Des Domaines de Fatou-Bieberbach à Plusieurs Feuillets.

CLAUDIO MENEGHINI(*)

Résumé - Nous définissons l'idée de bassin d'attraction pour l'itération des germes holomorphes attractifs de $(\mathbb{C}^N,\,0)$ et la notion de domaine de Riemann-Fatou-Bieberbach: c'est un domaine de Riemann R biholomorphe à \mathbb{C}^N mais recouvrant une region $\Omega\subset\mathbb{C}^N.$ Enfin, étant donné un endomorphisme de \mathbb{C}^N admettant un point fixe répulsif en 0 (satisfaisant une hypothèse technique supplémentaire), nous prouvons que le bassin d'attraction du germe inverse admet un recouvrement par un domaine de Riemann-Fatou-Bieberbach.

1. Introduction.

Rappelons qu'un domaine de Fatou-Bieberbach est un ouvert de \mathbb{C}^N biholomorphe à \mathbb{C}^N ; le bassin d'attraction Ω d'un point fixe d'un automorphisme f de \mathbb{C}^N a cette propriété dans le cas attractif (voir [RR], appendice), et, parfois, dans le cas des applications tangentes à l'identité (voir [Wck]). Pour plus d'exemples de tels domaines, voir [BS], [BF], [FS], [G], [K], [My], [Si], [Ste] et [Stn].

Nous proposons une généralisation de ce concept, consistant en un domaine de Riemann (M, π) tel que M est biholomorphe à \mathbb{C}^N et pourtant $\pi(M)$ est un ouvert propre Ω de \mathbb{C}^N .

Nous montrerons que, étant donné un endomorphisme h de \mathbb{C}^N avec un point fixe répulsif régulier en 0 (voir déf.), le bassin potentiel d'attraction (déf.) de 0 pour l'inverse local h_0^{-1} peut être recouvert par un domaine de Riemann (M, π) biholomorphe à \mathbb{C}^N . Pour ce qui concerne

^(*) Indirizzo dell'A.: Dipartimento di Matematica, Università di Parma, Strada M. D'Azeglio, 85 43100, Parma.

les notions fondamentales sur l'extension analytique, le lecteur pourra consulter [9], chap.2,6 ou [7] chap. 1(iv); pour la définition de domaine de Riemann, voir par exemple [5], p.43; enfin, le théoreme de Poincaré-Dulac peut être trouvé dans [10], appendice, lemme 3.

2. Préliminaires.

Soient N et M deux variétés complexes: rappelons que un élément d'application holomorphe de N dans M est une paire (U,f), où U est un ouvert connexe de N and f une application holomorphe definie sur U et à valeurs dans M. Une extension analytique (S,π,j,F) d'un élément d'application holomorphe consiste en un domaine de Riemann connexe (S,π) au-dessus d'un ouvert $\Omega \in \mathbb{N}$ tel que $U \in \pi(S)$, en une immersion holomorphe $f:U \to S$ telle que $f \circ j = id|_U$ et en une application holomorphe $f: S \to \mathbb{N}$ telle que $f \circ j = f$.

Un morphisme entre deux extensions analytiques $\mathcal{S}=(S,\pi,j,F)$ et $\mathcal{C}=(T,\varrho,\ell,G)$ du même élément (U,f) est une application holomorphe $h:T{\longrightarrow} S$ telle que $h\circ\ell=j$. La composition de deux morphismes est un morphisme; si un morphisme admet une application holomorphe comme inverse, elle est encore un morphisme: dans ce cas, nous parlerons d'un isomorphisme d'extensions analytiques.

DÉFINITION 1. Une extension analytique $S = (S, \pi, j, F)$ de l'élément (U, f) est maximale si, pour chaque extension analytique $\mathcal{E} = (T, \rho, \ell, G)$ de (U, f) il existe un morphisme $h : \mathcal{E} \to \mathcal{S}$.

Remarquons que deux extensions maximales du même element sont forcément isomorphes et donc l'extension analytique maximale est unique à isomorphismes près.

Théeorème 2. Tout élément (U, f) d'application holomorphe admet une extension analytique maximale.

Pour une démonstration, on pourra consulter [N], chap. 2.6 ou ou bien [Ma] chap. 1(iv).

Le lemme suivant établit une liaison entre les extensions analytiques maximales de deux éléments qui sont inverses l'un de l'autre.

LEMME 3. Soient (\mathfrak{U}, f) et (\mathfrak{V}, g) deux éléments d'applications holomorphes entre ouverts de \mathbb{C}^N , inverses l'un de de l'autre; soient

 (R, π, j, Φ) et (S, ϱ, ℓ, Ψ) leur extensions analytiques maximales: alors, $si \ \mathcal{C} = \{\text{points critiques de } \Phi\}$ et $\mathcal{D} = \{\text{points critiques de } \Psi\}$, on $a \ \Phi(R \setminus \mathcal{C}) = \varrho(S \setminus \mathcal{D})$.

Démonstration. A) $\Phi(R \setminus \mathcal{C}) \subset \varrho(S \setminus \mathcal{D})$: soit $\xi \in R \setminus \mathcal{C}$ et $\Phi(\xi) = \eta$: il existe un voisinage ouvert \mathcal{U}_1 de ξ , ouverts $\mathcal{U}_2 \subset \pi(\mathcal{U}_1)$, $\mathcal{V}_2 \subset \Phi(\mathcal{U}_1)$ et une fonction biholomorphe $g_2 \colon \mathcal{V}_2 \to \mathcal{U}_2$ (avec inverse $f_2 \colon \mathcal{U}_2 \to \mathcal{V}_2$) tels que (\mathcal{U}_2, f_2) et (\mathcal{U}, f) soient l'un prolongement analyitique de l'autre, aussi que (\mathcal{V}_2, g_2) et (\mathcal{V}, g) . Par construction il existe des immersions holomorphes $\tilde{\mathfrak{J}} \colon \mathcal{U}_2 \to R$ et $\tilde{\ell} \colon \mathcal{V}_2 \to S$ telles que $\pi \circ \tilde{\mathfrak{J}} = id$ et $\varrho \circ \tilde{\ell} = id$. Soit $\mathcal{V}_1 = \Phi(\mathcal{U}_1)$ et

$$\Sigma = \{(x, y) \in \mathcal{U}_1 \times \mathcal{V}_2 : \Phi(x) = y\}.$$

Définissons $J: \mathcal{V}_2 \to \Sigma$ en posant $J(v) = (\mathfrak{J} \circ g_2(v), v)$. Or $(\Sigma, pr_2, J, \pi \circ pr_1)$ est une extension analytique de (\mathcal{V}_2, g_2) car $\pi \circ pr_1 \circ J = \pi \circ \mathfrak{J} \circ g_2 = g_2$. Mais (\mathcal{V}_2, g_2) est un prolongement analytique de (\mathcal{V}, g) , donc $(\Sigma, pr_2, J, \pi \circ pr_1)$ est une extension analytique de (\mathcal{V}, g) .

Grâce à la maximalité, cela entraı̂ne qu'il existe une fonction holomorphe $h: \Sigma \to S$ telle que $\varrho \circ h = pr_2$, donc $\eta = pr_2(\xi, \eta) = \varrho \circ h(\xi, \eta) \in \varrho \circ S$.

Enfin, par differentation composée, aucun point de $\varrho^{-1}(\eta)$ ne peut être critique pour Ψ .

B) $\Phi(R \setminus \mathcal{C}) \supset \varrho(S \setminus \mathcal{C})$: soit $s \in S$ un point régulier de Ψ : il existe un voisinage V de s ne contenant que points réguliers de Ψ . Ca signifie que, pour chaque $s' \in V$, il existe un élément d'application holomorphe $(\mathfrak{D}', \tilde{g}_{s'})$ (avec $\varrho(s') \in \mathfrak{D}'$) qui est un prolongement analytique de (\mathfrak{D}, g) ; en outre, il existe une immersion holomorphe $\tilde{\ell}: \mathcal{V}' \to V$. Par A) désormais prouvé, $\Psi(s) \in \pi(R \setminus \mathcal{C})$, donc il existe $p \in R \setminus \mathcal{C}$ et un voisinage W de p dans $R \setminus \mathcal{C}$ tels que $\pi(p) = \Psi(s)$ et $\pi^{-1}(\tilde{g}(\mathfrak{D}')) \cap W \neq \emptyset$. Posons W' = $=\pi^{-1}(\tilde{g}(\mathfrak{P}')) \cap W$: on peut supposer, sans perte de généralité, que π soit inversible dans W': alors il existe une immersion holomorphe $\tilde{\jmath}: \tilde{g}(\tilde{\mathcal{V}}') \to W$. Donc, pour chaque $\zeta \in \tilde{\jmath}(\tilde{g}(\tilde{\mathcal{V}}'))$, il existe $\eta \in \ell(\tilde{\mathcal{V}}')$ tel que $\Phi(\zeta) = \Phi(\tilde{\jmath} \circ \tilde{g} \circ \varrho(\eta))$. Or par la définition de extension analytique, on a $\Phi \circ \tilde{\mathfrak{J}} \circ \tilde{\mathfrak{g}} = id$, c'est-à-dire $\Phi(\zeta) = \varrho(\eta)$. Considérons maintenant la fonction holomorphe $\Xi: W \times V \to \mathbb{C}^N$ définie en posant $\Xi(w, v) = \Phi(w) -$ -o(v): on a $\Xi \equiv 0$ dans $\tilde{\mathfrak{J}}(\tilde{g}(\mathfrak{P}')) \times \tilde{\ell}(\mathfrak{P}')$: cet ensemble est ouvert dans $W \times V$, donc $\Xi \equiv 0$ dans $W \times V$. Cela implique finalement $\Phi(p) = \varrho(s)$, ce qui conclut la démonstration.

Le lemme suivant, dont la démonstration est élémentaire, décrit le comportement d'une application holomorphe au voisinage d'un point fixe attractif P (dans la suite on supposera toujours P = 0).

LEMME 4. Soit V un voisinage de 0 en \mathbb{C}^N et $F: V \to \mathbb{C}^N$ une application holomorphe avec un point fixe attractif en 0: alors il existe $\alpha < 1$ et un voisinage ouvert $R \subset V$ de P tel que $F^{\circ n}(R) \subset \alpha^n R$.

3. Le théorème principal.

DÉFINITION 5. Soit (R, F) un élément d'application holomorphe avec un point fixe attractif en 0; on dira que p est dans le bassin potentiel d'attraction de 0 pour la dynamique de F (dans la suite: $p \in \mathsf{BPA}(F,\,0)$) s'il existe une suite finie de points $\{x_\nu\}_{\nu\,=\,0\,\ldots\,N}$ et des prolongements analytiques $(V_\nu,\,F_\nu)$ de F tels que $x_0=p$, $x_\nu\in V_\nu,\,F_\nu(x_\nu)=x_{\nu\,+\,1}$, $F_\nu(V_\nu)\subset V_{\nu\,+\,1}$ et $\bigcup_{\nu\,=\,0}^N F_\nu(V_0)\subset \mathsf{R}$.

DÉFINITION 6. Soit h un endomorphisme de \mathbb{C}^N avec un point fixe répulsif en 0; le point fixe est régulier s'il admet un voisinage R sur lequel h est inversible, $[h|_{\mathsf{R}}]^{-k} \subset \alpha^k \mathsf{R}$ pour $0 < \alpha < 1$ et, pour chaque k, $h^{\circ k}$ est un revêtement topologique; on appellera R un voisinage de régularité de 0.

LEMME 7. Soit $0 \in \mathbb{C}^N$ un point fixe répulsif régulier pour h, R un voisinage de régularité de 0 et $F := [h|_{\mathsf{R}}]^{-1}$. Alors $p \in \mathsf{BPA}(F, 0)$ si et seulement si il existe $k \ge 1$ et un prolongement analytique (V_k, F_k) de $F^{\circ k}$ tel que $F_k(V_k) \subset \mathsf{R}$. Par conséquent, pour tout $k \ge 1$, $h^{\circ k}(\mathsf{R}) \subset \mathsf{CBPA}(F, 0)$.

DÉMONSTRATION: (\Rightarrow) étant trivial, on prouvera (\Leftarrow). Pour chaque $0 < v \le k$ et $x \in h^{\nu}(\mathsf{R})$ il existe un inverse locale $\phi_{\nu,\,x}$ de h^{ν} et un voisinage $\mathcal{U}_{\nu,\,x}$ de x tels que $\phi_{\nu,\,x}(\mathcal{U}_{\nu,\,x}) \in \mathsf{R}$. Posons $x_0 := p, \quad x_{\nu+1} := \lim_{k \to \infty} e^{(k-\nu+1)} \circ \phi_{k-\nu,\,x_{\nu}}(x_{\nu})$ et $F_{\nu} := h^{\circ(k-\nu+1)} \circ \phi_{k-\nu,\,x_{\nu}}$ pour $0 \le \nu < k$. Alors $F_{\nu}(x_{\nu}) = x_{\nu+1}, \; F_{\nu}(\mathcal{U}_{\nu,\,x_{\nu}}) \in \mathcal{U}_{\nu-1,\,x_{\nu+1}}$ et $\underset{\nu=0}{\bigcirc} F_{\nu}(\mathcal{U}_{k,\,p}) \in \mathsf{R}$. On conclut en posant, selon la notation de la définition 5, $V_{\nu} := \mathcal{U}_{k-\nu,\,x_{\nu}}$.

DÉFINITION 8. Un domaine de Riemann-Fatou-Bieberbach audessus d'un ouvert $\Omega \subset \mathbb{C}^N$ est un domaine de Riemann (R, π) au-dessus de Ω , tel que R est biholomorphe à \mathbb{C}^N .

Théorème 9. Soit h un endomorphisme de \mathbb{C}^N avec un point fixe répulsif régulier en 0, R un voisinage de régularité de 0, Ω le bassin potentiel d'attraction de 0 pour la dynamique de $F := [h|_{\mathsf{R}}]^{-1}$. Alors il existe un domaine de Riemann-Fatou-Bieberbach M au-dessus de Ω .

Démonstration. Rappelons que $F^{\circ n}(\mathsf{R}) \subset \alpha^n \mathsf{R}$ pour $0 < \alpha < 1$ convenable. Grâce au théorème de Poincaré-Dulac, on prouve, comme dans la démonstration du théorème de l'appendice de [RR], qu'il existe un automorphisme polynomial triangulaire G (avec G(0) = 0 et $G_* \mid_0 = F_*(0)$) de \mathbb{C}^N et une application polynomiale $T: \mathbb{C}^N \to \mathbb{C}^N$, avec T = 0, $T_* \mid_0 = id$ tels que la suite d'applications holomorphes $\{(G^{-k} \circ T \circ F^{\circ k})\}_{k \in \mathbb{N}}$ converge uniformément sur les compacts de \mathbb{R} , pour $k \to \infty$, vers une application holomorphe $\Psi_0 \colon \mathbb{R} \to \mathbb{C}^N$, satisfaisant

(1)
$$\Psi_0(0) = 0$$
, $(\Psi_0)_* = id$ et $G^{-n} \circ \Psi_0 = \Psi_0 h^n$.

Considérons le prolongement analytique maximal (M, π, j, Ψ) de Ψ_0 .

LEMME 10. Si
$$x_1, x_2 \in M$$
 et $\Psi(x_1) = \Psi(x_2)$, on $\pi(x_1) = \pi(x_2)$.

DÉMONSTRATION. Comme $\pi(x_1)$, $\pi(x_2) \in \Omega$, il existe des voisinages \mathcal{U}_i de $\pi(x_i)$, des points $\{x_{ik}\}_{k=0\ldots N}$ (avec $x_{i0}=\pi(x_i)$, i=1,2) et des éléments d'applications holomorphes (W_{ik},f_{ik}) , i=1,2, chacun desquels prolongement analytique de F, tels que $x_{ik} \in W_{ik}$, $f_{ik}(x_{ik}) = x_{i,k+1}$ et $\bigcap_{i=0}^{N} f_{il}(W_i0) \in \mathbb{R}$, (i=1,2) En outre, on peut supposer, sans perte de généralité, que j admet des prolongements analytiques j_{ik} sur tous les W_{ik} , de façon telle que $\{j_{ik}(W_{ik})\}$ (i=1,2) soient deux chaînes d'ouverts en M connectant respectivement j(0) avec x_1 et j(0) avec x_2 . On peut aussi supposer que, pour k assez grand, $W_{ik} \equiv \mathbb{R}$ et $j_{ik} \equiv j$, i=1,2.

Posons
$$F_{ik} = \bigcap_{i=0}^{\kappa} f_{il}$$
, $i = 1, 2$; on a $\Psi \circ j_{ik} \circ F_{ik} \circ \pi = G^k \circ \Psi$, donc

(2)
$$\Psi j_{1k} F_{1k} \pi(x_1) = G^k \Psi(x_1) = G^k \Psi(x_2) = \Psi j_{2k} F_{2k} \pi(x_2).$$

On peut supposer, sans perte de généralité, que j soit inversible dans R et Ψ injective dans j(R). On a alors que (2) entraı̂ne, pour k=N $j_{1N}\circ F_{1N}\circ \pi(x_1)=j_{2N}\circ F_{2N}\circ \pi(x_2);$ en appliquant $h^{\circ N}\circ \pi$ on obtient $\pi(x_1)=\pi(x_2)$.

LEMME 11. On a: (i) $\Omega = \pi(M)$; (ii) π est un revêtement topologique et (iii) ψ est un revêtement topologique.

DÉMONSTRATION. (i): grâce au lemme 7, $\Omega = \bigcap_{k=1}^{\infty} [h^{\circ k}(\mathsf{R})]$. Comme $\mathsf{R} \subset h(\mathsf{R})$ on a $h(\Omega) = \Omega$. Prouvons d'abord que $\Omega \subset \pi(\mathsf{M})$. Si $p \in \Omega$, il existe, encore grâce au lemme 7, $n \in \mathbb{N}$ et un prolongement analytique (V, F_n) de (R, F^n) à un voisinage V de p, tel que $F_n(V) \subset \mathsf{R}$.

Cela entraîne que la suite d'applications holomorphes

$$\{(G^{-k} \circ T \circ F^{\circ k-n}) \circ F_n\}_{k \in \mathbb{N}}$$

(où T est l'application polynomiale de \mathbb{C}^N introduite avant l'équation (1)) converge (par rapport à k) uniformément sur les compacts de V vers une application holomorphe Ψ_p , qui est visiblement un prolongement analytique de Ψ_0 car F_n est un prolongement analytique de F^n . Ainsi $p \in \pi(M)$.

Soit $p \in \pi(M)$: il existe un prolongement analytique (\mathcal{U}_p, Ψ_p) de Ψ_0 à un voisinage \mathcal{U}_p de p.

On peut supposer Ψ_0 inversible sur un ouvert $\mathcal{U} \subset \mathbb{R}$: en soit $(\mathcal{V}, \Psi_0^{-1})$ l'inverse. On peut toujours supposer $\mathcal{V} \subset \mathbb{R}$. Comme

$$\Psi_0^{-1} \circ G^n \circ \Psi_0 = F^n$$

sur R pour tout n et, par le lemme 1 de l'appendice de [RR], $\lim_{k\to\infty}G^{\circ k}=0$ uniformément sur les compacts de \mathbb{C}^N , on voit que, pour chaque compact $\mathfrak{K}\subset\mathcal{U}_p$ et n assez grand, $G^n\Psi_p(\mathfrak{K})\subset\mathsf{R}$. On peut donc prolonger le membre gauche de (4) sur \mathcal{U}_p , en gagnant l'élément $\Psi_0^{-1}\circ G^n\circ \Psi_p$. Par conséquent, F^n aussi peut être prolongé sur \mathcal{U}_p à un élément (\mathcal{U}_p,F_n) et $F_n(p)\in\mathsf{R}$. Ainsi $p\in h^{\circ n}(\mathsf{R})$ et, grâce au lemme 7, $p\in\Omega$.

(ii): prouvons que π jouit de la propriété du relèvement des courbes. Soit $\gamma:I\to\pi(\mathsf{M})$ un chemin et $x\in\pi^{-1}(\gamma(0))$. Par construction de M il existe un chemin $\beta:I\to\pi(\mathsf{M})$ tel que $\beta(0)=0$, $\beta(1)=\gamma(0)$ admettant un relèvement $\tilde{\beta}:I\to\mathsf{M}$ tel que $\tilde{\beta}(0)=j(0)$ et $\tilde{\beta}(1)=x$. Soit $\Gamma:=\beta*\gamma$: comme $\pi(\mathsf{M})=\Omega$ par (i), $\Omega=\bigcap_{k=1}^\infty[h^{\circ k}(\mathsf{R})]$ et $h^k(\mathsf{R})\subset h^{k+1}(\mathsf{R})$, on a $\Gamma(I)\subset\subset h^N(\mathsf{R})$ pour N assez grand.

Or h^N est un revêtement, donc (R, F^N) admet un prolongement analytique le long de Γ jusqu'à un élément (V, F_n) dans un voisinage de $\gamma(1) = \Gamma(1)$.

On peut définir un prolongement analytique de Ψ_0 le long de Γ à l'aide de (3).

Cela entraı̂ne que Γ admet un relèvement $\tilde{\Gamma}: I \to M$ tel que $\tilde{\Gamma}(0) = = j(0)$ et $\tilde{\Gamma}(1/2) = x$. Posons $\tilde{\gamma}(t) := \tilde{\Gamma}((t+1)/2)$: on voit que $\tilde{\gamma}(0) = x$ et

 $\pi \tilde{\gamma} = \gamma$, donc γ admet un relèvement respectivement à π commençant à x, c'est-à-dire π est un revêtement topologique.

(iii): notons que la définition de Ψ_p par (3) entraı̂ne que cette application est une limite de biholomorphismes locaux, donc soit Ψ_p est dégénérée au voisinage de p, soit elle y est biholomorphe. Le premier cas ne peut pas se présenter, car sinon, par prolongement analytique, même Ψ_0 serait dégénérée, ce qui contredit (1).

En outre, au voisinage de 0 on a

$$\Psi_0^{-1} = \lim_{k \to \infty} h^k \circ S \circ G^k,$$

où S dénote l'inverse local de T au voisinage de 0. cette définition-là peut être prolongée à une application holomorphe Θ sur \mathbb{C}^N , car $\lim_{k\to\infty}G^k=0$ uniformement sur les compacts de \mathbb{C}^N .

Or, au voisinage de chaque point $p \in \mathbb{C}^N$, la suite (5) est une suite de biholomorphismes locaux, car les $\{h^k\}$ le sont sur R, donc soit Θ est dégénérée au voisinage de p soit p n'est pas un point critique pour Θ . Le premier cas ne peut pas se preésenter, car sinon Θ serait dégénérée sur \mathbb{C}^N , ce qui contredit $\Theta_*(0) = \Psi_*(0)^{-1} = id$ Grâce au lemme 3 et à (ii), $\Theta(\mathbb{C}^N) = \Omega$.

Montrons que ψ jouit de la propriété du relèvement des courbes. Soit $\gamma:I\to\mathbb{C}^N$ un chemin et $y\in\psi^{-1}(\gamma(0))$: grâce au lemme 10, $y\in\pi^{-1}(\Theta(\gamma(0)))$. Puisque π est, par (iii), un revêtement, il existe un relèvement $\tilde{\gamma}:I\to M$ de $\Theta\gamma$ commençant à y; comme on a aussi $\psi\tilde{\gamma}=\gamma$, on voit que $\tilde{\gamma}$ est un relèvement de γ par respectivement à Ψ , commençant à y, c'est à dire Ψ est un revêtement topologique.

Fin de la démonstration du théorème 9: montrons que Ψ est surjective: on peut recouvrir M par un ensemble dénombrable d'ouverts $\{\mathfrak{V}_l\}$ tels que $\pi|_{\mathfrak{V}_l}$ est inversible; posons $\mathfrak{U}_l:=\pi(\mathfrak{V}_l)$. Grâce au lemme 11 (i) et au fait que $h(\Omega)=\Omega$, pour tout n et tout l on aura aussi $h^n(\mathfrak{U}_l)\subset\subset\bigcap_{\lambda\in L(l,n)}\mathfrak{U}_\lambda$, pour un certain ensemble d'indices L(l,n).

Par construction $\Psi(M) = \bigcap_{l=1}^n \Psi_l(\mathcal{U}_l)$, où chacun des (\mathcal{U}_l, Ψ_l) est un prolongement analytique de Ψ_0 , et donc $G^{-n}\Psi(\mathsf{M}) = \bigcap_{l=1}^n G^{-n}\Psi_l(\mathcal{U}_l)$. Par prolongement analytique de (1), on a, pour chaque $l, n, G^{-n}\Psi_l(\mathcal{U}_l) = \bigcap_{\lambda \in L(l,n)} \Psi_\lambda h(\mathcal{U}_l) \subset \Psi(M)$; en considérant la réunion sur l, on obtient $G^{-n}\Psi(M) \subset \Psi(M)$; mais alors, grâce au théorème de Poinca-ré-Dulac $\mathbb{C}^N = \bigcap_{n=1}^\infty G^{-n}\Psi(M) \subset \Psi(M)$, donc $\Psi(M) = \mathbb{C}^N$.

Finalement, grâce au lemme 11 (ii), Ψ est un revêtement topologique, donc, grâce à la connexité simple de \mathbb{C}^N , il s'agit d'une application biholomorphe.

4. Exemples.

Soit $\mathcal{E}:=\mathbb{C}^2_{(z,\,w)}\setminus\{0\}\times\mathbb{C}$: construissons une application holomorphe propre $h:\mathbb{C}^2\to\mathcal{E}$ avec un point fixe répulsif et $Jh\neq 0$ sur \mathcal{E} . Pour ce faire on pourra partir de l'application biholomorphe sur \mathbb{C}^2 , prenant valeurs en \mathcal{E} , de [RR], p. 76 où 77, que nous allons appeler G. Soit $G(1,1)==(a,b)(\in\mathcal{E})$; or, pour α , β convenables l'application H définie en posant

$$H(z, w) := G(\alpha z - \alpha a + 1, \beta y - \beta b + 1)$$

a un point fixe répulsif en p := (a, b). Enfin, on pourra considerer $h := H(a^{1-n}z^n, w)$, qui jouit évidemment des propriétés énoncées au debut du paragraphe.

Or, pour chaque voisinage V de p en $\mathcal E$ et pour chaque entier positif k, on a $h^k(V) \subset \mathcal E$ par construction. Par ailleurs, $h^k|_V$ est un biholomorphisme local propre, et donc un revêtement topologique. Ainsi le point fixe p est régulier. Donc la construction du théorème nous donne un domaine de Riemann M biholomorphe à $\mathbb C^N$ qui recouvre le bassin potentiel d'attraction de p par respect à un inverse local de p. Par construction, ce bassin est contenu en p, et donc il est un sousensemble propre de p.

REFERENCES

- [BF] G. T. BUZZARD J. E. FORNAESS, An embedding of C into C² with hyperbolic complement, Math. Ann., 306 (1996).
- [BS] E. Bedford J. Smille, Fatou-Bieberbach domains arising from polynomial automorphisms, Indiana Univ. Math. J., 40 (1991).
- [FS] J. E. FORNAESS N. SIBONY, Complex Hénon mappings in \mathbb{C}^2 and Fatou-Bieberbach domains, Duke Math. J., 65 (1992).
- [G] J. GLOBEVNIK, On Fatou-Bieberbach domains, Math. Zeitschrift, 229 (1997).
- [GR] R. C. Gunning H. Rossi, Analytic functions of several complex variables, Prentice Hall, 1965.
- [K] T. KIMURA, On Fatou-Bieberbach domains in \mathbb{C}^2 , J. Fac. Sci. Univ. To-kyo Sect. IA Math., 35 (1988).

- [Ma] B. MALGRANGE, Lectures on the theory of functions of several complex variables, Tata institute of fundamental research, Bombay 1958.
- [My] P. J. Myrberg, Über ganze analytische Funktionen zweier Variablen, welche eine schlichte und volumentreue gelöcherte Abbildung vermitteln, Ann. Acad. Sci. Fenn. Ser. A1, 540 (1973).
- [N] R. NARASIMHAN, Several complex variables, The university of Chicago Press, Chigago and London, 1971.
- [RR] J.-P. ROSAY W. RUDIN, Holomorphic maps from \mathbb{C}^n to \mathbb{C}^n , Trans. of the A.M.S. 310/1, November 1988.
- [Si] N. Sibony P. M. Wong, Remarks on the Casorati-Weierstrass theorem, Ann. Pol. Math., 39 (1981).
- [Ste] J.-L. Stehlé, Plongements du disque dans C², Séminaire P. Lelong (Analyse) 1970-71 Lectures Notes in Math., Vol. 275 Springer, Berlin 1972.
- [Stn] B. Stensönes, Fatou-Bieberbach domains with C[∞]-smooth boundary, Annals of Mathematics, 145 (1997).
- [Wck] B. J. Weickert, Attracting basins for automorphisms of C², Invent. math., 132 (1998).

Manoscritto pervenuto in redazione il 13 dicembre 2003.