) we have that $\left[\tau \bar{M}, \phi^{r} \bar{N}\right]=[\tau \bar{M}, \bar{N}]=1$, so that $\bar{N}^{\tau M}=\bar{N}$. It follows that $\left(N^{-1}\right)^{\top M}=\gamma N$, with $\gamma \in K^{\times}$, and $\mu^{2} \in K^{n}$ (here K^{n} is the set of elements of K which are n-th powers).

As $\frac{m}{r}$ is even and p is odd it follows that $2 \left\lvert\, \frac{\left(p^{r}\right)^{m / r}-1}{p^{r}-1}\right.$, so that $\operatorname{det}(L) \stackrel{r}{\stackrel{\left(p^{r}\right) / r-1}{p^{r}-1}} \in K^{n}$, which implies that $\left(\phi^{r} \bar{N}\right)^{m / r} \in C \cap G=1$ and $\left(\phi^{r} \bar{N}_{1}\right)^{m / r}=\left(\phi^{r} \bar{N}\right)^{m / r}=1$, a contradiction.

We now deal with case ii). From $\left[(\tau \bar{A}),\left(\phi^{r} \bar{N}\right)\right]=1$ it follows that $\bar{N}^{\tau} \bar{A}=\bar{A}^{\phi^{\gamma}} \bar{N}$, so $N^{-\top}=\gamma A^{\phi^{r}} N A^{-1}$, with $\gamma \in K^{\times}$and $\mu^{2}=a^{1-p^{v}} \gamma^{-n}$.

As before, $\operatorname{det}(L)=\mu^{\frac{\left(p^{r}\right)^{m / r}-1}{p^{r}-1}} \equiv a^{\left(1-p^{r}\right)} \frac{p^{m}-1}{2\left(p^{r}-1\right)} \equiv-1$ modulo K^{n}, so that $\bar{L}^{2}=1$ (note that $\frac{q-1}{d}$ is odd, as it is stated in the observation after lemma 2.1).

We distinguish two subcases:
a) $r \leqslant \frac{m}{4}$. We first bound the choices for the generator of the form $\phi^{r} \bar{N}$. By [p. 52] [5] $\phi^{r} \bar{B}$ and $\phi^{r} \bar{C}$ are conjugate in GL (n, q) if and only if $\left(\phi^{r} \bar{B}\right)^{m / r}$ and $\left(\phi^{r} \bar{C}\right)^{m / r}$ have the same property, so we need to count PGL (n, q)-conjugacy classes of involutions $\quad\left(\phi^{r} \bar{N}\right)^{m / r} \in$ $\in \operatorname{PGL}(n, q) \backslash \operatorname{PSL}(n, q)$. By Table 4.5 .1 of [4] there are at most $n / 2$ choices for $\left(\phi^{r} \bar{N}\right)^{m / r}$, which means at most $\frac{n}{2} \operatorname{PGL}(n, q)$-conjugacy classes of elements of the form $\phi^{r} \bar{N}$, that is at most $d \frac{n}{2}$ choices for $\phi^{r} \bar{N}$, up to PSL (n, q)-conjugation.

Now once we have chosen an element $\tau \bar{V}$ as a second generator, from the fact that $\left(\phi^{r} \bar{N}\right)^{\tau \bar{V}}=\phi^{r} \bar{N}$ it follows that all the other possible choices
for the second generator are of the form $\tau \bar{V} \bar{U}$, where $\bar{U} \in C_{G}\left(\phi^{r} \bar{N}\right)$.
Let \bar{K} the algebraic closure of K. By the Lang-Steinberg theorem [p. 32] [2] we have that $\phi^{r} \bar{N}$ is conjugate to ϕ^{r} in $\operatorname{PGL}(n, \bar{K})$, so $\left|C_{\operatorname{PSL}(n, \bar{K})}\left(\phi^{r} \bar{N}\right)\right|=\left|\operatorname{PGL}\left(n, p^{r}\right)\right|$. So we have at most $\left|\operatorname{PGL}\left(n, p^{r}\right)\right|$ choices for $\tau \bar{V}$.

By our hypothesis, there exists \bar{R} such that ($\tau \bar{V})^{\bar{R}^{-1}}$ is of the form $\tau \bar{A}$, with $A=\operatorname{diag}(a, 1, \ldots, 1)$, where a is a non-square in K.

We may assume that the third generator is of the form $(\bar{U})^{\bar{R}}$.
We have that $\bar{U}^{\bar{R}(\tau \overline{)}}=(\bar{U})^{R^{(}\left(\tau \overline{)^{R}}\right.}=\left(\bar{U}^{\tau}\right)^{\bar{R}}$, and as $\left(\bar{U}^{\bar{R}}\right)^{(\tau \overline{)}}=\left(\bar{U}^{-1}\right)^{R}$, it follows that $\bar{U}^{\top \bar{A}}=\bar{U}$, that is $U^{\top A}=\gamma U$, with $\gamma \in\{ \pm 1\}$.

This means that, fixed γ, U is determined by its entries along and above the diagonal, so we have at most $2 q^{\frac{n(n+1)}{2}}$ choices for U, and at most $\frac{2}{q-1} q^{\frac{n(n+1)}{2}}$ choices for \bar{U}.

Putting all together, the number of conjugacy classes of complements for G in H is at most $\leqslant d \frac{n}{2}\left|\operatorname{PGL}\left(n, p^{m / 4}\right)\right| \frac{2}{q-1} q^{\frac{n(n+1)}{2}}<|\operatorname{PSL}(n, q)|$. (Here we have used that $8 \mid n$, because m is even, so that $8 \mid q-1$ and $\frac{q-1}{d}$ is odd).
b) $r=\frac{m}{2}$. We first bound the choices for the generator of the form $\phi^{r} \bar{N}$.

As $\left(\phi^{m / 2} \bar{N}\right)^{2}=\bar{L}$ has order 2, the canonical form of L is either a diagonal matrix whose entries on the diagonal are in the set $\{ \pm \gamma\}$, for some $\gamma \in K^{\times}$(first type), or it is a block-diagonal matrix, whose blocks on the diagonal are all equal to $\left(\begin{array}{ll} & \gamma \\ 1 & \text {, with } \gamma \in K^{\times} \text {(second type). By [p. 50] }\end{array}\right.$ [5], by conjugating by a suitable element of $G L(n, q)$ we may assume that N is block-diagonal matrix, whose blocks N_{i} on the diagonal are of the form

$$
N_{i}=\left(\begin{array}{ccccc}
0 & \cdots & \cdots & 0 & a_{i, 1} \\
1 & \ddots & & \vdots & a_{i, 2} \\
0 & 1 & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & \cdots & 0 & 1 & a_{i, m_{i}}
\end{array}\right) .
$$

So we may assume that also L is a block-diagonal matrix, whose blocks L_{i} on the diagonal have dimension m_{i}.

We now want to prove that the canonical form of L is diagonal.
If $m_{j} \geqslant 5$ for some j it is easy to see that \bar{L}_{j} cannot have order 2 . Also, if the canonical form of L is of the second type, then $2 \mid m_{j}$ for each j. Now assume that $m_{j}=2$ for some j. As L_{j}^{2} is a scalar matrix, L_{j} is of the form $L_{j}=\left(\begin{array}{cc}x & y \\ z & -x\end{array}\right)$. Moreover L_{j} is diagonalizable if and only if $x^{2}+y z$ is a square. Let $N_{j}=\left(\begin{array}{ll}0 & b \\ 1 & a\end{array}\right)$. Then $L_{j}=\left(\begin{array}{cc}b^{p^{m / 2}} & a b^{p^{m / 2}} \\ a^{p^{m / 2}} & b+a^{p^{m / 2}+1}\end{array}\right),-\operatorname{det}\left(L_{j}\right)=$ $=-b^{p^{m / 2}+1}$ is a square (note that -1 is a square) and it follows that L_{j} is diagonalizable.

To conclude, assume that $m_{j}=4$ for each j. We have that L_{j} is of the form

$$
\left[\begin{array}{lllll}
& & & a^{p^{m / 2}} \\
1 & & & & b^{p^{m / 2}} \\
& 1 & & & c^{p^{m / 2}} \\
& & 1 & & d^{p^{m / 2}}
\end{array}\right)\left(\begin{array}{llll}
& & & \\
1 & & & \\
& & & \\
& & & \\
& & &
\end{array}\right)=\left(\begin{array}{llll}
& & a^{p^{m / 2}} & \star \\
& & b^{p^{m / 2}} & \star \\
1 & & c^{p^{m / 2}} & \star \\
& 1 & d^{p^{m / 2}} & \star
\end{array}\right] .
$$

As L^{2} is a scalar matrix it follows that $a^{p^{m / 2}}=a$ and a is the same for all blocks L_{j}. We have $a=\lambda^{u\left(p^{m / 2}+1\right)}$, for some integer number u, and $\operatorname{det} L=\left(a^{2}\right)^{n / 4}=\lambda^{u(n / 2)\left(p^{m / 2}+1\right)}$, which leads to a contradiction because $d \left\lvert\, \frac{n}{2}\left(p^{m / 2}+1\right)\right.$.

It follows that L is diagonal.
So we have at most $\frac{n}{2}$ choices for \bar{L} and thus at most $\frac{n}{2}$ choices for $\phi^{m / 2} \bar{N}$, up to $\operatorname{PGL}(n, q)$-conjugation. As we are counting $\operatorname{PSL}(n, q)$-conjugacy classes we have to multiply this number by d.

We may also assume that $L=\left(L_{1}, L_{2}\right)$ is a block diagonal matrix with 2 blocks on the diagonal of the form $L_{1}=\gamma I_{r_{1}}$ and $L_{2}=-\gamma I_{r_{2}}$, for some γ
in K^{\times}, where $r_{1}+r_{2}=n$. We note that r_{1} and r_{2} are both odd, otherwise $\operatorname{det}(L)=\gamma^{n}$ contradicting the fact that $\bar{L} \notin \operatorname{PSL}(n, q)$. Moreover, as $8 \mid n$, we have that $r_{1} \neq \frac{n}{2} \neq r_{2}$.

We have that \bar{M}, \bar{N} and \bar{U} centralize \bar{L}, so we may assume that they are all block-diagonal matrices, with $M=\left(M_{1}, M_{2}\right), N=\left(N_{1}, N_{2}\right)$ and $U=\left(U_{1}, U_{2}\right)$. (Note that if $\bar{L}^{\bar{S}}=\bar{L}$ then $L^{S}=\alpha L$ for some $\alpha \in K^{\times}$, but looking at the eigenvalues of L and keeping in mind that $r_{i} \neq \frac{n}{2}$, it follows that $\alpha=1$, that is S centralizes L).

By proposition 1.1, we have that $\phi^{m / 2} \bar{N}_{i}$ is conjugate to ϕ in $\operatorname{PGL}\left(r_{i}, q\right)$, and so $\phi^{m / 2} \bar{N}$ is conjugate to $\phi \bar{D}$ in $\operatorname{PGL}(n, q)$, with $D=$ $=\left(I_{1}, \beta I_{2}\right)$ for some $\beta \in K^{\times}$.

We now work separately on the two blocks, using exactly the same strategy as in case I.

We may assume that $M_{1}=\xi M_{1}^{\prime}$, with $\xi \in K^{\times}$and $M_{1}^{\prime} \in \operatorname{GL}\left(r_{1}, p^{m / 2}\right)$. Moreover M_{1} is symmetric (note that r_{1} is odd). By conjugating with elements of GL $\left(r_{1}, p^{m / 2}\right)$ we find that there are at most 2 choices for M_{1}^{\prime}, and at most $2(q-1)$ choices up to $S L\left(r_{1}, p^{m / 2}\right)$-conjugation. So there are at most $2(q-1)^{2}$ choices for $M_{1}^{\prime} \xi$. Arguing in the same way for M_{2} and taking images in PGL (n, q) we obtain that there are at most $4(q-1)^{3}$ choices for \bar{M}.

The number of choices for U_{i} is now at most $q^{r_{i}\left(r_{i}+1\right) / 2}$ (note that the element γ appearing in case I is now forced to be 1 , as r_{i} is odd). So there are at most $q^{r_{1}\left(r_{1}+1\right) / 2} q^{r_{2}\left(r_{2}+1\right) / 2} /(q-1)$ possibilities for \bar{U}.

So we have at most $\frac{n}{2} d 4\left(q^{r_{1}\left(r_{1}+1\right) / 2} q^{r_{2}\left(r_{2}+1\right) / 2}\right)(q-1)^{2}<|\operatorname{PSL}(n, q)|$ choices for C.

Case B: C is 2-generated

We may assume that $C=\left\langle\phi^{r} \bar{N}_{1}, \tau^{\varepsilon} \phi^{s} \bar{M}_{1}\right\rangle$, where $M_{1}, N_{1} \in \operatorname{GL}(n, q)$ and $\varepsilon \in\{0,1\}$. We may also assume that any other complement C^{\prime} is generated by $\phi^{r} \bar{N}, \tau^{\varepsilon} \phi^{s} \bar{M}$, satisfying the same relations as $\phi^{r} \bar{N}_{1}, \tau^{\varepsilon} \phi^{s} \bar{M}_{1}$.

CASE I: $C \neq \operatorname{InnDiag}(G) \Gamma,\left(\phi^{r} \bar{N}_{1}\right)^{m / r}=1$
In this case we apply proposition 1.5.
Case II: $C \notin \operatorname{InnDiag}(G) \Gamma,\left(\phi^{r} \bar{N}_{1}\right)^{m / r}=\bar{L}_{1} \neq 1, n \geqslant 3$

Let $u=\left|\bar{L}_{1}\right|$. We now want to count $\operatorname{PSL}(n, q)$-conjugacy classes of elements of the form $\phi^{r} \bar{N}$. By [p. 52] [5] $\phi^{r} \bar{A}$ and $\phi^{r} \bar{B}$ are conjugate if and only if $\left(\phi^{r} \bar{A}\right)^{m / r}$ and $\left(\phi^{r} \bar{B}\right)^{m / r}$ are conjugate, so we need to bound the number of PGL (n, q)-conjugacy classes of elements \bar{L} of order u, and then to multiply this bound by $|\operatorname{PGL}(n, q): \operatorname{PSL}(n, q)|=d$. As L^{u} is a scalar matrix, L is conjugate to a block-diagonal matrix X whose blocks X_{i} have all the same dimension k and are of the form:

$$
X_{i}=\left(\begin{array}{ccccc}
& & & & c_{i} \tag{1}\\
1 & & & & \\
& 1 & & & \\
& & \ddots & & \\
& & & 1
\end{array}\right)
$$

where $c_{i}=c \varepsilon_{i}$ and $\varepsilon_{i}^{d}=1$. We may also assume $c_{1}=c$.
If $k=1$ then there are at most $(q-1) d^{n-1}$ choices for X and thus at most d^{n-1} choices for \bar{L}, up to PGL (n, q)-conjugacy.

If $k>1$ there are at most $(q-1) d^{\frac{n}{k}-1}$ choices for X.
So, summing over all k 's, the choices for \bar{L} are at most

$$
\begin{equation*}
d^{n-1}+\sum_{1<k \mid d}(q-1) d^{\frac{n}{k}-1} \tag{2}
\end{equation*}
$$

Note that $d^{n-1}+\sum_{1<k \mid d}(q-1) d^{\frac{n}{k}-1} \leqslant(q-1) \frac{d^{n-1}-1}{d-1}$.
We now have that $\bar{L}^{\varepsilon} \phi^{s} \bar{M}=\bar{L}^{t}$. Once we have fixed one element \bar{M} with that property, all the others can be obtained by multiplying \bar{M} by an element of the centralizer \bar{Z} of $\bar{L}^{\tau^{\varepsilon} \phi^{s}}$ in $\operatorname{PSL}(n, q)$, and we may assume without loss of generality that $\bar{L}^{\tau^{\varepsilon} \phi^{s}}$ has prime order u.
Using theorems 4.8.1, 4.8.2 and 4.8.4 of [4] for u odd and Table 4.5.1 of [4] for $u=2$ and some easy calculations it is possible to see that an upper bound for the order of \bar{Z} is $|\mathrm{GL}(n-1, q)|$. We now have to check that $d(q-1) \frac{d^{n-1}-1}{d-1}|\operatorname{GL}(n-1, q)|<|\operatorname{PSL}(n, q)|$, which is true for $n \geqslant 4$ because $d^{2}(q-1)^{2} \frac{d^{n-1}-1}{d-1}<\left(q^{n}-1\right) q^{n-1}$. For $n=3$ we use the more accurate bound (2).

CASE III: $C \leqslant \operatorname{InnDiag}(G) \Gamma, n \geqslant 3$.
If C is cyclic we conclude by proposition 1.3. Otherwise we first choose a generator for $C^{\prime} \cap \operatorname{InnDiag}(G)$, so that the number of possibilities is bounded by (2.6), then we argue as in case II.

CASE IV: $n=2$
If C is cyclic we conclude by proposition 1.3 , otherwise we first choose a generator for $C^{\prime} \cap \operatorname{InnDiag}(G)$, for which there is at most one possibility, by Table 4.5 .1 of [4], and by lemma 1.2 there are less than $|G|$ choices for the second generator.

3. The unitary linear groups.

In this section, we will consider the group $G={ }^{2} A_{n-1}(q)=$ $=\operatorname{PSU}(n, q)$, for n and q fixed.

Let $K=\operatorname{GF}\left(q^{2}\right)$ be the finite field with q^{2} elements, with $q=p^{m}$ for some prime number p. We fix a generator λ of the multiplicative group of the field K^{\times}. Then $\mathrm{GU}(n, q)$ (resp. $\left.\mathrm{SU}(n, q)\right)$ will denote the general (resp. special) unitary group of degree n, that is $\mathrm{GU}(n, q)=\{g \in$ $\left.\in \operatorname{GL}\left(n, q^{2}\right) \mid g\left(g^{\top}\right)^{\sigma}=1\right\} \quad$ where $\quad \sigma=\phi^{m} \in \operatorname{Aut}\left(\operatorname{GL}\left(n, q^{2}\right)\right)$, and $\mathrm{SU}(n, q)=\{g \in \operatorname{GU}(n, q) \mid \operatorname{det}(g)=1\}$. All other notations, unless otherwise specified, are as in the previous section.

We may assume that C is non-cyclic, otherwise we conclude by proposition 1.

Let $C=\left\langle\phi^{r} \bar{N}_{1}, \bar{U}_{1}\right\rangle$, with $\bar{U}_{1}, \bar{N}_{1} \in P \mathrm{GU}(n, q)$. We argue as in case B II of the special linear group.

We have that U is $\operatorname{GL}\left(n, q^{2}\right)$-conjugate to a block-diagonal matrix X whose blocks X_{i} have all the same dimension k and are of the form (1), where $c_{i}=c \varepsilon_{i}, \varepsilon_{i}^{d}=1$ and we may also assume that $c_{1}=c$.

By [10, p. 34] the matrix X as above is conjugate to an element of $\mathrm{GU}(n, q)$ if and only if it is similar to the matrix $\left(\left(X^{\top}\right)^{\sigma}\right)^{-1}$.

So $c \varepsilon_{i}=\left(c \varepsilon_{j}\right)^{-q}$, for some j, which implies that $c^{q+1}=\left(\varepsilon_{i} \varepsilon_{j}^{q}\right)^{-1}$ and $c^{(q+1)^{2}}=1$. Let $c=\lambda^{u}$. We have that $q^{2}-1 \mid u(q+1)^{2}$, so $q-1 \mid u(q+1)$. As $(q+1, q-1) \leqslant 2$, it follows that $\left.\frac{q-1}{2} \right\rvert\, u$ and there are at most $2(q+1)$ choices for c. Moreover, again by [10, p. 34] two matrices are conjugate in $\mathrm{GU}(n, q)$ if and only if they are conjugate in $\operatorname{GL}\left(n, q^{2}\right)$, so it
is enough to count the number of choices for the matrix \bar{X} as above, and then to multiply by $d=|\operatorname{PGU}(n, q): \operatorname{PSU}(n, q)|$.

As in case B II of the special linear group, the choices for \bar{X} are at most

$$
\begin{equation*}
d^{n-1}+\sum_{1<k \mid d} 2(q+1) d^{\frac{n}{k}-1} \tag{3}
\end{equation*}
$$

Note that $d^{n-1}+\sum_{1<k \mid d} 2(q+1) d^{\frac{n}{k}-1} \leqslant 2(q+1) \frac{d^{n-1}-1}{d-1}$.
To bound the number of choices for the second generator, we look for an upper bound for the order of the centralizer \bar{Z} of \bar{U} in $\operatorname{PGU}(n, q)$. We may assume that \bar{U} has prime order u.

We first assume that $(n, q) \notin\{(3,2),(3,5),(4,3),(8,3)\}$.
Using theorems 4.8.1, 4.8.2 and 4.8.4 of [4] for u odd and Table 4.5 .1 of [4] for $u=2$ and some easy calculations it is possible to see that an upper bound for the order of \bar{Z} is $|\operatorname{GU}(n-1, q)|$.

So we have to prove that $2 d(q+1) \frac{d^{n-1}-1}{d-1}|\operatorname{GU}(n-1, q)|<$ $<|\operatorname{PSU}(n, q)|$.

As $\frac{d}{d-1} \leqslant 2$, this is true because $4(q+1)^{2} d^{n}<\left(q^{n}-1\right) q^{n-1}$.
If $(n, q)=(8,3)$ we use the more accurate bound (3) and the fact that $|\bar{Z}| \leqslant|\operatorname{GU}(n-1, q)|$.

We now study the remaining cases.
I: Case $(n, q)=(3,2), d=3$ is divided into 2 subcases according as \bar{U} is diagonalizable or not. For each case, we have to consider the possible canonical forms for \bar{U} and the order of their centralizers, and the result follows just by counting the possible choices.

II: Case $(n, q)=(3,5), d=3$.
There are at most 15 possibilities for the choice of X and 15 . $\cdot 3|\operatorname{GU}(2,5)|<|\operatorname{PSU}(3,5)|$.

III: Case $(n, q)=(4,3), d=4$ is divided into 2 subcases according as $|\bar{U}|$ is equal to 2 or 4 . For each case, we have to consider the possible canonical forms for \bar{U} and the order of their centralizers, and the result follows just by counting the possible choices.

4. $B_{l}(q), C_{l}(q)$ and $E_{7}(q)$.

Let $G \in\left\{B_{l}(q), C_{l}(q), E_{7}(q)\right\}$. We have that C is isomorphic to a subgroup \bar{C} of $Z_{2} \times Z_{m}$, with $Z_{m}=\langle\phi G\rangle$ and Out $\operatorname{Diag}(G) \leqslant Z_{2}$.

Then either C is cyclic, and we may apply proposition 1.3 , or it is 2 -generated, and it is possible to choose one generator of the form $\phi^{r} z$, with $z \in G$ and $\left(\phi^{r} z\right)^{\bar{r}}=1$, so proposition 1.5 applies.
5. $D_{l}(q), l \neq 4$.

Case $p=2$
In this case we have that C is isomorphic to a subgroup \bar{C} of $Z_{2} \times Z_{m}$, with $Z_{m}=\langle\phi G\rangle$ and Out $\operatorname{Diag}(G) \Gamma=Z_{2}$, and we argue as for the case $G=B_{l}(q)$ or $C_{l}(q)$.

Case $p \neq 2$
We have that C and its image \bar{C} in Out (G) are isomorphic to a subgroup of $D_{8} \rtimes Z_{m}$, with the following notation: $Z_{m}=\langle\phi G\rangle$ and Out $\operatorname{Diag}(G) \Gamma \leqslant D_{8}$. More precisely, if l is odd and $4 \mid q-1$ or if l is even then Out $\operatorname{Diag}(G) \Gamma=D_{8}=\langle w G, \tau G\rangle$, where τ is the graph automorphism of order $2, \bar{w}=w G$ has order $4, \bar{w}^{\tau}=\bar{w}^{-1},[\tau, \phi]=1$, and $\bar{w}^{\phi}=\bar{w}$ unless l is odd and $4 \times p-1$, in which case $\bar{w}^{\phi}=\bar{w}^{-1}$.

If l is odd and $4 \not x q-1$ then Out $\operatorname{Diag}(G) \Gamma=\langle x G, \tau G\rangle$ is elementary abelian, τ is the graph automorphism of order $2, x \in \operatorname{InnDiag}(G)$. Also ϕ centralizes Out Diag (G).

Let $T=C \cap \operatorname{InnDiag}(G) \Gamma$, and let \bar{T} be its image in Out G. By proposition 1 we may assume that C is not cyclic, and it is easy to check that C splits over T.

Let $\bar{C} \neq$ Out Diag $(G) \Gamma$.
I) Assume that it is possible to choose a generator of C modulo T of the form $\phi^{r} a$, with $a \in \operatorname{InnDiag}(G)$ and $\left(\phi^{r} a\right)^{\bar{r}}=1$.

If T is cyclic proposition 1.5 applies, so we may assume that T is not cyclic.

If C^{\prime} is another complement, by proposition 1.1 we may assume that, up to $\operatorname{InnDiag}(G)$-conjugacy, a generator of C^{\prime} modulo $C^{\prime} \cap$ $\cap \operatorname{InnDiag}(G) \Gamma$ is $\left(\phi^{r}\right)^{x}$, for some $x \in \operatorname{InnDiag}(G)$, and we have at most $|\operatorname{InnDiag}(G): G| \leqslant 4$ choices for it, up to G-conjugacy.
T is generated by two involutions u^{x} and v^{x}, that are of graph type or of inner-diagonal type, depending on which case we are considering. Moreover we may assume that u is of the form $\tau^{\varepsilon} y$, with $y \in G$ and $\varepsilon \in$ $\in\{0,1\}$, and such that $\left[\tau^{\varepsilon} y, \phi^{r}\right]=1$, so $y \in D_{l}\left(p^{r}\right)$. We note that we may conjugate $\tau^{\varepsilon} y$ by elements of $D_{l}\left(p^{r}\right)$, which centralize ϕ^{r}.

From table 4.5.1 of [4] we deduce that both the number of $D_{l}\left(p^{r}\right)$-conjugacy classes of involutions of graph type and the number of $D_{l}\left(p^{r}\right)$ conjugacy classes of involutions of inner-diagonal type are bounded by $2(l+3)$. So there are at most $2(l+3)$ choices for u. Then we have to count the involutions v of a fixed type. There are at most $2(l+3)$ conjugacy classes, and each class contains at most |InnDiag (G) Γ : $C_{\text {InnDiag }(G) \Gamma}(g)|\leqslant 8| G: C_{G}(g) \mid$ elements, where g is any involution in the class considered. We choose g such that the index of $H=C_{G}(g)$ in G is maximum. So there are at most $2(l+3)|G: H|$ possibilities for the choice of v. So we just have to check that $4 \cdot 32(l+3)^{2}|G: H|<|G|$, which is true because $128(l+3)^{2}<|H|$ (the structure of H is also described in table 4.5.1 of [4]).
II) Assume that we are not in the previous case, so that \bar{C} does not contain OutDiag $(G) \Gamma$; in particular $|T|<8$. Let $\phi^{r} z$ be a generator of C modulo T of order $\frac{m}{r}$, with $z \in \operatorname{InnDiag}(G) \Gamma \backslash \operatorname{InnDiag}(G)$. We have that $\frac{m}{r}$ is even, otherwise we replace $\phi^{r} z$ with $\left(\phi^{r} z\right)^{4}$, which is a generator of C modulo T of order $\frac{m}{r}$ and of the form $\phi^{r} x$ with $x \in G$.

If $T=\langle u\rangle$ has order 2 then we apply proposition 1. By table 4.5.1 of [4] we have at most $2(l+3)$ conjugacy classes of involutions of the same type as u; moreover, by Table 5.2 A of [p. 175] [7] the index of a maximal subroup of G is less than $2(l+3)$, so in this case the conclusion follows.

If T is cyclic of order 4 , from the fact that we are not in case I it follows that $\bar{T}=$ OutDiag (G) and we can conclude by proposition 1.6.

So we may assume that T is elementary abelian of order 4.
If l is even then $\bar{T}=\operatorname{OutDiag}(G)$ and as we are not in case I it follows that $\phi^{r} z$ does not centralize T, so we conclude by proposition 1.6.

Let l be odd. Note that we also have that $8 \mid q-1$, because m is even. As we are not in case I, one of the following occurs:
$-\bar{z}=\tau$ and $\bar{T}=\left\langle\bar{w}^{2}, \bar{w} \tau\right\rangle$, or
$-\bar{z}=\bar{w} \tau$ and $\bar{T}=\left\langle\bar{w}^{2}, \tau\right\rangle$.
To deal with these cases we always adopt the same strategy. We first count the number of choices for a generator of $T \cap \operatorname{InnDiag}(G)$, then we count the number of choices for a generator of T modulo $T \cap$ $\cap \operatorname{InnDiag}(G)$, and finally we count the number of choices for a generator of C modulo T.

We describe the calculations in detail only for the first case.
Let C^{\prime} be another complement of of G in H; then we may assume that it is of the form $C^{\prime}=\left\langle\phi^{r} \tau u, w^{2} v, w \tau x\right\rangle$, with $u, v, x \in G$.

By Table 4.5 .1 of [4] we have at most $l-1$ choices for $w^{2} v$, up to G conjugacy. Moreover let $C^{*}=C_{\operatorname{InnDiag}(G)}\left(w^{2} v\right)$ and $L^{*}=O^{p}\left(C^{*}\right)$. From table 4.5.1 of [4] it follows that
i) either $L^{*}={ }^{2} D_{l-1}(q)$ and $Z=C_{C^{*}}\left(L^{*}\right)=C_{\operatorname{InnDiag}(G) \Gamma_{k}}\left(L^{*}\right)$ has order $q+1$ or
ii) $L^{*}=D_{i}(q) \times D_{l-i}(q)$ or $L^{*}={ }^{2} D_{i}(q) \times 2 D_{l-1}(q)$, where $2 \leqslant i<$ $<\frac{l}{2}$ and $Z=C_{C^{*}}\left(L^{*}\right)=C_{\operatorname{InnDiag}(G) \Gamma_{k}}\left(L^{*}\right)$ has order 2.

We first deal with case ii). Note that $w \tau x$ centralizes $w^{2} v$, so it normalizes L^{*}. Let $\left(y_{1}, y_{2}\right) \in \operatorname{Aut}\left({ }^{\varepsilon} D_{i}(q)\right) \times \operatorname{Aut}\left({ }^{\varepsilon} D_{l-i}(q)\right)$ be the image of $w \tau x$ in $\operatorname{Aut}\left(L^{*}\right)$. The number of choices for $w \tau x$, up to G-conjugacy, is bounded by $|Z| r_{1} r_{2}$, where $r_{1}-1$ is the number of ${ }^{\varepsilon} D_{i}(q)$-conjugacy classes of involutions in InnDiag $\left({ }^{\varepsilon} D_{i}(q)\right) \Gamma$ (we have to add one because y_{1} might be the identity) and $r_{2}-1$ is the number of ${ }^{\varepsilon} D_{l-i}(q)$-conjugacy classes of involutions in $\operatorname{InnDiag}\left({ }^{\varepsilon} D_{l-i}(q)\right) \Gamma$. Again by table 4.5 .1 of [4] we have that $r_{1}, r_{2} \leqslant 6 l+25$.

Note: For $i=2,3$ it is easy to check that $r_{1}, r_{2} \leqslant 6 l+25$ is still true (see [p. 11] [4] and [p. 43] [7] for the description of D_{i} in these cases).

So there are at most $2(6 l+25)^{2}$ choices for $w \tau x$.
We now have to choose $\phi^{r} \tau u$. Note that once we have fixed $\phi^{r} \tau u$ with the required properties, any other element of the form $\phi^{r} \tau u^{\prime}$ is such that $\left(\phi^{r} \tau u\right)^{-1} \phi^{r} \tau u^{\prime} \in C_{G}\left(w^{2} v\right)$, so we have at most $\left|C_{G}\left(w^{2} v\right)\right|$ choices for the third generator.

A similar argument applies to case i).
To conclude, we have that the number of complements for G in H is at most $(l-1) 2(6 l+25)^{2}|U|$, where U is a maximal subgroup of G, and this number is less than $|G|$, as by Table 5.2 A of [p.175] [7] the index of a maximal subgroup of G is at least $\frac{\left(q^{l}-1\right)\left(q^{l-1}+1\right)}{q-1}$ and $2(l-1)(6 l+$ $+25)^{2}<\frac{\left(q^{l}-1\right)\left(q^{l-1}+1\right)}{q-1}$ (here $l \geqslant 5$ and $q \stackrel{q-1}{q} 9$).

Let $\bar{C} \leqslant \operatorname{OutDiag}(G) \Gamma$.
Then C is generated by two involutions u and v, that are of graph type or of inner-diagonal type, depending on which case we are considering, and we argue as in Case I above.
6. $D_{4}(q)$.

In this case we have that OutDiag $(G)=1$ if $p=2$, otherwise OutDiag $(G)=\langle\bar{z}\rangle \times\langle\bar{w}\rangle$ is elementary abelian of order 4 and it is centralized by ϕ. Also, $\Gamma=\langle\tau, \gamma\rangle$ is isomorphic to S_{3} with $|\tau|=2,|\gamma|=3, \bar{w}^{\tau}=$ $=\bar{w} \bar{z}, \bar{z}^{\tau}=\bar{z}$, while $(\operatorname{InnDiag}(G) \Gamma) / G$ is isomorphic to S_{4} and is centralized by ϕ.

Let $T=C \cap \operatorname{InnDiag}(G) \Gamma$, and let \bar{T} be its image in Out G. By proposition 1.3 we may assume that C is not cyclic, and it is easy to check that C splits over T.

Case: $C \neq \operatorname{InnDiag}(G) \Gamma$
I) Assume that it is possible to choose a generator $\phi^{r} u$ of C modulo T of order $\frac{m}{r}$ and with $u \in \operatorname{InnDiag}(G)$.

If T is cyclic we conclude by proposition 1.5 , so we may assume that T is not cyclic.

Assume that p is odd. By proposition 1.1 we have at most 4 possibilities for the choice of $\phi^{r} u$, up to G-conjugacy, and we may assume that it is of the form $\left(\phi^{r}\right)^{x}$ for some $x \in \operatorname{InnDiag}(G)$.

We may also assume that one generator of T is an involution y^{x} such that y centralizes ϕ^{r}. As we may conjugate y^{x} by elements of the form $w^{x} \in G$, where w centralizes ϕ^{r}, the choices for y are bounded by the number of G-conjugacy classes of non-inner involutions of fixed type in InnDiag $\left(D_{4}\left(p^{r}\right)\right) \Gamma$, which by table 4.5 .1 of [4] is at most 24 . The second generator of T is an element of $\operatorname{InnDiag}\left(D_{4}\left(p^{r}\right)\right) \Gamma$ and we have that $96\left|\operatorname{InnDiag}\left(D_{4}\left(p^{r}\right)\right) \Gamma\right|<|G|$, as we wanted.

If $p=2$ then by proposition 1.1 we have at most one possibility for the choice of $\phi^{r} u$, up to conjugacy; we therefore take $x=1$. Moreover, T is generated by a graph automorphism y of order 3, and a graph type involution v, which both centralize ϕ^{r}. Arguing as above and using table 4.7.3A of [4] we find that there are at most $16\left|\operatorname{InnDiag}\left(D_{4}\left(2^{r}\right)\right) \Gamma\right|<$ $<|G|$ choices, as we wanted.
II) Assume that we are not in the previous case and let $\phi^{r} \alpha$ be a generator of C modulo T of order $\frac{m}{r}$ with $a \in \operatorname{InnDiag}(G) \Gamma$, $\alpha \notin \operatorname{InnDiag}(G)$.

If T is cyclic, as we are not in case I it is easy to see that T has order 2 or 3.

If $T=\langle y\rangle$ has order 3 then y is of graph type. We now apply proposi-
tion 1.7. By table 4.7.3A of [4] if $p \neq 3$ and by proposition 4.9.2 (b5) and (g) of [4] if $p=3$ we have at most $16 G$-conjugacy classes of type graph elements of order 3. Moreover, by Table 5.2A of [p. 175] [7] the index of a maximal sbgroup of G is at least $\frac{\left(q^{2}-1\right)\left(q^{4-1}+1\right)}{q-1}>16$, so we have what we wanted.

If T has order 2 we argue as follows. By proposition 1.1 we have at most 4 possibilities for the choice of the first generator, up to G-conjugacy. Once we have fixed the first generator, say $\phi^{r} a u$, the second generator b has the property that $\left[\phi^{r} a u, b\right]=1$. Thus the possible choices for the second generator are given by elements of the type $b v$, with $v \in G$, such that $\left[\phi^{r} a u, b v\right]=1$, so that $v \in C_{G}\left(\phi^{r} a u\right)$. It follows that we have at most $4\left|C_{G}\left(\phi^{r} a u\right)\right|<|G|$ choices, as we wanted (note that $C_{G}\left(\phi^{r} a u\right)$ is a proper subgroup of G, so that its index is greater than 4).

Now we may assume that T is not cyclic. As we are not in case I it follows that $\operatorname{OutDiag}(G) \leqslant \bar{T}$ and that $T=\left\langle y, y^{\phi^{r} a}\right\rangle$ for some y in T, where y has order 2 or 3 , so that $C=\left\langle\phi^{r} a, y\right\rangle$. Now proposition 1.6 allows us to conclude.

Case: $C \leqslant \operatorname{InnDiag}(G) \Gamma$
We first assume that $p=2$. Then $C=\langle x, y\rangle \cong \Gamma$, where x and y are both of graph type, $|x|=3,|y|=2$ and $x^{y}=x^{-1}$. By table 4.7.3A of [4] there are at most $4 G$-conjugacy classes of type graph elements of order 3. By proposition 1.7 there are at most $4|Z|$ conjugacy classes of complements for G in H, where Z is a maximal subgroup of G. To conclude, we note that by Table 5.2A of [p. 175] [7] we have that $4<|G: Z|$.

We now assume that p is odd.
I) If $C \cong \operatorname{OutDiag}(G) \Gamma$ then C is isomorphic to either S_{4} or S_{3} and it is generated by 2 elements x and y of graph type, with $|x|=3$ and $|y|=2$.

By table 4.7.3A of [4] if $p \neq 3$ and by proposition 4.9 .2 (b5) and (g) of [4] if $p=3$ there are at most $16 G$-conjugacy classes of type graph elements of order 3. Also, there are at most 6 InnDiag (G)-conjugacy classes of involutions of graph type, and if g is a graph type involution such that $H=C_{\text {InnDiag }(G)}(g)$ has minimum order, there are at most $6|\operatorname{InnDiag}(G): H| \leqslant 24|G: G \cap H|$ choices for y. As $|H \cap G|>16 \cdot 24$, it follows tht $16 \cdot 24|G: G \cap H|<|G|$. (The structure of $G \cap H$ is given in table 4.5.1 of [4].)
II) In the remaining cases, we have that $C=\langle x, y\rangle$ where $|x|=2$, $x \in \operatorname{InnDiag}(G) \backslash G$ and $|y| \in\{2,3\}$ and the type of y is known (either $y \in \operatorname{InnDiag}(G) \backslash G$ or y is of graph type). Arguing as in case I, by tables 4.5.1 and 4.7.3A and proposition 4.9 .2 of [4], there are at most 6 choices for x, up to G-conjugacy, and at most $24|G: G \cap H|$ choices for y, where $H=C_{\text {InnDiag }(G)}(g)$ for some g such that g has the same order and type of y. As $|H \cap G|>6 \cdot 24$, it follows that $6 \cdot 24|G: G \cap H|<|G|$. (The structure of $G \cap H$ is given in table 4.5.1 of [4].)
7. ${ }^{2} D_{l}(q)$.

If $p=2$ we have that C is cyclic, so we may assume that p is odd.

Cases: l even or l odd and $4 \times q+1$
We have that C is isomorphic to a subgroup \bar{C} of $Z_{2} \times Z_{2 m}$, with $Z_{2}=$ $=\langle a G\rangle$ and $Z_{2 m}=\langle\phi\rangle$, where $a \in \operatorname{InnDiag}(G)$.

We have that $C=\left\langle y, \phi^{r} u\right\rangle$ where $y \in \operatorname{InnDiag}(G) \backslash \operatorname{Inn}(G)$ has order 2 and is centralized by $\phi^{r} u$, so we may apply proposition 1.7. By Table 4.5.1 of [4] there are at most $l-1$ conjugacy classes of non-inner innerdiagonal involutions, and by Table 5.2A of [p. 175] [7], the index of a maximal subgroup of G is bigger than $l-1$. This allows us to conclude.
l odd, $4 \mid q+1$
In this case $4 \mid p+1$ and m is odd. We have that C is isomorphic to a subgroup of $Z_{4} \rtimes Z_{2 m}$, with $Z_{4}=\langle a G\rangle$ and $Z_{2 m}=\langle\phi\rangle$, where $a \in$ $\in \operatorname{InnDiag}(G)$. Moreover $(a G)^{\phi}=(a G)^{-1}$.

If $C \cap \operatorname{InnDiag}(G)$ has order 2 we argue exactly as in the previous case.

So we may assume that $C \cap \operatorname{InnDiag}(G)$ has order 4 , and that any other complement C^{\prime} is of the form $C^{\prime}=\left\langle x, \phi^{r} y\right\rangle$, where $x \in$ $\in \operatorname{InnDiag}(G)$ has order $4, x^{2} \in \operatorname{InnDiag}(G) \backslash \operatorname{Inn}(G)$ and $x \phi^{r} y=$ $=x^{(-1)^{r}}$.

We argue in a similar way as for a subcase of $D_{l}(q)$.
By Table 4.5.1 of [4] we have at most $\frac{l+1}{2}$ choices for x^{2}, up to G-conjugacy. Moreover let $C^{*}=C_{\operatorname{InnDiag}(G)}\left(x^{2}\right)$ and $L^{*}=O^{p}\left(C^{*}\right)$. From table 4.5.1 of [4] it follows that L^{*} is one of the following:
i) $L^{*}={ }^{2} D_{l-1}(q)$ and $Z=C_{C^{*}}\left(L^{*}\right)=C_{\operatorname{InnDiag}(G)}\left(L^{*}\right)$ has order $q-1 ;$
ii) $L^{*}={ }^{2} D_{i}(q) \times D_{l-i}(q)$, where i is even, $i \in\{2, \ldots, l-3\}$, and $Z=C_{C^{*}}\left(L^{*}\right)=C_{\text {InnDiag }(G)}\left(L^{*}\right)$ has order 2;
iii) $L^{*}=\mathrm{SU}(l, q), \quad C^{*}=\mathrm{GU}(l, q) \quad$ and $\quad Z=C_{C^{*}}\left(L^{*}\right)=$ $=C_{\text {InnDiag }(G)}\left(L^{*}\right)$ has order $q+1$.

We note that the case $L^{*}={ }^{2} D_{i}(q) \times D_{l-i}(q)$, where i is odd occurs only if x^{2} is inner, which is not our case. To see this, note that $G \cong$ $\cong P \Omega^{-}(2 l, q)$, and we may assume that the matrix associated to the symmetric bilinear form is the identity. We then have that in this case x^{2} is the image in $P \Omega^{-}(2 l, q)$ of the matrix $\operatorname{diag}(-1, \ldots,-1,1, \ldots, 1)$, where the number of entries equal to -1 is $2 i$, and then by proposition 2.5.13 of [7] x^{2} is inner.

We first deal with case ii). Note that x centralizes x^{2}, so it normalizes L^{*}. Let $\left(y_{1}, y_{2}\right) \in \operatorname{Aut}\left({ }^{2} D_{i}(q)\right) \times \operatorname{Aut}\left(D_{l-i}(q)\right)$ be the image of x in Aut (L^{*}). We note that (y_{1}, y_{2}) has order 2 , so the number of choices for x, up to G-conjugacy, is bounded by $|Z| r_{1} r_{2}$, where $r_{1}-1$ is the number of ${ }^{2} D_{i}(q)$-conjugacy classes of involutions in $\operatorname{InnDiag}\left({ }^{2} D_{i}(q)\right) \Gamma$ (we have to add one because y_{1} might be the identity) and $r_{2}-1$ is the number of $D_{l-i}(q)$-conjugacy classes of involutions in $\operatorname{InnDiag}\left(D_{l-i}(q)\right) \Gamma$. Again by table 4.5 .1 of [4] we have that $r_{1} \leqslant 3 i+1, r_{2} \leqslant 3(l-i)+9$.

Note: it is easy to check that for $i=l-3$ it is still true that $r_{2} \leqslant 3(l-$ $-i)+9$, and the same holds for $i=2$ and $r_{1} \leqslant 3 i+1$ (see [p. 11] [4] and [p. 43] [7] for the description of D_{i} in these cases).

As the maximum of the function $f(z)=(3 z+1)(3 l-3 z+9)$ is $\frac{9}{4} l^{2}+$ $+15 l+25$, once we have fixed x^{2} in case ii) there are at most $\frac{9}{2} l^{2}+30 l+$ +50 choices for x.

A similar argument applies to case i), and we get at most $4(3 l+6)<$ $<\frac{9}{2} l^{2}+30 l+50$ choices for x.

We are left with case iii). In this case x is a unitary matrix of order 4. Arguing as in section 3 , as l is odd we have that x is conjugate in $\mathrm{GU}(l, q)$ to a diagonal matrix whose entries on the diagonal are of the form ε^{i}, where ε is a primitive 4-th root of 1 . Moreover, if $G F\left(q^{2}\right)^{\times}=\langle\lambda\rangle$, we have that $\operatorname{diag}\left(\lambda^{q-1}, 1, \ldots, 1\right)$ is a unitary matrix centralizing x, so that the number of $\mathrm{SU}(l, q)$ conjugacy classes for x is at most $4^{l}-2^{l}$.

Now we apply proposition 1.7. By table 5.2 A of [p. 175] [7] the index of a maximal subgroup of G is at least $\frac{\left(q^{l}+1\right)\left(q^{l-1}-1\right)}{q-1}$, which is greater than $\frac{l+1}{2} \max \left\{\frac{9}{2} l^{2}+30 l+50,2^{l}\left(2^{l}-1\right)\right\}$.
8. $E_{6}(q)$.

We have that C is isomorphic to a subgroup \bar{C} of $\operatorname{Out}(G) \leqslant S_{3} \rtimes Z_{m}$, with $Z_{m}=\langle\phi G\rangle, S_{3}=\langle a G, \tau G\rangle, \quad|\alpha G|=3, \quad|\tau|=2, \quad(a G)^{\tau G}=(a G)^{-1}$, $\operatorname{OutDiag}(G) \leqslant\langle\alpha G\rangle$ and $\Gamma(G)=\langle\tau\rangle$. Also, ϕ centralizes τ and either inverts or centralizes $a G$.

By proposition 1.3 we may assume that C is not cyclic.
Let $\bar{C} \neq$ Out Diag $(G) \Gamma, T=C \cap \operatorname{InnDiag}(G) \Gamma$.
I) Assume that it is possible to choose a generator $\phi^{r} x$ of C modulo T of order $\frac{m}{r}$ and with $x \in \operatorname{InnDiag}(G)$.

By proposition 1.1 we have at most 3 possibilities for the choice of $\phi^{r} x$, up to conjugacy. Moreover, by proposition 1.5 we may assume that $\bar{T}=\operatorname{OutDiag}(G)) \Gamma$.

We have that T is generated by a graph-type involution u centralizing a suitable conjugate of ϕ^{r} and an element $v \in \operatorname{InnDiag}(G) \backslash \operatorname{Inn}(G)$ of order 3. We now argue as in the analogue of this case for $D_{l}(q)$.

By Table 4.5.1 and proposition 4.9.2 (b)(4) and (f) of [4] there are at most 2 choices for u, up to G-conjugacy. By table 4.7.3A of [4] there are at most 8 -conjugacy classes of elements of order 3 in $\operatorname{InnDiag}(G) \backslash \operatorname{Inn}(G)$, and each of them has at most $\left|\operatorname{InnDiag}(G): C_{\text {InnDiag }(G)}(g)\right|$ elements, where g is an element of one of those classes such that $C_{G}(g)$ has minimum order. To conclude, it is enough to note that $\left|C_{G}(g)\right|>48$.
II) It is easy to see that if we are not in the previous case then it is possible to choose a generator $\phi^{r} z$ of C modulo T of order $\frac{m}{r}$ and with $z \in \operatorname{InnDiag}(G) \Gamma$. Moreover, T is cyclic of order 3, so proposition 1.7 applies. By Table 4.7.3A of [4] the number of G-conjugacy classes of elements of order 3 in InnDiag $(G) \backslash \operatorname{Inn}(G)$ is at most 8 , which is less than the index of a maximal subgroup of G.

Let $C \leqslant \operatorname{InnDiag}(G) \Gamma$.

We have that C is generated by a graph-type involution u and an element $v \in \operatorname{InnDiag}(G) \backslash \operatorname{Inn}(G)$ of order 3 and we argue as in case I.
9. ${ }^{2} E_{6}(q)$.

We have that C is isomorphic to a subgroup \bar{C} of $\operatorname{Out}(G) \leqslant Z_{3} \rtimes Z_{m}$, with $Z_{m}=\langle\phi G\rangle$ and $Z_{3}=\langle a G, \tau G\rangle$ and $a \in \operatorname{InnDiag}(G)$.

By proposition 1.3 we may assume that C is not cyclic, so that $C=$ $=\left\langle y, \phi^{r} z\right\rangle$, where $z \in \operatorname{InnDiag}(G)$; also $y \in \operatorname{InnDiag}(G) \backslash \operatorname{Inn}(G)$ has order 3 and it is normalized by $\phi^{r} z$.

By table 4.7.3A of [4] there are at most 8 G-conjugacy classes of type graph elements of order 3. By proposition 1.7 there are at most $8|Z|$ conjugacy classes of complements for G in H, where Z is a maximal subgroup of G. To conclude, we note that by Table 5.2A of [p. 175] [7] we have that $8<|G: Z|$.

REFERENCES

[1] M. Aschbacher - R. Guralnick, Some applications of the first cohomology group, J. Algebra, 90 (1984), pp. 446-460.
[2] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters. Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1985.
[3] J. Dieudonné, La géométrie des groupes classiques, Seconde édition, revue et corrigée. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
[4] D. Gorenstein - R. Lyons - R. Solomon, The Classification of the finite simple groups. Number 3. Mathematical Surveys and Monographs, 40.3. American Mathematical Society, Providence, RI, 1998.
[5] N. Jacobson, The Theory of Rings. American Mathematical Society Mathematical Surveys, vol. I. American Mathematical Society, New York, 1943.
[6] F. Gross - L. G. Kovács, On normal subgroups which are direct products, J. Algebra, 90 (1984), pp. 133-168.
[7] P. Kleidman - M. Liebeck, The subgroup structure of the finite classical groups. London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990.
[8] A. Lucchini - F. Menegazzo, Generators for finite groups with a unique minimal normal subgroup, Rend. Sem. Mat. Univ. Padova, 98 (1997), pp. 173-191.
[9] A. Lucchini - F. Morini, On the probability of generating finite groups with a unique minimal normal subgroup, Pacific J. Math., 203 (2002), pp. 429-440.
[10] G. E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Australian Math. Soc., 3 (1965), pp. 1-62.

Manoscritto pervenuto in redazione l'8 gennaio 2004.

[^0]: (*) Indirizzo dell'A.: Dipartimento di Matematica, Università degli Studi di Brescia, Via Valotti n. 9, 25123 Brescia, Italy. E-mail: lucchini@ing.unibs.it
 (**) Indirizzo dell'A.: Dipartimento di Matematica, Pura ed Applicata, Università di Padova, Via Belzoni n. 7, 35131 Padova, Italy.

 E-mail: federico@math.unipd.it
 (***) Indirizzo dell'A.: Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato n. 5, 40126 Bologna, Italy.

 E-mail: mmorigi@dm.unibo.it
 Investigation supported by MIUR (project Teoria dei gruppi e applicazioni) and the Universities of Bologna (funds for selected research topics), Brescia and Padova.

