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Harnack’s Inequalities for Solutions
to the Mean Curvature Equation
and to the Capillarity Problem.

FEI-TSEN LIANG (*)

ABSTRACT - We impose suitable conditions to obtain Harnack inequalities for sol-
utions to the capillarity problems in terms merely of the prescribed boundary
contact angle, the prescribed mean curvature and the dimension. Moreover,
for solutions to mean curvature e quation in a ball BR (x0 ), Harnack’s inequali-
ties are shown to hold in BlR (x0 ) in terms merely of the mean curvature, l and
the dimension. Furthermore, Harnack’s inequalities for neighborhoods of the
boundary points will be established. We emphasize that the constant con-
cerned are all explicitly obtaned.

Let V be a bounded domain in Rn , nF2. Let H(x , u(x) ) be a given
Lipschitz-continuous function in V3R . We consider solutions to the
mean curvature equation of surfaces of prescribed mean curvature

div Tu4nH(x , u(x) ) in V ,(0.1)

where

Tu4
Du

k11NDuN2
.

A solution of the capillarity problem can be looked at as a solution of the

(*) Indirizzo dell’A.: Institute of Mathematics, Academia Sinica, Nankang,
Taipei, Taiwan 11529.

E-mail: liangHmath.sinica.edu.tw



Fei-tsen Liang58

equation (0.1) subject to the «contact angle» boundary condition

Tu Qn4cos u ,(0.2)

where n is the outward pointing unit normal of ¯V . Thus, geometrically
we are considering a function u on V whose graph has the prescribed
mean curvature H and which meets the boundary cylinder in the pre-
scribe d angle u .

One main purpose of this paper is to obtain Harnack’s inequalities for
solutions to the capillarity problems in terms merely of the dimension n ,
the boundary contact angle u and the mean curvature H . These results
are formulated as Theorems 2-3. Moreover, for solutions to the mean
curvature equation (0.1) in a b all BR (x), Harnack’s inequalities are
shown to hold in BlR (x), 0 ElE1, in terms merely of the mean curva-
ture H , l and n . This is formualted as Theorem 4. Furthermore, Har-
nack’s inequalities for neighborhoods of the boundary points will be es-
tablished and formulated as Theorems 5-6.

We recall a Harnack’s inequality due to Serrin[25] which can be stat-
ed as follows:

«Suppose u(x) �C 2 (V) is a non-negative solution of (0.1) in a two-
dimensional ball BR (x0 ) for Hf1 and suppose that u(x0 ) 4m. Then
there exist functions r(m) D0 and F(m ; r) EQ in rEr(m), such that
Nu(x)NEF(m ; NxN) in BR (x0 ). There holds lim

rKr
F(m ; r) 4Q , while

r(m)70 as NmNKQ.»

In Finn [3], a simpler proof of this result is given by employing the
notion of generalized solutions, together with either constructing barri-
ers to apply comparison principles or showing gradient estimates of a
special type. This new pr oof yields considerably improved and qualitat-
ively different information. Indeed, the following is obtained in [3], in
which it is remarkable that the one sided bound essential for the classi-
cal Harnack’s inequality does not appear:

«There exist a universal constant R0 and a constant R× determined en-
tirely by R for RDR0 , such that in Serrin’s result r(m) F R× if RDR0 .
Furthermore, there exist functions A 2

0 (R ; r) and A 1
0 (R ; r) such that if

u�C 2 (V) is a solution to (0.1) in BR (x0 ) with u(x0 ) 4m , then

A 2
0 (R ; NxN) Eu(x)2m211k12r 2 EA 1

0 (R ; NxN),



Harnack’s inequalities for solutions etc. 59

where lim
RK1

A 2
0 (R ; r)4 lim

RK1
A 1

0 (R ; r)40, for all rE1 and A 1
0 (R ; r)EQ ,

for all 0 EeER.
If RDR0 , mD0, then r(m) 4Q. Furthermore, a function A1 (R)

exists such that A1 (R)70 as RK1 and

u2m211k12r 2 EA1 (R). »

In case n42 and H satisfies monotonicity condition instead of being
constant, Finn and Lu [6] obtained gradient estimates of a type analog-
ous to that employed in [3], which immediately yields the following, in
which the one sided bound does not appear either.

«Assume H 8 (u) F0, H(2Q) cH(1Q). Then there exist a positive
constant r1 (u0 ; R) GR and a continuous function A*

1 (u0 ; R ; r) with
A*

1 (u0 ; R ; 0 ) 4u0 such that if u(x) satisfies (0.1) in two -dimensional
ball BR (x0 ) and u(x0 ) 4u0 , then uGA*

1 throughout Br1 (x0 ).
There also exist a positive function r2 (u0 ; R) GR and a continu-

ous function A*
2 (u0 ; R ; r) with A*

2 (u0 ; R ; 0 ) 4u0 such that uFA*
2

throughout Br2 (x0 ).
If H(1Q) 41Q and H(2Q) 42Q , then the functions A*

12u0

and u0 2A*
2 do not depend on u0 , and additionally r14r24R.»

Indeed, the gradient estimates resorted to in [3] and [6] take the fol-
lowing form and is proved in [5], [15] and [6], respectively.

«Let RDR0 40.5654062332R . Let V R %R2 be a “moon” domain
bounded by two circular arcs G 1 and G 2 of the respective radius R and
1

2
such that 2NV RN4NG 1N2NG 2N , where N QN denotes either the Haus-

dorff 2-measure or 1-measure. Let R×(R) be the radius of the largest disk
concentric to BR (x0 ) such that BR× (x0 ) %V R . There exists a positive
function A(R ; e) EQ such that for any solution u(x) of (0.1) in BR (x0 )
and any eE0, there holds N˜u(x)NEA(R ; e) in BR×2e (x0 ). Further-
more, the value R× cannot be improved.»

«Assume H 8 (u) F0, H(2Q) cH(1Q). Let u(x) be a solution of
(0.1) over a two-dimensional disk BR (x0 ). Then N˜u(x0 )N is bounded,
depending only on R and on u(x0 ). If H(2Q) 42�Q and H(1Q) 4

41Q , then the bound depends only on R.»

The remarkable feature of this type of gradient estimate is that it de-



Fei-tsen Liang60

pends on neither boundary data nor bounds of any sorts, in contrast to
results in [1] [7] [8] [9] [14] [17] [26] [27], for example. Progress aimed at
obtaining gradient estimates of this type are made in [16] [17] [18].

The above-mentioned Harnack’s inequalities and gradient estimates,
however, has the disadvantage that, while it guarantees the existence of
upper or lower bounds, the explicit value of the bounds are not known. In
this paper, Harnack’s inequalities are s hown to hold under some im-
posed condition, in particular, under the one-sided bounded condition;
however, the constant concerned are all explicitly obtained.

In [28], Harnack,s inequalities are obtained for nonnegative bounded
solutions u�W 2, n (V) of (0.1) in which H(x , u) satisfies structure condi-
tions of different feature than those required in this paper (cf. (0.12) be-
low). The Harnack’s inequalities in [28] takes the form sup

BsR

uGC inf
Bs

u for

any ball BR %V and 0 EsE1, in which the constant C can be explicitly
calculated in terms of n , s , R , the upper bound of u in BR and the quanti-
ties involved in the structure conditions.

0. Introduction.

0.1. Preliminary Harnack’s inequalities.

Of basic importance is the following Preliminary Harnack’s Inequali-
ty, which estimate the growth of a solution in a small ball B in terms of
the ratio of the measure of level sets inside this ball B t o the whole ball
B . Namely,

PROPOSITION 1 (the Preliminary Harnack’s Inequality). Let u be a
C 2 (V) function over a domain V%Rn , with subgraph

U4 ](x , t) �V3R , tEu(x)( .

For points z× 4 (x×, t×) �V3R and for rD0, we set

Ur (z×) 4Cr (z×)OU , and U 8r (z×) 4Cr (z×)U ,

with

Cr (z×) 4 ](x , t) : Nx2x×NEr , Nt2 t× NEr( .

Suppose there exist positive constants a * and R * depending only on n ,
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inf
V3R

H and sup
V3R

H such that

(0.3) NUr (z×)NFa * r n11 for all rG min (R *, dist (z×, ¯(V3R) ) ),

if NUr (z×)ND0 for all rD0,

and

(0.4) NU 8r (z×)NFa * r n11 for all rG min (R *, dist (z×, ¯(V3R) ) )

if NU 8r (z×)ND0 for all rD0,

Let us set, for bD0,

Db4 ]x : x�V , NDuNFb( , R×*4 max gR22R *,
3

4
Rh ,

and

L*4L*R , b4 min (1 , b) max g R *

R
,

1

8
h .

If the ball BR (x0 ) has the radius RG min (R×*, dist (x0 , ¯V) ), then there
exist two positive constants j n , a *

and Ca *, b determined completely by
a *, b and n such that, for any x1 �BR×* (x0 ) with B2L* R (x1 ) %Db , we
have

(0.5) u(x0 )2mV 0
Gj n , a *

v n (u(x1 )2mV 0
)1

1(21L*R , b j n , a *
) v n R1j n , a *

Ca *, b R 12n �
BR (x0 )

NDuNdx ,

and

(0.6) MV 0
2u(x0 ) Gj n , a *

v n (MV 0
2u(x1 ) )1

1(21L*R , b j n , a *
) v n R1j n , a *

Ca *, b R 12n �
BR (x0 )

NDuNdx ,

where we set MV 0
4 sup

V 0

u and mV 0
4 inf

V 0
u , for any domain V 0 such that

BR (x0 ) ’V 0 ’V . In fact, we are allowed to take

j n , a *
4

2n12

a *
,(0.7)



Fei-tsen Liang62

and

Ca *, b42
2n112

1

n L*R , bg v n

a *
h

1

n

.(0.8)

In Theorem 1 and throughout this paper, we denote by N . N either the
Hausdorff (n11)-measure or the Hausdorff n-measure and denote by
Bs (x), sD0, x�V , a ball centered at x and of radius s .

In Section 1, this Preliminary Harnack’s Inequality will be proved by
adapting the reasoning on pages 312-313 of Giusti [12], together with an
application of the following modified version of Poincarè inequality.

PROPOSITION 2 (a modified version of Poincarè inequality). Suppose
w�W 1, p (V) for some pF1 and convex V , with

N]x : x�V , w(x) G0(NFa 1 NVN

If pD1, then we have

VwVp GCa 1
VDwVp ,

with

Ca 1
4 (12 (12a 1 )

p21

p )21g v n

NVN
h12

1

n

( diam V)n .

If p41 and if we have, in addition,

N]x : x�V , w(x) G0( Fa 2 NVN ,

then

VwV1 GCa 1 , a 2
VDwV1 ,

with

(0.9) Ca 1 , a 2
4max (a 1 , a 2) ug 1

a 1
h12

1

n

1g 1

a 2
h12

1

n v g v n

NVN
h12

1

n

(diam V)n.

A proof of this inequality is given in [18]. We remark that inequalities
of this type are indicaded to hold, for example, in [20] and [29] for a class
of domains with much less restrictions than that of convexity imposed
here. However, in results of [20] and [29], the constants Ca 1

and Ca 1 , a 2

are not given explicitly.
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For sufficiently small r , the number a * in Proposition 1 can be esti-
mated in terms of the mean curvature H and n . In Appendix, we will re-
sort to the estimates obtained in Giusti [12] for generalized solutions of
the equation (0.1), taking ad vantage of the fact that generalized sol-
utions for the equation (0.1) are allowed to take infinite values 1Q

and/or 2Q in subdomains of V of positive n-Hausdorff measure. We
shall obtain

PROPOSOTION 3 (estimates for the number a * in (0.3) and (0.4)). Let
u be a generalized solution to (0.1) in V with the subgraph U . Let Ur (z×),
U 8r (z×) be as in Theorem 1. If

NUr (z×)ND0 and NU 8r (z×)ND0 for all rD0 ,

then, setting

a *4
1

4(n11) k(n11)

,(0.10)

with k(m) being the isoperimetric constant in Rm , mF1, and set-
ting

R2*4

.
/
´

u 1

2k(n) v n N inf
V3R

H(x , t)N
v

1

n

,

Q

if inf
V3R

H(x , t) E0,

if inf
V3R

H(x , t) F0,

R1*4

.
/
´

u 1

2k(n) v n N sup
V3R

H(x , t)N v
1

n

,

Q

if sup
V3R

H(x , t) G0,

if inf
V3R

H(x , t) D0,

(0.11)

we have

NUr (z×)NFa * r n11 for all rG min (R2*, dist (z×, ¯(V3R) ) )

and

NU 8r (z×)NFa * r n11 for all rG min (R1*, dist (z×, ¯(V3R) ) ).

Inserting the value of the number a * in (0.10) into Proposition 1, we
obtain



Fei-tsen Liang64

THEOREM 1 (the Preliminary Harnack’s Inequality*). Let u�
�C 2 (V) be a solution of (0.1) in V . Let BR (x0 ), BR×* (x0 ), L*R , b and Db be as
in Theorem 1. If x1 %BR×* (x0 ) with B2L* R (x1 ) %Db , then (0.7) and (0.8)
hold with a * in (0.10), R *4 min (R2*, R1*) and

j n , a *
42n14 (n11) k(n11) .

0.2. Harnack’s inequalities for solutions to the capillarity problem.

Assume that u�C 2 (V)OC 0, 1 (V) is a solution to the capillarity prob-
lem (0.1) and (0.2). Furthermore, suppose that ¯V is of class C 2 and that
the functions

H�C 0, 1 (V3R) and cos u�C 0, 1 (¯V)

satisfy the conditions

Ncos uNG g×, and inf
x�V

HF0,(0.12)

for some positive constant g×, 0 G g× E1.
First of all, let us extend cos u and n into the whole domain V such

that cos u belonging to C 0, 1 (V) still satisfies (0.12) and such that the vec-
tor field n is unifomly Lipschitz continuous in V and bounded in absolute
value by the number 1 . The extensions are possible in view of the
smoothness of ¯V .

An integration of (0.1) and (0.2) yields

�
V

Tu QDh dx1n�
V

Hh dx2 �
¯V

cos uh d Hn21 40,(0.13)

for all h�C 1 (V). Henceforth, we may say that u�C 1 (V)OW 1, 1 (V) is a
solution of (0.1) and (0.2) in the weak sense in V if it satisfies (0.1) in V
and (0.13) for all h�C 1 (V).

To handle the third term on the left hand side of (0.13), we recall the
following result in Lemma 1.1 of Giusti [12] and its proof.

LEMMA 1 (Giusti [12]). Let ¯V be of class C 2 and

d(x) 4dist (x , ¯V),

for x�V . For eD0 which is so small that the function d(x) is of class C 2

in

S e4 ]x�V : dist (x , ¯V) Ge( ,(0.14)
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there exists a constant Ce , V determined completely by e and ¯V such
that

�
¯V

NwNd Hn21 G �
S e

NDwN1Ce , V�
S e

NwNdx ,(0.15)

for every w�BV(V). In fact, if we let h e be a C Q function with

.
/
´

0 Gh eG1,

h e41

h e40

on ¯V ,

in V0S e ,

(0.16)

then we can take

Ce , V4 sup
V

Ndiv (h e Dd)N .(0.17)

Indeed, the following results are well known (cf. e.g. pages 354-357 of
[10], pages 420-422 of [24]).

LEMMA 2. Let ¯V be of class C 2 whose principal curvatures are
bounded in absolute value by K¯V . Then d(x) 4dist (x , ¯V) is of class

C 2 in S e , for eG
1

K¯V

, where S e is given in (0.13).

Furthermore, for points x in S e , eG
1

K¯V

, define y 4y(x) to be the

(unique) points on ¯V nearest to x. Consider the special coordinate
frame in which the xn-axis is oriented along the inward normal to ¯V
at y and the coordinates x1 , R , xn21 lie along the principal directions
of ¯V at the point y. In this special coordinates, we have at x

Dd4 (0 , R , 0 , 1 )(0.18)

and

D 2 d4diagonal k k1

12k1 d
, R ,

kn21

12kn21 d
, 0l ,(0.19)

where k1 , R , kn21 are the principal curvatures of ¯V at y.
Inserting (0.18) and (0.19) into (0.17), we obtain the following

LEMMA 3. Let ¯V be of class C 2 whose principal curvatures are

bounded in absolute value by K¯V . Then, for eG
1

2 K¯V

and for each d ,
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0 EdG1, we can take in (0.13)

Ce , VGNDh eN12(n21) K¯V(0.20)

G g 11d

e
h12(n21) K¯V .

Combining (0.12) and (0.15) with Ce , V being as in (0.20), we obtain, for

eG
1

2 K¯V

,

(0.21) N�
¯V

cos uh d Hn21N G g×�
S e

NDhN1g×Ce , V�
S e

NhNdxG

Gg×�
S e

NDhN1g×g 11d

e
12(n21) K¯Vh�

S e

NhNdx,

for all h�C 1 (V).
In Section 2.1, we shall obtain Harnack’s inequality in the following

formulation by inserting (0.21) into (0.13) either with h4 (u2mV 0
) or

with h4 (MV 0
2u), and subsequently inserting what results in into (0.5)

and (0.6).

THEOREM 2 (the first Harnack’s inequality). Let u�C 2 (V)O
OW 1, 1 (V) be a solution to (0.1) and (0.2) in the weak sense in V . Suppose
that ¯V�C 2 such that (0.12) holds in which g× satisfies

2 g× E

( inf
x�BR (x0 )

H)

K¯V

.(0.22)

Let us set

A1 4 (21j n , a *
L*R , b)

v n

12g×
R1j n , a *

Ca*, b

NVN

(12g×) R n21

and

A2 4 (21j n , a *
L*R , b) v n R1j n , a *

Ca *, b

NVN

R n21
.

Then, for any x1 �BR×* (x0 ) with B2L* R (x1 ) %Db , (R×* and L* being given
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in Proposition 1), we have

u(x0 )2mV 0
G

j n , a *
v n

12g×
(u(x1 )2mV 0

)1 A1 .(0.23)

and

MV 0
2u(x0 ) G

j n , a *
v n

12g×
(MV 0

2u(x1 ) )1 A1 ,(0.24)

where we set mV 0
4 inf

V 0
u and MV 0

4 sup
V 0

u , for any domain V 0 such that

BR (x0 ) ’V 0 ’V . Furthermore, for any x1 �BR×*0 (x0 ) with B2L* R (x1 ) %Db ,

R×*0 4 max g R

2
22R *, 3

8
Rh , we have

u(x0 )2mV 0
Gj n , a *

v n (u(x1 )2mV 0
)1 A2 ,(0.25)

MV 0
2u(x0 ) Gj n , a *

v n (MV 0
2u(x1 ) )1 A2 ,(0.26)

and for any x1 , x2 �BR×*1 (x0 ) with B2L* R (x1 ) %Db , R×*1 4

4 max g R

4
22R *h , 3

16
R), we have

(0.27) u(x1 )2mV 0
Gj n , a *

v n (u(x2 )2mV 0
)1

1(21j n , a *
L*R , b ) v n dist (x1 , x2 )1j n , a *

Ca *, b v n dist (x1 , x2 ),

(0.28) MV 0
2u(x1 ) Gj n , a *

v n (MV 0
2u(x2 ) )1

1(21j n , a *
L*R , b ) v n dist (x1 , x2 )1j n , a *

Ca *, b v n dist (x1 , x2 ).

In the special case where V is the ball BR (x0 ), we have

ki 4
1

R
, i41, R , n21, and K¯V4

1

R
,(0.29)

and from (0.12) we obtain immediately

N �
¯BR (x0 )

cos uh d Hn21N G g×nv n R n21 sup
BR

NhN .(0.30)

In Sections 2.2 and 2.3, the inequality (0.30) is inserted into (0.5) and
(0.6) to obtain the following.

COROLLARY 1 (the second Harnack’s inequality). Let u�C 2 (V)O
OW 1, 1 (V) be a solution to (0.1) and (0.2) in the weak sense in BR (x0 ).
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Suppose that (0.12) holds in which g× satisfies

2 g× ER inf
x�BR (x0 )

H .(0.22*)

Then, for any x1 �BR×* (x0 ) with B2L* R (x1 ) %Db , if we set

MR 4 sup
BR (x0 )

u and mR 4 inf
BR (x0 )

u ,

then there hold either

u(x0 )2mR Gj n , a *
v n (u(x1 )2mR )1 A2, R(0.31)

or

MR 2u(x0 ) Gj n , a *
v n (MR 2u(x1 ) )1 A2, R ,(0.32)

where

A2, R 4 (21j n , a *
L*R , b) v n R1j n , a *

Ca *, b v n R .(0.33)

COROLLARY 2 (the third Harnack’s inequality). Let u�C 2 (V)O
OW 1, 1 (V) be a solution to (0.1) and (0.2) in the weak sense in BR (x0 ).
Suppose that (0.12) holds. Furthermore, suppose that g×R n21 is so small

that, for some 0 EtG
1

2
,

nv n g×R n21 G
t

j n , a *
Ca*, b

.(0.34)

Then, for any x1 �BR×* (x0 ) with B2L* R (x1 ) %Db , there holds either

u(x0 )2mR G
1

(122t)
j n , a *

v n (u(x1 )2mR )1
1

(122t)
A2, R ,(0.35)

or

MR 2u(x0 ) G
1

(122t)
j n , a *

v n (MR 2u(x1 ) )1
1

(122t)
A2, R ,(0.36)

where MR , mR are given in Theorem 2 and A2, R is given in (0.33).

We note that the mean curvature H is not involved in the condition
(0.34).
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0.3. Harnack’s inequalities for solutions to the mean curvature equation.

For solutions to the mean curvature equation (0.1) in BR (x0 ), we shall
establish in Section 3 Harnack’s inequalities in BlR (x0 ) in the following
formulation in which the constants are completely determined by l , H
and n . We emphasize that no boundary condition is involved in these
Harnack’s inequalities.

THEOREM 3 (the fourth Harnack’s inequality). Let u�C 2 (V) be
a solution to (0.1) in BR (x0 ). Suppose that ( inf

x�BR (x0 )
H) F0. For any l ,

0 ElE1, and for any point x1 �BR *l (x0 ), R *l 4 max glR22R *, 3lR

4
h ,

with B2L* R (x1 ) %Db , we have, either

u(x0 )2mR Gj n , a *
(112Cl C *l Ce , V v n )(u(x1 )2mR )1 A2, R ,(0.37)

or

MR 2u(x0 ) Gj n , a *
(112Cl C *l Ce , V v n )(MR 2u(x1 ) )1 A2, R ,(0.38)

where we set

Cl4l n21 1l n22 1R1l11 4
12l n

12l
,(0.39)

and

(0.40) C *l 412 ( inf
x�BR (x0 )

H) R g n

n11
h (12l) g11

l n

Cl

h2

2n( inf
x�BR (x0 )

H) R
l n11

Cl

.

If there holds, for some t , 0 EtG
1

2
,

Cl C *l v n R n21 E
t

j n , a *
Ce , V

,(0.41)

then we have either

u(x0 )2mR G
1

(122t)
j n , a *

(u(x1 )2mR )1
1

(122t)
A2, R ,(0.42)
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or

MR 2u(x0 ) G
1

(122t)
j n , a *

(MR 2u(x1 ) )1
1

(122t)
A2, R .(0.43)

0.4. Boundary Harnack’s inequality.

Appealing to the following results in [12], Harnack’s inequalities for
neighborhoods of boundary points can be established by the reasoning in
Section 2 and Section 3.1 without essential change. Thus, we formulate
the first four Harnack’s inequalities w ithout giving a proof. In Section
3.2, we shall briefly indicate the reasoning leading to the fourth bound-
ary Harnack’s inequality. A proof of Proposition 4 will be given in
Appendix.

PROPOSITION 4. Let u be a function in C 2 (V)OW 1, 1 (V) in a do-
main V%Rn with the subgraph U. Let Ur (z×), U 8r (z×) be as in Theorem 1.
Suppose the first inequality in (0.12) holds and suppose that ¯V is of c
lass C 2 with Ce , V given in (0.17). If

NUr (z×)ND0 and NU 8r (z×)ND0 for all rD0 ,

then there exist positive constants R **2 , R **1 and a ** determined com-
pletely by n , inf

V3R
H , sup

V3R
H , g× and Ce , V such that

NUr (z×)NDa ** r n11 for every rGR **2 ,

and

NU 8r (z×)NDa ** r n11 for every rGR **1 .

In particular, we can take

a **4
12g×

16(n11) k(n11)

,(0.44)

R **2 4

.
`
/
`
´

Cg×

Ce , V k(n11)

,

min u C 2
g×

Ce , V k(n11) (2v n )1/(n11)
, R

A
**2 v ,

if inf
V3R

H(x , t)F0,

if inf
V3R

H(x , t)E0,

(0.45)
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and

R **1 4

.
`
/
`
´

Cg×

Ce , V k(n11)

,

min u C 1
g×

Ce , V (k(n11) )(2v n )1/(n11)
, RA**1 v ,

if sup
V3R

H(x , t)G0,

if sup
V3R

H(x , t)D0,

(0.46)

in which we set

Cg× 4 min g 1

2
,

12g×

3 g×11
h ,

with

RA**2 4 u 12g×

4n(k(n11) ) v n N inf
V3R

HN
vn11

,

RA**1 4 u 12g×

4n(k(n11) ) v n N sup
V3R

HN vn11
,

and

C 2
g× 4 min u 1

2
,

12g×22n(k(n11) )N inf
V3R

HNv n (RA**2 )n

3 g×11
v ,

C 1
g× 4 min u 1

2
,

12g×22n(k(n11) )N sup
V3R

HNv n (R
A

**1 )n

3 g×11
v .

THEOREM 4 (the preliminary boundary Harnack’s inequality). Let
u�C 2(V)OW 1, 1(V) be a solution to (0.1) and (0.2) in the weak sense in V .

Let us set a ** as in (0.44), R **4 min (R **2 , R **1 ), with R **2 and
R **1 given as in (0.45) and (0.46) and set

R×**4 max gR22R **,
3

4
Rh ,
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and

L**R , b4L**4 min (1 , b) max g R **

R
,

1

8
h .

If the ball has the radius RGR **, then there exist two positive con-
stants j n , a **

and Ca**, b determined completely by a **, b , g× and n such
that, for any x1 �BR×** (x0 )OV with B2L** R (x1 )OV%Db , we have

u(x0 )2mV 0
Gj n , a **

v n (u(x1 )2mV 0
)1

1(21Ca**, b j n , a **
)v n R1j n , a **

Ca**, b R n21 �
V 0

NDuNdx ,

and

MV 0
2u(x0 ) Gj n , a **

v n (MV 0
2u(x1 ) )1

1(21Ca**, b j n , a **
)v n R1j n , a **

Ca**, b R n21 �
V 0

NDuNdx ,

where we set MV 0
4 sup

V 0

u and mV 0
4 inf

V 0
u , for any subset V 0 of V with

(BR (x0 )OV) ’ V0 ’ V. In fact, we are allowed to take

j n , a **
4

2n12

a **
,

and

Ca**, b42
n111

1

n a **g v n

a **
h

1

n

.

THEOREM 5 (the first boundary Harnack’s inequality). Let u�
�C 2 (V)OW 1, 1 (V) be a solution to (0.1) and (0.2) in the weak sense in V .
Suppose ¯V�C 2 whose principal curvatures are bounded in absolute
value by K¯V . For x0 �¯V , suppose that the first inequality in
(0.12) holds for some number g×, 0 E g× E1, in ¯VOBR (x0 ) and
( inf

x� (BRA (x0 )OV)
H) F0. Suppose that (0.22) holds. Suppose further that

Tu Qn R G0,(0.47)

throughout ¯B2L** R (x1 )OVOV , where n R is the outward unit normal
with respect to B2L**R (x1)OVOV. Let us set A1 and A2 as in Theorem 2.
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Then, for any x1 �BR×** (x0 )OV with B2L** R (x1 )OV%Db , we have

u(x0 )2mV 0
G

j n , a **
v n

12g×
(u(x1 )2mV 0

)1 A1 ,

and

MV 0
2u(x0 ) G

j n , a **
v n

12g×
(MV 0

2u(x1 ) )1 A1 ,

for any subset V 0 of V with (BR (x0 )OV) ’ V0 ’ V. Furthermore, for

any x1 �BR×**0
(x0 )OV , R×**0 4 max g R

2
22R**, 3

8
Rh , with B2L** R (x1 )O

OV%Db , we have

u(x0 )2mV 0
Gj n , a **

v n (u(x1 )2mV 0
)1 A2 ,

MV 0
2u(x0 ) Gj n , a **

v n (MV 0
2u(x1 ) )1 A2 ,

and for any x1 , x2 �BR×**1
(x0 )OV , R×**1 4 max g R

4
22R **, 3

16
Rh , with

B2L** R (x1 )OV%Db , we have

u(x1 )2mV 0
Gj n , a **

v n (u(x2 )2mV 0
)1

(11j n , a **
L**) v n dist (x1 , x2 )1j n , a **

Ca**, b v n dist (x1 , x2 ),

MV 0
2u(x1 ) Gj n , a **

v n (MV 0
2u(x2 ) )1

1(11j n , a **
L**)v n dist (x1 , x2 )1j n , a **

Ca**, b v n dist (x1 , x2 ).

COROLLARY 3 (the second boundary Harnack’s inequality). Let u�
�C 2 (V)OW 1, 1 (V) be a solution to (0.1) and (0.2) in BRA (x0 ). For x0 �
�¯BRA (x0 ), suppose that the first inequality in (0.12) holds in ¯BRA (x0 )O
OBR (x0 ) and ( inf

x� (BRA (x0 )OBR (x0 ) )
H) F0. Suppose that (0.22) holds. Suppose

further that (0.47) holds along ¯BR (x0 )OBRA (x0 ). Then, for any x1 �
�BR×** (x0 )OBRA (x0 ) with B2L** R (x1 )OBRA (x0 ) %Db , if we set

MAR 4 sup
BR (x0 )OBRA (x0 )

u and mAR 4 inf
BR (x0 )OBRA (x0 )

u ,

then there hold either

u(x0 )2mAR Gj n , a **
v n (u(x1 )2mAR )1 A2, R
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or

MAR 2u(x0 ) Gj n , a **
v n (MAR 2u(x1 ) )1 A2, R

where A2, R is given in (0.33).

COROLLARY 4 (the third boundary Harnack’s inequality). Let u�
�C 2 (V)OW 1, 1 (V) be a solution to (0.1) and (0.2) in the weak sense in
BRA (x0 ). For x0 �¯BRA (x0 ), suppose that the first inequality in (0.12) holds
in ¯BRA (x0 )OBR (x0 ) and ( inf

x� (BRA (x0 )OBR (x0 ) )
H) F0. Suppose (0.34) holds for

some t , 0 EtG
1

2
.

(1) Suppose further that (0.47) holds along ¯BR (x0 )OBRA (x0 ). Then,
for any x1 �BR×** (x0 )OBRA (x0 ) with B2L** R (x1 )OBRA (x0 ) %Db , there holds
either

u(x0 )2mAR G
1

(122t)
j n , a **

v n (u(x1 )2mAR )1
1

(122t)
A2, R ,

or

MAR 2u(x0 ) G
1

(122t)
j n , a **

v n (MAR 2u(x1 ) )1
1

(122t)
A2, R .

(2) If (0.47) fails to hold throughout ¯B2L* R (x1 )OV , but if

nv n g×R n21 1nv n RAn21 E
t

j n , a *
Ca*, b

,

for some t , 0 EtE
1

2
, then we have

u(x0 )2mAR G
1

(122t)
j n , a **

v n (u(x1 )2mAR )1
1

(122t)
A2, R ,

and

MAR 2u(x0 ) G
1

(122t)
j n , a **

v n (MAR 2u(x1 ) )1
1

(122t)
A2, R .

THEOREM 6 (the fourth boundary Harnack’s inequality). Let u�
�C 2 (V) be a solution to (0.1) in BRA (x0 ). For x0 �¯BRA (x0 ), suppose that
( inf

x� (BRA (x0 )OBR (x0 ) )
H) F0. For any l , 0 ElE1, and for any point x1 �
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�BR **l
(x0 )OBR

A (x0 ), R **l 4 max glR22R **, 3lR

4
h , with B2L** R (x1 )O

OBRA (x0 ) %Db , we have, either

u(x0 )2mAR Gj n , a *
(112Cl Ce , V v n )(u(x1 )2mAR )1 A2, R ,(0.48)

or

MAR 2u(x0 ) Gj n , a *
(112Cl Ce , V v n )(MAR 2u(x1 ) )1 A2, R .(0.49)

If there holds, for some t , tG
1

2
,

Cl v n R n21 E
t

j n , a *
Ce , V

,(0.50)

then we have either

u(x0 )2mAR G
1

(122t)
j n , a *

(u(x1 )2mAR )1
1

(122t)
A2, R ,(0.51)

or

MAR 2u(x0 ) G
1

(122t)
j n , a *

(MAR 2u(x1 ) )1
1

(122t)
A2, R .(0.52)

1. Proof of the preliminary Harnack’s inequality.

In this section, we shall prove the Preliminary Harnack’s Inequality
(Proposition 1), adapting the reasoning on pages 312-313 of Giusti [12],
together with an application of Proposition 2. The reasoning suggested
by Giusti [12] enables us to estimate the l eft hand side of (0.5) and (0.6)
in terms of the L 1-norm of u and a subsequent application of Proposition
2 yields this estimate in terms of the L 1-norm of NDuN .

1.1. Suppose that u�C 2 (V) satisfies (0.3) and (0.4). For any domain
V 0 such that BR (x0 ) %V 0 %V , let us set

MV 0
4 sup

V 0

u , and mV 0
4 inf

V 0
u .

Let

zj 4 (x0 , mV 0
12 jR) ,
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for j�N . Then

zj �U ,

for

jG j1 4 y u(x0 )2mV 0

2R
z ,

where [s] denotes the largest integer less than s for sD0. From (0.3), we
have

NUR/2 (zj )NFa *g R

2
hn11

,

for 1 G jG j1 and therefore

�
BR (x0 )

(u2mV 0
) dxF !

j41

j1

NUR/2 (zj )NF j1 a *g R

2
hn11

.

Hence

MV 0
4u(x0 )1 (MV 0

2u(x0 ) )

G2( j1 11) R1mV 0
1 (MV 0

2u(x0 ) )

G
2n12

a * R n
�

BR (x0 )

(u2mV 0
) dx12R1mV 0

1 (MV 0
2u(x0 ) ) ;

that is,

u(x0 )2mV 0
G

2n12

a * R n
�

BR (x0 )

(u2mV 0
) dx12R .(1.1)

To estimate the integral on the right hand side of (1.1) under the hy-
potheses that x1 �BR×* (x0 ) and B2L* R (x1 ) %Db , let x×1 �¯B2L* R (x1 ) be a
point at which

u(x×1 )2u(x1 ) F2L*R , b Rb .

Let

z1 4 (x1 , u(x1 ) )
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and

z×1 4 (x×1 , u(x×1 ) ) .

From (0.3) and (0.4), we have

NU 8L*R , b R (z1 )NFa *(L*R , b R)n11 ,

and

NUL*R , b R (z×1 )NFa *(L*R , b R)n11 .

These yield

]x : x�BR (x0 ), u(x) Gu(x1 )1L*R , b R( Fa *(L*R , b R)n ,

and

]x : x�BR (x0 ), u(x) Fu(x1 )1L*R , b R( Fa *(L*R , b R)n .

Hence, by Proposition 2, we have

(1.2) �
BR (x0 )

(u2mV 0
) dxG

GCa *, b R �
BR (x0 )

NDuNdx1 ((u(x1 )2mV 0
)1L*R , b R)NBR (x0 )N ,

with Ca *, b being as in (0.8) by setting a 1 4a 2 4
a*(L*R , b )n

v n

in (0.9).

Inserting this into (1.1), we obtain (0.5) with the value j n , a *
given in

(0.7).

1.2. Analogously, we let

z 1
j 4 (x0 , MV 0

22Rj) ,

for j�N . Then

zj
1�U 84Q0U

for

jG j 1
1 4 y MV 0

2u(x0 )

2R
z .
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We obtain from (0.4) that

NU 8R/2 (z 1
j )NFa *g R

2
hn11

,

and therefore

�
BR (x0 )

(MV 0
2u) dxF !

j41

j 1
1

NU 8R/2 (z 1
j )NF j 1

1 a *g R

2
hn11

,

which yields

2mV 0
4u(x0 )1 (u(x0 )2mV 0

)

G2MV 0
12( j 1

1 11) R1 (u(x0 )2mV 0
)

G
2n12

a * R n
�

BR (x0 )

(MV 0
2u) dx12R2MV 0

1 (u(x0 )2mV 0
) .

That is,

MV 0
2u(x0 ) G

2n12

a * R n
�

BR (x0 )

(MV 0
2u) dx12R .(1.4)

Under the hypotheses that x1 �BR×* (x0 ) and B2L* R (x1 ) %Db , let x 1
1 �

�¯B2L* R (x1 ) be a point at which

u(x1 )2u(x×1
1 ) F2L*R , b Rb ,

where the point x1 �BR×* (x0 ) is chosen as in 1.1. Then setting

z×1
1 4 (x 1

1 , u(x×1
1 ) ) ,

we obtain from (0.3) and (0.4) that

NUL*R , b R (z1 )NFa *(L*R , b R)n11

and

NU 8L*R , b R (z×1
1 )NFa *(L*R , b R)n11 ,
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which and Proposition 2 yield

�
BR (x0 )

(MV 0
2u) dxGCa *, b R �

BR (x0 )

NDuNdx1

1((MV 0
2u(x1 ) )1L*R , b R)NBR (x0 )N .

This and (1.4) yield (0.6).

2. Proof of Harnack’s inequalities for solutions to the capillarity
problem.

2.1. Proof of theorem 2.

Setting e 0 4
1

2 K¯V

, we obtain from (0.21) that

N �
¯V

cos uh d Hn21N G g× �
S e 0

NDhNdx12 g× K¯V (n1d) �
S e 0

NhNdx ,

for each d , 0 EdG1 and for each h�C 1 (V). By this and (0.13), if u is a
solution in (0.1) and (0.2) in the weak sense, we obtain

(2.1) �
V

NDuN

k11NDuN2
QDh dxG g× �

S e 0

NDhNdx1

12ng× K¯V �
S e 0

NhNdx2n�
V

Hh dx ,

for each h�C 1 (V). Taking h4u2mV 0
F0, we obtain from

NDuN

k11NDuN2
4k11NDuN2 2

1

k11NDuN2
DNDuN21

and (2.1) that

(2.2) �
V0S e 0

NDuNdx1 (12g×) �
S e 0

NDuNdxE

ENVN12ng× K¯V �
S e 0

(u2mV 0
) dx2n�

V

H(u2mV 0
) dx .
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Taking h4MV 0
2u in (2.1) instead, we obtain

(2.3) �
V0S e 0

NDuNdx1 (12g×) �
S e 0

NDuNdxE

ENVN12ng× K¯V �
S e 0

(MV 0
2u) dx2n�

V

H(MV 0
2u) dx .

In case (0.22) holds, we obtain from (2.2) and (2.3) that

�
V0S e 0

NDuNdxENVN .(2.4)

and

�
V

NDuNdxE
1

12g×
NVN .(2.5)

Inserting (2.5) into (0.5) and (0.6), we obtain respectively (0.23) and
(0.24). By using (2.4) instead of (2.5) and replacing R by R/2 in (0.5) and
(0.6), we obtain (0.25), (0.26), (0.27) and (0.28).

2.2. Proof of corollary 1.

Suppose that u is a solution to (0.1) and (0.2) in the weak sense in
BR (x0 ) and that (0.22*) holds . We insert the inequality (0.30) into (0.13)
and take h4u2mR and h4MR 2u in (0.12) to obtain, respecti
vely

(2.6) �
BR (x0 )

NDuNdxGNBR (x0 )N1

1nv n g×R n21 (MR 2mR )2n �
BR (x0 )

H(u2mR ) dx ,

and

(2.7) �
BR (x0 )

NDuNdxGNBR (x0 )N1

1nv n g×R n21 (MR 2mR )2n �
BR (x0 )

H(MR 2u) dx .
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Since MR 2mR 4 (MR 2u(x0 ) )1 (u(x0 )2mR ), we have either

�
BR (x0 )

H(u2mR ) dxF
1

2
( inf

x�BR (x0 )
H)(MR 2mR )NBR (x0 )N ,

or

�
BR (x0 )

H(MR 2u) dxF
1

2
( inf

x�bR (x0 )
H)(MR 2mR )NBR (x0 )N .

Inserting these and (0.22*) into (2.6) and (2.7) yields estimates of
s

BR (x0 )
NDuNdx , which we subsequently insert into either (0.5) or (0.6) to

establish Corollary 1.

2.3. Proof of corollary 2.

Suppose that u is a solution to (0.1) and (0.2) in the weak sense in
BR (x0 ) and that (0.34) holds. We obtain from (2.6), (0.12) and (0.34)

�
BR (x0 )

NDuNdxGNBR (x0 )N1
t(MR 2mR )

j n , a *
Ca *, b

.

Inserting this into (0.5) and (0.6), we obtain respectively

u(x0 )2mR Gt(MR 2mR )1j n , a *
v n (u(x1 )2mR )1 A2, R(2.8)

and

MR 2u(x0 ) Gt(MR 2mR )1j n , a *
v n (MR 2u(x1 ) )1 A2, R ,(2.9)

where A2, R is given in (0.33). If u(x0 )2mR GMR 2u(x0 ), we have MR 2

2mR G2(u(x0 )2mR ), which and (2.8) yield (0.35). If MR 2u(x0 ) G

Gu(x0 )2mR , then we have MR 2mR G2(MR 2u(x0 ) ), which and (2.9)
yield (0.36).
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3. Proof of Harnack’s inequality for solutions to the mean curva-
ture equation and proof of a boundary Harnack’s inequality.

Choose h l4h l (r) �C 1 (BR (x0 ) ), r4dist (x0 , x1 ), with

.
/
´

0 Gh lG1,

h l41 in BlR (x0 ),

h l40 on ¯BR (x0 ),

(3.1)

for some l , 0 ElE1, such that

1

(12l) R
GNDh l (r)NG

11d 0

(12l) R
,(3.2)

for some d 0 , 0 Ed 0 E1 and for lRGrGR . Thus

12
r

R
Gh l (r) G12

(11d 0 )r

R
,(3.3)

for lGrGR .
Suppsose that u�C 2 (V) is a solution to (0.1) in V . Taking h4

4h l (u2mR ) and h4h l (MR 2u) in (0.12), we obtain

�
BR (x0 )

NDuN

k11NDuN2
QDh dx1n �

BR (x0 )

Hh dx40 ,

which yields

(3.4) �
BlR (x0 )

NDuN2

k11NDuN2
dxG

G �
BR (x0 )0BlR (x0 )

NDh lN(u2mR ) dx2n �
BR (x0 )

Hh l (u2mR ) dx4

4 �
BR (x0 )0BlR (x0 )

NDh lN(u2mR ) dx2n �
BR (x0 )0BlR (x0 )

Hh l (u2mR ) dx2

2n �
BlR (x1 )

H(u2mR ) dx ,
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and

(3.5) �
BlR (x0 )

NDuN2

k11NDuN2
dxG

G �
BR (x0 )0BlR (x0 )

NDh lN(MR 2u) dx2n �
BlR (x0 )

Hh l (MR 2u) dx4

4 �
BR (x0 )0BlR (x0 )

NDh lN(MR 2u) dx2n �
BR (x0 )0BlR (x0 )

Hh l (MR 2u) dx2

2n �
BlR (x0 )

H(MR 2u) dx .

By (3.1) and (3.2), we have

�
BR (x0 )0BlR (x0 )

NDh lN(MR2mR ) dxGnv n (MR2mR ) g 11d 0

(12l) R
h �

lR

R

r n21 dr4

4 g 11d 0

12l
h (12l n )(MR 2mR ) v n R n21 .

Since d 0 can be arbitrarily small, we have

(3.6) �
BR (x0 )0BlR (x0 )

NDh lN(MR 2mR ) dxGg 12l n

12l
h (MR 2mR ) v n R n21 .

3.1. Proof of theorem 3.

We also have

n �
BR (x0 )0BlR (x0 )

Hh l (MR 2mR ) dxF

Fn 2 ( inf
x�BR (x0 )

H) v n (MR 2mR ) y �
lR

Rg12
(11d 0 ) r

R
h r n21 drz

Fn 2 ( inf
x�BR (x0 )

H)(MR 2mR ) g 12l n

n
2

12l n11

n11
h v n R n .
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Since d 0 can be arbitrarily small, we obtain

(3.7) n �
BR (x0 )0BlR (x0 )

Hh l (MR 2mR ) dxF

Fn 2 ( inf
x�BR (x0 )

H)(MR 2mR ) g 12l n

n
2

12l n11

n11
h v n R n21 .

Moreover, we have

n �
BlR (x0 )

H(MR 2mR ) dxFn( inf
x�BR (x0 )

H)(MR 2mR ) l n v n R n .(3.8)

From (3.6), (3.7),(3.8) and (0.39), we obtain

�
BR (x0 )0BlR (x0 )

NDh lN(MR 2mR ) dx2

2n �
BR (x0 )0BlR (x0 )

Hh l (MR 2mR ) dx2n �
BlR (x0 )

H(MR 2mR ) dxG

G (MR 2mR ) v n R n21 Q

Q kg 12l n

12l
h2n 2 ( inf

x�BR (x0 )
H) R g 12l n

n
2

12l n11

n11
1l nhl4

4 (MR 2mR ) v n R n21 Q

Q g 12l n

12l
h k12n( inf

x�BR (x0 )
H) R(12l) g12

n

n11

12l n11

12ln
1

l n

12l n hl4

4 (MR 2mR ) v n R n21 Cl Q

Q k12 ( inf
x�BR (x0 )

H) R g n

n11
h (12l) g12

nl n

Cl

h2 ( inf
x�BR (x0 )

H) Rg nl n

Cl

hl4

4 (MR 2mR ) v n R n21 Cl Q

Q k12 ( inf
x�BR (x0 )

H)Rg n

n11
h(12l) g11

l n

Cl

h2n(infx�BR (x0 ) H)R
l n11

Cl

l.



Harnack’s inequalities for solutions etc. 85

Since there holds either MR 2mR G2(u(x1 )2mR ) or MR 2mR G

G2(MR 2u(x1 ) ), we have either

�
BR (x0 )0BlR (x0 )

NDh l N(u2mR ) dx2

2n �
BR (x0 )

Hh l (u2mR ) dxG2(u(x1 )2mR ) Cl C *l v n R n21 ,

or

�
BR (x0 )0BlR (x0 )

NDh lN(MR 2u) dx2

2n �
BR (x0 )

Hh l (MR 2u) dxG2(MR 2u(x1 ) ) Cl C *l v n R n21 .

where Cl and C *l are given respectively in (0.39) and (0.40). Inserting
these into (3.4) or (3.5), and subsequently insert what results in into (0.5)
or (0.6), we obtain (0.37) and (0.38).

Since there also holds either MR 2mR G2(u(x0 )2mR ) or MR 2

2mR G2(MR 2u(x0 ) ), we have, either

�
BR (x0 )0BlR (x0 )

NDh lN(u2mR ) dx2

2n �
BR (x0 )

Hh l (u2mR ) dxG2(u(x0 )2mR ) Cl C *l v n R n21 ,

or

�
BR (x0 )0BlR (x0 )

NDh lN(MR 2u) dx2

2n �
BR (x0 )

Hh l (MR 2u) dxG2(MR 2u(x0 ) ) Cl C *l v n R n21 .

Inserting these into (3.4) or (3.5), and subsequently insert what results
in into (0.5) or (0.6), we obtain (0.42) and (0.43) under the hypothesis of
(0.41).
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3.2. Proof of theorem 6.

Since there holds either MR 2mR G2(u(x1 )2mR ) or MR 2mR G

G2(MR 2u(x1 ) ), we obtain from (3.6) that either

�
BR (x0 )0BlR (x0 )

NDh lN(u(x0 )2mR ) dxG

G2 g 12l n

12l
h (u(x1 )2mR ) v n R n21 42Cl (u(x1 )2mR ) v n R n21 ,

or

�
BR (x0 )0BlR (x0 )

NDh lN(MR 2u(x0 ) ) dxG

G2 g 12l n

12l
h (u(x1 )2mR ) v n R n21 42Cl (MR 2u(x1 ) ) v n R n21 ,

Inserting these into (3.4) or (3.5), and subsequently insert what results
in into (0.5) or (0.6), we obtain (0.48) and (0.49).

Since there also holds either MR 2mR G2(u(x0 )2mR ) or MR 2

2mR G2(MR 2u(x0 ) ), we have, either

�
BR (x0 )0BlR (x0 )

NDh lN(u(x0 )2mR ) dxG

G2 g 12l n

12l
h (u(x0 )2mR ) v n R n21 42Cl (u(x0 )2mR ) v n R n21 ,

or

�
BR (x0 )0BlR (x0 )

NDh lN(MR 2u(x0 ) ) dxG

G2 g 12l n

12l
h (MR 2u(x0 ) ) v n R n21 42Cl (MR 2u(x0 ) ) v n R n21 .

Inserting these into (3.4) or (3.5), and subsequently insert what results
in into (0.5) or (0.6), we obtain (0.51) and (0.52) under the hypothesis of
(0.50).
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Appendix. Proof of Proposition 3 and Proposition 4..

The equation (0.1) is the Euler equation of the functional

F*(v) 4�
V

k11NDvN2dx1n�
V

�
0

v

H(x , t) dt dx .

And corresponding to the Dirichlet problem with boundary data c and
the capillarity problem with boundary contact angle u are the problems
of minimizing the respective functionals

F*(v)1 �
¯V

Nv2cNd Hn21

and

F*(v)1 �
¯V

( cos u) v d Hn21

among all v�BV (V), where Hk is the k-dimensional Hausdorff mea-
sure.

Alternatively, we consider the problem of minimizing the functional

F(v) 4�
V

k11NDuN2dx1�
V

�
0

v

H(x , t) dx dt1 �
¯V

k(x , v) d Hn21 ,

with

k(x , v) 4�
0

v

g(x , t) dt .

For the capillarity problem, we have

g(x , t) 4cos u

and

k(x , t) 4�
0

v

cos u dt .

For the Dirichlet problem, we have

g(x , t) 4122f C (x , t)
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and

k(x , u) 4Nu2 f (x)N2Nf (x)N .

Here and throughout this section, f V is the characteristic function of the
subgraph V of v:

f V (x , t) 4
.
/
´

1,

0 ,

if tEv(x),

if tFv(x).

M. Miranda [22] introduced the notion of generalized solutions for
the minimal surface equation and used it successively both in the Dirich-
let problem in infinite domains [22] and in the problem of removable sin-
gularities [23]. E. Giusti in [11] and [12] used the same notion of gen-
erailized solutions respectively in the problem of maximal domains for
the mean curvature equation and boundary value problems for the mean
curvature equation.

The idea of generalized solutions originates from the observation
that a function u : V O R is a solution of (0.1) in V if and only if its
subgraph

U4 ](x , t) �V3R , tEu(x)(

minimizes the functional

F*(U) 4 �
V3R

NDf UN1n �
V3R

Hf U dx dt

locally in V3R , in the sense that for every set V coinciding with U out-
side some compact set K%V3R , we have

�
K

NDf UN1n�
K

Hf U dx dtG�
K

NDf VN1n�
K

Hf V dx dt .

Moreover, a function u�BV (V) minimizes F in V if and only if its sub-
graph minimizes the functional

F(U) 4 �
V3R

NDf UN1n �
V3R

Hf U dx dt1 �
¯V3R

gf U d Hn .

Minimization is here to be understood in the following sense: for TD0,
set

QT 4V3 [2T , T] , dQT 4¯V3 [2T , T] ,
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and for U%Q ,

FT (U) 4 �
QT

NDf UN1n �
QT

Hf U dx dt2 �
dQT

gf U d Hn .

We say that U minimizes FT in QT if

FT (U) GFT (S)

for every Caccioppoli set S%QT . We say that U minimizes F in V3R if
U minimizes FT in QT for every TD0.

DEFINITION (Miranda[22]).
(1) A function u : V O [2Q , Q] is a generalized solution of the

equation (0.1) in V if its subgraph U minimizes the functional F* local-
ly in V3R.

(2) A function u : V O [2Q , Q] is a generalized solution for the
function F if its subgraph U minimizes F in Q.

We note that a generalized solution can take the values 6Q on a set
of positive n-dimensional Hausdorff measure. However, it follows from
Miranda [21] that if a generalized solution u(x) can be modified on a set
of zero n-dimensional Hausdo rff measure to be locally bounded, then
u(x) is a classical solution of (0.1) in V .

Proposition 5 below is derived in the proof of Theorem 1.1 of Giusti
[12]. The special case in Proposition 6 below where m41 and ¯V�C 2 are
shown by the proof of Theorem 3.2 of [12]. Proposition 6 is fully estab-
lished in Lemma 7.6 of Finn [3].

It is easy to see that Proposition 3 and Proposition 4 follow immedi-
ately from Proposition 5 and Proposition 6, together with a subsequent
consideration of U 8 instead of U .

PROPOSITION 5. Let U minimize F* locally in Q4V3R. If z0 4

4 (x0 , t0 ) is a point in Q and if for all rD0 we have

NUr (z0 )ND0 ,

then, there exist positive constants C0 and R0 , depending only on n and
inf

Q
H such that

NUr (z0 )NFC0 r n11 ,(A.1)
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for every rG min (R0 , dist (z0 , ¯Q) ), where we set

Ur (z0 ) 4UOCr (z0 ) ,

with

Cr (z0 ) 4 ]z4 (x , t) : Nx2x0NEr , Nt2 t0NEr( .

In particular, we can take

C0 4
1

4(n11) k(n11)

,(A.2)

and

R0 4

.
/
´

u 1

2nk(n) v n N inf
Q

H(x , t)N
v1/n

Q ,

if inf
Q

H(x , t) E0 ,

if inf
Q

H(x , t) F0 ,

(A.3)

where we denote k(m) the isoperimetric constant in Rm , mF1.

PROPOSITION 6. Suppose that there exist constants Q0 D0 and g×,
0 G g× E1, such that

g(x , t) F2g×, for all x�¯V and tDu 0 .

Suppose further that for some constant m , with mg× E1 and CV depend-
ing only on V , an inequality

�
¯V

NvNdxGm�
V

NDvNdx1CV�
V

NvNdx ,(A.4)

holds for all v�BV (V). Let U minimizes F in Q4V3R , and let z0 4

4 (x0 , t0 ), t0 Du 0 11, be a point of Q such that for every positive r

NUrND0 ,

where Ur is defined as in Proposition 1. Then there exist constants R1D0
and C1 D0 determined completely by n , inf

Q
H(x , t), g×, m and CV such

that

NUrNFC1 r n11 , for every rGR1 .(A.5)
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In particular, we can take

C1 4
12g×

16(n11) k(n11)

.(A.6)

and if inf
Q

H(x , t) F0,

R1 4 u Cg×*

CV k(n11) (2v n )1/(n11)
v ,(A.7)

where we set

Cg×*4 min g 1

2
,

12 (2m21) g×

3 g×11
h ;

if inf
Q

H(x , t) E0, we firstly take R×1 so small that

R×1 G u 12 (2m21) g×

2(m11) nk(n) v n N inf
Q

HN
Nv1/n

,

and then take

R1 4 min u C **g×

CV k(n11) (2v n )1/(n11)
, R×1v ,(A.8)

where we set

Cg×**4 min u 1

2
,

12 (2m21) g×2(m11) nk(n) N inf
Q

HNv n (R×1 )n

3 g×11
v .

We notice that Lemma 1.1 in Giusti [11] established (A.4) for m41 in
the special case that ¯V�C 2 and we have formulated this result as Lem-
ma 1 in 0.2 of our present work.

An inequality of the form (A.4) appears first in Emmer [2], with

m4k11L 2

for any Lipschitz domain with Lipschitz constant L . (See also [19, page
203]). On pages 141-143 of Finn [3], this result is extended to include do-
mains in which one or more corners with inward opening angle appear.
As pointed out on page 197 of [3], this extended result permits inward
cusps and even boundary segments that may physically coincide but are
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adjacent to different parts of V . However, it is pointed out on page 143 of
[3] that an outward cusp or a vertex of an outwa rd corner is not
permitted.

We end this section with a sketch of the reasoning in [3] and [12]
which leads to Propositions 5 and 6, mainly for the purpose of unifying
the notation designations in [3] and [12]. Indeed, from comparing the
values of the functionals F* and F taken by U with those taken by U0Cr ,
we obtain

�
Cr

NDf UN1n�
Cr

Hf U dx dtG �
¯Cr

f U d Hn , if rEdist (z0 , ¯Q) ,

and

�
QOCr

NDf UN1n �
QOCr

Hf U dx dt1

1 �
¯QOCr

gf U d Hn G �
¯Cr

f U d Hn , if rFdist (z0 , ¯Q) .

Since

�
Q

NDf Ur
N4�

Cr

NDf UN1 �
¯Cr

f U d Hn

for almost all r , the previous two inequalities lead respectively to

(A.9) �NDf Ur
N1n�Hf Ur

dx dtG2 �
¯Cr

f U d Hn , if rEdist (z0 , ¯Q) ,

and

(A.10) �
Q

NDf Ur
N1n�

Q

Hf Ur
dx dt1

1 �
¯Q

gf Ur
d Hn G2 �

¯Cr

f U d Hn , if rFdist (z0 , ¯Q) .

Setting

H0
2 (x) 4 min (inf

t
H(x , t), 0 ) ,
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the curvature term can be estimated as follows:

(A.11) �Hf Ur
dx dtF�

Q

H 2
0 f Ur

dx dt

F2VH 2
0 Vn , Br (x0 ) �

t02r

t01r

NCrN
12

1

n dt , by Hölder8 s inequality

F2k(n) VH 2
0 Vn , Br (x0 ) �

t02r

t01r

g�NDf Cr
Nh dt , by the isoperimetric inequality

F2k(n) VH 2
0 Vn , Br (x0 )�NDf Ur

N .

Inserting this into (A.9), we obtain, if rEdist (z0 , ¯Q),

(12nk(n) VH 2
0 Vn , Br (x0 ) )�NDf Ur

NG2 �
¯Cr

f U d Hn ,(A.12)

which yields

d

dr
NUrN4 �

¯Cr

f U d Hn

F
1

2
(12nk(n) VH 2

0 Vn , Br (x0 ) )�NDf Ur
N

F
12nk(n) VH 2

0 Vn , BR (x0 )

2k(n11)

NUrN
n

n11 ,

again by the isoperimetric inequality ,

F
1

4k(n11)

NUrN
n

n11 ,

if we choose r so small that VH 2
0 Vn , BR (x0 ) G

1

2nk(n)

This leads to the estimate (A.1) with C0 taken as in (A.2), whenever rE

E min (R0 , dist (z0 , ¯Q) ), with R0 given in (A.3).
In case rFdist (z0 , ¯Q), we have to handle the third term on the right
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hand side of (A.10). By (A.4) and the isoperimetric inequality,

�
¯Q

f Ur
d HnGm�

Q

NDf Ur
N1CV NUrN

Gm�
Q

NDf Ur
N1CV k(n11) NUrN

1

n11 �NDf Ur
N .

Since we have

�NDf Ur
Nd Hn 4�

Q

NDf Ur
N1 �

¯Q

f Ur
d Hn ,

the last inequality leads to

(A.13) �
¯Q

f Ur
d Hn G

m1CV k( n11) NUrN
1

n11

12CV k( n11) NUrN
1

n11

�
Q

NDf Ur
NG

G
m1CV k(n11) NCrN

1

n11

12CV k(n11) NCrN
1

n11

�
Q

NDf Ur
N ,

if r is so small that

CV k(n11) NCr N
1

n11 G
1

2
.(A.14)

This and the last identity yield

�NDf Ur
Nd Hn G

m11

12CV k(n11) NCrN
1

n11

�
Q

NDf Ur
N .(A.15)

From (A.11), (A.13) and (A.15), we obtain

(A.16) n�
Q

Hf Ur
dx dt1�

¯Q

gf Ur
d Hn F

F2{g×
m1CV k(n11) NCrN

1

n11

12CV k(n11) NCrN
1

n11

1
(m11) nk(n) VH 2

0 Vn , Br (x0 )

12CV k(n11) NCrN
1

n11

} �
Q

NDf Ur
N .

Choosing r so small that (A.7) is satisfied if inf
Q

HF0 and (A.8) is satis-

fied if inf
Q

HE0, we know that (A.14) is satisfied and the right hand side
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of (A.16) is bounded below by g2 (11g×)

2
hs

Q
NDf Ur

N . Inserting this into
(A.10), we obtain

�
¯Cr

f U d Hn F
12g×

4
�

Q

NDf Ur
N .(A.17)

From this, (A.14), (A.15) and the isoperimetric inequality, we obtain

d

dr
NUrN4 �

¯Cr

f U d Hn F
12g×

16
�NDf Ur

NF
12g×

16

1

k(n11)

NUrN
n

n11 .

This leads to the estimate (A.5) with C1 taken as in (A.6) and completes
the proof of Proposition 6.
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