Multiple Solutions of a Nonlinear Elliptic Equation Involving Neumann Conditions and a Critical Sobolev Exponent.

J. Chabrowski (*) - Jianfu Yang (**)

Abstract - In this paper we prove the existence of two solutions of the nonhomogeneous Neumann problem (1.1) involving a critical Sobolev exponent. It is assumed that the coefficient Q is positive and smooth on Ω and $\lambda>0$ is a parameter which does not belong to the spectrum of $-\Delta$. We examine the common effect of the mean curvature of the boundary $\partial \Omega$ and the shape of the graph of the coefficient Q on the existence of a second solution.

1. Introduction.

In this paper, we study the existence of multiple solutions of the superlinear problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda u+Q(x) u_{+}^{2^{*}-1}+f(x) \quad \text { in } \Omega \tag{1.1}\\
\frac{\partial}{\partial v} u(x)=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $2^{*}=\frac{2 N}{N-2}, N \geqslant 3$ is the critical Sobolev exponent, $\lambda \geqslant 0$ is a parameter and $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with a smooth boundary
(*) Department of Mathematics, University of Queensland, St. Lucia, Brisbane Qld 4072, Australia.
(**) Institute of Physics and Mathematics, Chinese Academy of Science, P.O. Box 71010, Wuhan 430071, P.R. of China.
$\partial \Omega$. We assume that the coefficient Q is smooth and positive on $\bar{\Omega}$ and $f \in L^{r}(\Omega)$ with $r>N$. We use the notation $u_{+}=\max (u, 0)$.

This problem belongs to a class of problems referred to as the Ambro-setti-Prodi type. More precisely, in the case of the Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=g(u)+f(x) \quad \text { in } \Omega, \\
u \quad=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

the limits

$$
g_{-}=\lim _{s \rightarrow-\infty} \frac{g(s)}{s} \quad \text { and } \quad g_{+}=\lim _{s \rightarrow \infty} \frac{g(s)}{s}
$$

play an important role. We can basically distinguish three types of problems using the location of g_{-}and g_{+}with respect to the spectrum of the operator $-\Delta$ with the Dirichlet boundary conditions. Denoting by $\left\{\lambda_{k}\right\}$ the sequence of the eigenvalues of $-\Delta$ with the Dirichlet boundary conditions, the following types of problems have been considered:
(I) $-\infty \leqslant g_{-}<\lambda_{1}<g_{+} \leqslant+\infty$,
(II) g_{-}and g_{+}are both finite and the interval $\left(g_{-}, g_{+}\right)$contains an eigenvalue. In this case the problem is asymptotically linear,
(III) g_{-}lies between two consecutive eigenvalues and $g_{+}=+\infty$.

We refer to the paper [12] where the extensive bibliography concerning these problems can be found. We point out here that conditions (I) and (III) cover the cases of subcritical, critical and supercritical growth for g. In the case of the Neumann problem the literature is rather scarce. In this paper we consider the nonlinear Neumann problem of type (III) with the nonlinearity of one-sided critical growth. We follow some ideas from [12], which considered a similar problem with the Dirichlet boundary conditions. First we consider the case $\lambda>0$. The case $\lambda=0$ will be treated separately.

Problem (1.1) may have constant solutions in contrast to the Dirichlet problem. We now discuss a number of conditions guaranteeing that a positive solution of (1.1) is not constant. If for some $\lambda>0$ and a constant $c>0$, the functions Q and f satisfy the equation

$$
\begin{equation*}
\lambda c+Q(x) c^{2^{*}-1}+f(x)=0 \tag{*}
\end{equation*}
$$

for every $x \in \Omega$, then $u=c$ is a solution of (1.1). If f and Q are differentiable on some open subset of Ω then the following condition
(a) $\nabla f(\bar{x})$ is not parallel to $\nabla Q(\bar{x})$ for some $\bar{x} \in \Omega$
ensures that a positive solution of (1.1) is not constant. If f and Q are not differentiable we can proceed as follows. Integrating the equation (*) we get
(**)

$$
\lambda c|\Omega|+c^{2^{*}-1} \int_{\Omega} Q(x) d x+\int_{\Omega} f(x) d x=0
$$

where $|\Omega|$ denotes the Lebesgue measure of Ω. From (*) and (**) we derive the equation

$$
c^{2^{*}-1}\left(Q(x)|\Omega|-\int_{\Omega} Q(x) d x\right)+\left(f(x)|\Omega|-\int_{\Omega} f(x) d x\right)=0
$$

We immediately obtain a contradiction if
(b) either $Q(x)=$ const and $f(x) \neq$ const, or $Q(x) \neq$ const and $f(x)=$ const .

If both functions $Q(x)$ and $f(x)$ are not constant we define a set

$$
\Omega_{0}=\left\{x ; \frac{1}{|\Omega|_{\Omega}} \int_{\Omega} Q(x) d x=Q(x)\right\}
$$

which is nonempty. Then a positive solution cannot be constant if
(c) either $f(x)=\frac{1}{|\Omega|} \int_{\Omega} f(x) d x$ for all $x \in \Omega-\Omega_{0}$, or $f(x) \neq$ $\neq \frac{1}{|\Omega|} \int_{\Omega} f(x) d x$ for some $x \in \Omega_{0}$.

Finally, if (c) does not hold we require
(d) the ratio

$$
\frac{f(x)|\Omega|-\int_{\Omega} f(x) d x}{\int_{\Omega} Q(x) d x-Q(x)|\Omega|}
$$

is either not constant on $\Omega-\Omega_{0}$, or it is constant and nonpositive on $\Omega-\Omega_{0}$.

Therefore one of these conditions will be assumed throughout this work.

We assume that $f(x)=t+h(x)$, where t is a constant and $h \in L^{r}(\Omega)$ with $r>N$. We start by finding a negative solution of (1.1). We denote by $\lambda_{1}=0<\lambda_{2}<\ldots$ the sequence of eigenvalues for $-\Delta$ with the Neumann boundary conditions. The first eigenvalue is simple and has constant eigenfunctions.

Let $\lambda \neq \lambda_{k}$ for every k. Then there exists a unique solution $u_{0} \in$ $\in H^{1}(\Omega) \cap L^{\infty}(\Omega)$ of the problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda u+h(x) \quad \text { in } \Omega \\
\frac{\partial u}{\partial v}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

The function $u_{t}=-\frac{t}{\lambda}+u_{0}$, with $t>\lambda \sup _{\Omega}\left|u_{0}(x)\right|$ is negative and satisfies (1.1). We look for a second solution of the form $u=v+u_{t}$, where v satisfies

$$
\left\{\begin{array}{l}
-\Delta v=\lambda v+Q(x)\left(v+u_{t}\right)_{+}^{2^{*}-1} \quad \text { in } \Omega \tag{1.2}\\
\frac{\partial v}{\partial v}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

Problem (1.2) will be solved through the min-max based on a topological linking. To this end, we define a variational functional

$$
J(v)=\frac{1}{2} \int_{\Omega}\left(|\nabla v|^{2}-\lambda v^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(v+u_{t}\right)_{+}^{2^{*}} d x
$$

for $v \in H^{1}(\Omega)$. In the next section we examine Palais-Smale sequences for J. In particular, we find the energy level of the functional J below which the Palais-Smale condition holds. In Section 3 we verify that the functional J has the geometry of a topological linking. Conditions guaranteeing the existence of critical points of J will be given in Sections 4 and 5 . The existence results of this section depend on a relation between $Q_{m}=\max _{x \in \partial \Omega} Q(x)$ and $Q_{M}=\max _{x \in \bar{\Omega}} Q(x)$. Section 6 is devoted to the case $\lambda=0$. The existence of a critical point in this case is obtained through the implicit function theorem. The distinction of two cases involving the quantities Q_{M} and Q_{m} envisaged in Section 4 disappears in the case $\lambda=0$.

2. The Palais-Smale condition.

We need two quantities:

$$
Q_{m}=\max _{x \in \partial \Omega} Q(x) \quad \text { and } \quad Q_{M}=\max _{x \in \bar{\Omega}} Q(x) .
$$

We set

$$
S_{\infty}=\min \left(\frac{S^{N / 2}}{N Q_{M}^{(N-2) / 2}}, \frac{S^{N / 2}}{2 N Q_{m}^{(N-2) / 2}}\right)
$$

where S denotes the best Sobolev constant, that is,

$$
S=\inf _{u \in D^{1,2}\left(\mathbb{R}^{N}\right)-\{0\}} \frac{\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{N}}|u(x)|^{2^{*}} d x\right)^{2 / 2^{*}}} .
$$

Here $D^{1,2}\left(\mathbb{R}^{N}\right)$ denotes a Sobolev space obtained as the completion of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with respect to the norm

$$
\|u\|_{D^{1,2}\left(\mathbb{R}^{N}\right)}^{2}=\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x
$$

In what follows, $\|\cdot\|$ denotes the norm in $H^{1}(\Omega)$, which is given by

$$
\|u\|^{2}=\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x
$$

In this paper we frequently use the Sobolev inequality:

$$
\left(\int_{\Omega}|u|^{2^{*}} d x\right)^{2 / 2^{*}} \leqslant C_{s} \int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x
$$

for all $u \in H^{1}(\Omega)$, where $C_{s}>0$ is a constant.
Proposition 2.1. Let $\lambda_{k}<\lambda<\lambda_{k+1}$. If

$$
J\left(u_{n}\right) \rightarrow c<S_{\infty} \quad \text { and } \quad J^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in } \quad H^{-1}(\Omega)
$$

then $\left\{u_{n}\right\}$ is relatively compact in $H^{1}(\Omega)$.
Proof. We commence by showing that $\left\{u_{m}\right\}$ is bounded in $H^{1}(\Omega)$. We write

$$
u_{n}=u_{n}^{-}+u_{n}^{+}, \quad u_{n}^{-} \in E^{-} \quad \text { and } \quad u_{n}^{+} \in E^{+}
$$

where

$$
E^{-}=\text {span of all eigenfunctions corresponding to } \lambda_{1}, \ldots, \lambda_{k},
$$

and $E^{+}=\left(E^{-}\right)^{\perp}$. If $\phi \in H^{1}(\Omega)$, then
(2.1) $\int_{\Omega} \nabla u_{n} \nabla \phi d x-\lambda \int_{\Omega} u_{n} \phi d x=\int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}-1} \phi d x+\varepsilon_{n}\|\phi\|$
with $\varepsilon_{n} \rightarrow 0$. Taking $\phi=u_{n}{ }^{+}$, we get

$$
\int_{\Omega}\left|\nabla u_{n}^{+}\right|^{2}-\lambda \int_{\Omega}\left(u_{n}^{+}\right)^{2}=\int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}-1} u_{n}^{+} d x+\varepsilon_{n}\left\|u_{n}^{+}\right\|
$$

Let $\delta>0$ be such that $\lambda+\delta<\lambda_{k+1}$. Then

$$
\begin{align*}
\left(1-\frac{\lambda+\delta}{\lambda_{k+1}}\right) \int_{\Omega}\left|\nabla u_{n}^{+}\right|^{2} d x & +\delta \int_{\Omega}\left(u_{n}^{+}\right)^{2} d x \leqslant \tag{2.2}\\
& \leqslant \int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}-1} u_{n}^{+} d x+\varepsilon_{n}\left\|u_{n}^{+}\right\|
\end{align*}
$$

We now use (2.1) with $\phi=u_{n}^{-}$and let $\delta_{1}>0$ be such that $\lambda-\delta_{1}>\lambda_{k}$. Then

$$
\begin{align*}
& \left(\frac{\lambda-\delta_{1}}{\lambda_{k}}-1\right) \int_{\Omega}\left|\nabla u_{n}^{-}\right|^{2} d x+\delta_{1} \int_{\Omega}\left(u_{n}^{-}\right)^{2} d x \leqslant \tag{2.3}\\
& \\
& \leqslant-\int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}-1} u_{n}^{-} d x+\varepsilon_{n}\left\|u_{n}^{-}\right\|
\end{align*}
$$

On the other hand for $n \geqslant n_{0}$, we can write

$$
\begin{aligned}
c & +\varepsilon_{n}\left\|u_{n}\right\|+1 \geqslant J\left(u_{n}\right)-\frac{1}{2}\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& =\frac{1}{2} \int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}-1} u_{n} d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}} d x \\
& =\frac{1}{N} \int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}} d x-\frac{1}{2} \int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}-1} u_{t} d x \\
& \geqslant \frac{1}{N} \int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}} d x
\end{aligned}
$$

Applying the Young inequality, we deduce from (2.2) and the above
estimate that for $\eta>0$ we have

$$
\begin{align*}
& \text { 2.4) }\left(1-\frac{\lambda+\delta}{\lambda_{k+1}}\right) \int_{\Omega}\left|\nabla u_{n}^{+}\right|^{2} d x+\delta \int_{\Omega}\left(u_{n}^{+}\right)^{2} d x \leqslant \tag{2.4}\\
& \leqslant \int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}-1} u_{n}^{+} d x+\varepsilon_{n}\left\|u_{n}^{+}\right\| \leqslant \\
& \leqslant \eta\left(\int_{\Omega} Q(x)\left|u_{n}^{+}\right|^{2^{*}} d x\right)^{2 / 2^{*}}+C_{\eta}\left(\int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}} d x\right)^{2\left(2^{*}-1\right) / 2^{*}} d x+\varepsilon_{n}\left\|u_{n}^{+}\right\| \\
& \leqslant C_{s} Q_{M}^{2 / 2^{*}} \eta\left\|u_{n}^{+}\right\|^{2}+C_{1}\left(\int_{\Omega}\left(u_{n}+u_{t}\right)_{+}^{2^{*}} d x\right)^{(N+2) / N}+\varepsilon_{n}\left\|u_{n}^{+}\right\| \\
& \leqslant C_{s} Q_{M}^{2 / 2^{*}} \eta\left\|u_{n}^{+}\right\|^{2}+C_{1}\left\|u_{n}\right\|^{(N+2) / N}+C_{2}\left\|u_{n}^{+}\right\|+C_{3}
\end{align*}
$$

for some constants $C_{1}>0, C_{2}>0$ and $C_{3}>0$. In a similar way, we obtain

$$
\begin{align*}
& \left(\frac{\lambda-\delta_{1}}{\lambda_{k}}-1\right) \int_{\Omega}\left|\nabla u_{n}^{-}\right|^{2} d x+\delta_{1} \int_{\Omega}\left(u_{n}^{-}\right)^{2} d x \leqslant \tag{2.5}\\
& \quad \leqslant C_{s} Q_{M}^{2 / 2^{*}} \eta\left\|u_{n}^{-}\right\|^{2}+C_{4}\left(\left\|u_{n}\right\|^{(N+2) / N}+\left\|u_{n}^{-}\right\|+1\right)
\end{align*}
$$

for some constant $C_{4}>0$. Estimates (2.4) and (2.5) imply that $\left\{u_{n}\right\}$ is bounded in $H^{1}(\Omega)$. We may therefore assume that $u_{n} \rightharpoonup u$ in $H^{1}(\Omega)$. By the concentration-compactness principle there exist sequences of points $\left\{x_{j}\right\} \subset \mathbb{R}^{N}$, sequences of numbers $\left\{v_{j}\right\}$ and $\left\{\mu_{j}\right\}$ such that

$$
\left|u_{n}\right|^{2^{*} *} \stackrel{*}{\rightharpoonup}|u|^{2^{*}}+\sum_{j} v_{j} \delta_{x_{j}}
$$

and

$$
\left|\nabla u_{n}\right|^{2} \stackrel{*}{\rightharpoonup}|\nabla u|^{2}+\sum_{j} \mu_{j} \delta_{x_{j}}
$$

in the sense of measures, where

$$
S v_{j}^{2 / 2^{*}} \leqslant \mu_{j} \quad \text { if } x_{j} \in \Omega
$$

and

$$
\frac{S v_{j}^{2 / 2^{*}}}{2^{2 / N}} \leqslant \mu_{j} \quad \text { if } x_{j} \in \partial \Omega
$$

Fix x_{j}. Let $\left\{\phi_{\delta}\right\}$ be a family of smooth and positive functions concentrating at x_{j} as $\delta \rightarrow 0$. Then using the Brézis-Lieb Lemma, we obtain

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{n}\right|^{2} \phi_{\delta} d x & +\int_{\Omega} \nabla u_{n} u_{n} \nabla \phi_{\delta} d x+\lambda \int_{\Omega} u_{n}^{2} \phi_{\delta} d x \\
& =\int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}-1} u_{n} \phi_{\delta} d x+o(1) \\
& =\int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}} \phi_{\delta} d x-\int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}-1} u_{t} \phi_{\delta} d x+o(1) \\
& \leqslant \int_{\Omega} Q(x)\left|u_{n}+u_{t}\right|^{2^{*}} \phi_{\delta} d x-\int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}-1} u_{t} \phi_{\delta} d x+o(1) \\
& =\int_{\Omega} Q(x)\left|u_{n}\right|^{2^{*}} \phi_{\delta} d x-\int_{\Omega} Q(x)|u|^{2^{*}} \phi_{\delta} d x+\int_{\Omega} Q(x)\left|u+u_{t}\right|^{2^{*}} \phi_{\delta} d x \\
& -\int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*-1}} u_{t} \phi_{\delta} d x+o(1)
\end{aligned}
$$

Letting $n \rightarrow \infty$ and then $\delta \rightarrow 0$ we deduce that in both cases $x_{j} \in \partial \Omega$ and $x_{j} \in \Omega$,

$$
\mu_{j} \leqslant Q\left(x_{j}\right) v_{j}
$$

If $\mu_{j}>0$ for some x_{j}, then

$$
\mu_{j} \geqslant \frac{S^{N / 2}}{Q\left(x_{j}\right)^{(N-2) / 2}} \quad \text { if } x_{j} \in \Omega \text { and } \mu_{j} \geqslant \frac{S^{N / 2}}{2 Q\left(x_{j}\right)^{(N-2) / 2}} \text { if } x_{j} \in \partial \Omega
$$

We now write

$$
\begin{aligned}
J\left(u_{n}\right) & -\frac{1}{2^{*}}\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& =\frac{1}{N} \int_{\Omega}\left(\left|\nabla u_{n}\right|^{2}-\lambda u_{n}^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}} d x \\
& +\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}-1} u_{n}+o(1) \\
& =\frac{1}{N} \int_{\Omega}\left(\left|\nabla u_{n}\right|^{2}-\lambda u_{n}^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}-1} u_{t} d x+o(1) \\
& \geqslant \frac{1}{N} \int_{\Omega}\left(\left|\nabla u_{n}\right|^{2}-\lambda u_{n}^{2}\right) d x+o(1)
\end{aligned}
$$

Since u is a solution of (1.1) we also have

$$
\begin{array}{rl}
\int_{\Omega}\left(|\nabla u|^{2}-\lambda u^{2}\right) d x=\int_{\Omega} Q(x)\left(u+u_{t}\right)_{+}^{2^{*}-1} u & d x= \\
& =\int_{\Omega} Q(x)\left(u+u_{t}\right)_{+}^{2^{*-1}} u_{+} d x \geqslant 0 .
\end{array}
$$

We aim to show that $\mu_{j}=0$ for every j. If not, the concentration-compactness principle implies that

$$
c \geqslant \frac{1}{N} \int_{\Omega}\left(|\nabla u|^{2}-\lambda u^{2}\right) d x+\frac{1}{N} \sum_{j} \mu_{j} \geqslant \frac{1}{N} \sum_{j} \mu_{j}
$$

If $\mu_{j}>0$ for some j with $x_{j} \in \partial \Omega$, then

$$
c \geqslant \frac{1}{2 N} \frac{S^{N / 2}}{Q\left(x_{j}\right)^{(N-2) / 2}} \geqslant \frac{1}{2 N} \frac{S^{N / 2}}{Q_{m}^{(N-2) / 2}}
$$

This is obviously impossible. Similarly if $\mu_{j}>0$ for some j with $x_{j} \in \Omega$. Thus

$$
\int_{\Omega} Q(x)\left(u_{n}+u_{t}\right)_{+}^{2^{*}} d x \rightarrow \int_{\Omega} Q(x)\left(u+u_{t}\right)_{+}^{2^{*}} d x
$$

and also

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x \rightarrow \int_{\Omega}|\nabla u|^{2} d x
$$

and the result follows.

3. Topological linking.

We assume that $\lambda \in\left(\lambda_{k}, \lambda_{k+1}\right)$. Let

$$
E^{-}=\operatorname{span}\left\{e_{1}, \ldots, e_{l}\right\},
$$

where e_{1}, \ldots, e_{l} are eigenfunctions corresponding to $\lambda_{1}, \ldots, \lambda_{k}$. We set $E^{+}=\left(E^{-}\right)^{\perp}$. Let

$$
S_{\varrho}=\partial B_{\varrho} \cap E^{+} \text {and } D=[0, R e] \oplus\left(B_{r} \cap E^{-}\right), \quad e \in E^{+}
$$

where B_{r} denotes the ball of radius r with centre at 0 . To apply a topological linking we need to verify that

$$
\begin{gathered}
\left.J\right|_{S_{Q}} \geqslant \alpha>0, \quad \varrho<R \\
\left.J\right|_{\partial D}<\alpha \quad \text { and } \quad \max _{u \in D} J(u)<S_{\infty} .
\end{gathered}
$$

Lemma 3.1. There exist $\varrho_{0}>0$ and $\alpha:\left(0, \varrho_{0}\right] \rightarrow(0, \infty)$ such that

$$
J(u) \geqslant \alpha(\varrho) \quad \text { for every } \quad v \in S_{\varrho} .
$$

Proof. We choose $\eta>0$ so that $\lambda_{k}<\lambda+\eta<\lambda_{k+1}$. Then

$$
\int_{\Omega}|\nabla u|^{2} d x \geqslant \lambda_{k+1} \int_{\Omega} u^{2} d x
$$

for every $u \in E^{+}$. Since $u_{t}<0$ on Ω, we have

$$
\begin{aligned}
J(u) & \geqslant \int_{\Omega}\left(1-\frac{\lambda+\eta}{\lambda_{k+1}}\right)|\nabla u|^{2} d x+\eta \int_{\Omega} u^{2} d x-C_{s}^{-2^{* / 2}} Q_{M}\left(\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x\right)^{2^{* / 2}} \\
& \geqslant \beta \int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x-C_{s}^{-2^{* / 2}} Q_{M}\left(\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x\right)^{2^{* / 2}}
\end{aligned}
$$

where

$$
\beta=\min \left(1-\frac{\lambda+\eta}{\lambda_{k+1}}, \eta\right)
$$

Letting $\varrho=\|u\|$ we obtain the following estimate

$$
J(u) \geqslant \beta \varrho^{2}-C_{s}^{-2^{* / 2}} Q_{M} \varrho^{2^{*}}
$$

To complete the proof we set

$$
\alpha(\varrho)=\beta \varrho^{2}-C_{s}^{-2^{*} / 2} Q_{M} \varrho^{2^{*}}
$$

with $\varrho_{0}>0$ such that $\varrho_{0}^{2}-C_{s}^{-2^{*} / 2} Q_{M} \varrho_{0}^{2^{*}}>0$.
From now on, we use the instanton

$$
U_{\varepsilon}(x)=\frac{c_{N} \varepsilon^{(N-2) / 2}}{\left(\varepsilon^{2}+|x|^{2}\right)^{N-2 / 2}}
$$

in the definition of the set D, where $c_{N}>0$ is a constant and we set $e_{\varepsilon}=P^{+} U_{\varepsilon}$. It is well-known that $U=U_{1}$ satisfies the equation

$$
-\Delta U=U^{2^{*-1}} \quad \text { in } \mathbb{R}^{N}
$$

and moreover

$$
\int_{\mathbb{R}^{N}}|\nabla U|^{2} d x=\int_{\mathbb{R}^{N}} U^{2^{*}} d x=S^{N / 2}
$$

With the choice of $e=e_{\varepsilon}$ we verify the remaining conditions of the topological linking. Without loss of generality we may assume in Lemma 3.2 below that $0 \in \Omega$.

Lemma 3.2. There exist $r_{0}>0, R_{0}>0$ and $\varepsilon_{0}>0$ such that for $r \geqslant r_{0}, R \geqslant R_{0}$ and $0<\varepsilon \leqslant \varepsilon_{0}$ we have

$$
J(u)<\alpha \text { for every } u \in \partial D
$$

Proof. We set

$$
\partial D=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}
$$

where

$$
\begin{gathered}
\Gamma_{1}=\bar{B}_{r} \cap E^{-}, \\
\Gamma_{2}=\left\{v \in H^{1}(\Omega) ; v=w+s e_{\varepsilon}, w \in E^{-},\|w\|=r, 0 \leqslant s \leqslant R\right\} \\
\Gamma_{3}=\left\{v \in H^{1}(\Omega) ; v=w+R e_{\varepsilon}, w \in E^{-} \cap B_{r}\right\} .
\end{gathered}
$$

For $v \in E^{-}$we have

$$
\int_{\Omega}|\nabla v|^{2} d x \leqslant \lambda_{k} \int_{\Omega} v^{2} d x
$$

and

$$
J(v) \leqslant \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k}}\right) \int_{\Omega}|\nabla v|^{2} d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(v+u_{t}\right)^{2^{*}} d x \leqslant 0
$$

We now consider Γ_{2}. Let $v \in \Gamma_{2}$ and define

$$
\delta^{2}=\sup _{0<\varepsilon \leqslant 1} \int_{\Omega}\left|\nabla e_{\varepsilon}\right|^{2} d x
$$

Let $r^{2}=\|\nabla w\|^{2}$ and choose $\eta_{1}>0$ so that $\lambda_{k}<\lambda-\eta_{1}$. Then for $v=w+$ $+s e_{\varepsilon}$ we have

$$
\begin{aligned}
J(v) & \leqslant \frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\frac{\lambda}{2} \int_{\Omega} v^{2} d x \\
& \leqslant \frac{1}{2} \int_{\Omega}|\nabla w|^{2} d x-\frac{\lambda}{2} \int_{\Omega} w^{2} d x+\frac{s^{2}}{2} \int_{\Omega}\left|\nabla e_{\varepsilon}\right|^{2} d x \\
& \leqslant \frac{1}{2}\left(1-\frac{\lambda-\eta_{1}}{\lambda_{k}}\right) \int_{\Omega}|\nabla w|^{2} d x-\frac{\eta_{1}}{2} \int_{\Omega} w^{2} d x+\frac{s^{2}}{2} \int_{\Omega}\left|\nabla e_{\varepsilon}\right|^{2} d x .
\end{aligned}
$$

Let $\eta_{2}=\max \left(1-\frac{\lambda-\eta_{1}}{\lambda_{k}},-\frac{\eta_{1}}{2}\right)<0$. We then have

$$
J(v) \leqslant \eta_{2} r^{2}+\frac{s^{2}}{2} \int_{\Omega}\left|\nabla e_{\varepsilon}\right|^{2} d x
$$

We set $s_{0}=\frac{\sqrt{2 \alpha}}{\delta}$. Then $J(v) \leqslant \alpha$ for $0 \leqslant s \leqslant s_{0}$. We now consider the
case $s>s_{0}$. Put

$$
K=\sup \left\{\left\|\frac{w+u_{t}}{s}\right\|_{\infty} ; s_{0} \leqslant s \leqslant R,\|w\|=r, w \in E^{-}\right\}
$$

We now estimate $P^{-} U_{\varepsilon}$. Let

$$
P^{-} U_{\varepsilon}=\sum_{j=1}^{l} \alpha_{j} e_{j}, \quad \alpha_{j}=\int_{\Omega} U_{\varepsilon} e_{j}(x) d x
$$

Since the first eigenfunction corresponding to $\lambda=0$ is constant, we see that $P^{-} U_{\varepsilon} \not \equiv 0$. Hence

$$
\begin{aligned}
\left\|P^{-} U_{\varepsilon}\right\|_{2}^{2} & =\sum_{j=1}^{l} \alpha_{j}^{2}=\sum_{j=1}^{l}\left(\int_{\Omega} U_{\varepsilon} e_{j} d x\right)^{2} \\
& \leqslant \sum_{j=1}^{l}\left\|e_{j}\right\|_{\infty}^{2}\left\|U_{\varepsilon}\right\|_{1}^{2} \leqslant C \varepsilon^{N-2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
P^{+} U_{\varepsilon}(0) & =U_{\varepsilon}(0)-P^{-} U_{\varepsilon}(0) \\
& \geqslant C \varepsilon^{-(N-2) / 2}-\left\|P^{-} U_{\varepsilon}\right\|_{\infty} \geqslant C \varepsilon^{-(N-2) / 2}
\end{aligned}
$$

By the continuity of $P^{+} U_{\varepsilon}$ there exists a $\delta=\delta(K)$ such that

$$
B_{\delta}(0) \subset\left\{x \in \Omega ; P^{+} U_{\varepsilon}(x)>K\right\} .
$$

We also need the following inequality: if $\omega \subset \Omega$ and $u+v>0$ on ω, then

$$
\left.\left|\int_{\omega}(u+v)^{p} d x-\int_{\omega}\right| u\right|^{p} d x-\int_{\omega}|v|^{p} d x \mid \leqslant C \int_{\omega}\left(|u|^{p-1}|v|+|u||v|^{p-1}\right) d x
$$

where $C=C(p)$. We apply this estimate with $\omega=\Omega_{\varepsilon}$, where

$$
\Omega_{\varepsilon}=\left\{x \in \Omega ; P^{+} U_{\varepsilon}(x)>K\right\}
$$

Letting $Q_{*}=\min _{x \in \Omega} Q(x)$ we get

$$
\begin{aligned}
\int_{\Omega} Q(x)\left(\frac{w+u_{t}}{s}+e_{\varepsilon}\right)_{+}^{2^{*}} d x & \geqslant Q_{*} \int_{\Omega_{\varepsilon}}\left(e_{\varepsilon}+\frac{w+u_{t}}{s}\right)_{+}^{2^{*}} d x \\
& \geqslant Q_{*}\left(\int_{\Omega_{\varepsilon}}\left|e_{\varepsilon}\right|^{2^{*}} d x+\int_{\Omega_{\varepsilon}}\left|\frac{w+u_{t}}{s}\right|^{2^{*}} d x\right. \\
& \left.-C \int_{\Omega_{\varepsilon}}\left(\left|e_{\varepsilon}\right|^{2^{*}-1}\left|\frac{w+u_{t}}{s}\right|+\left|e_{\varepsilon}\right|\left|\frac{w+u_{t}}{s}\right|^{2^{*}-1}\right) d x\right) \\
& \geqslant Q_{*}\left(\int_{\Omega_{1}}\left|e_{\varepsilon}\right|^{2^{*}} d x+\int_{\Omega_{\varepsilon}}\left|\frac{w+u_{t}}{s}\right|^{2^{*}} d x\right) \\
& -C_{1}\left(\left\|e_{\varepsilon}\right\|_{L^{2^{*}-1}\left(\Omega_{\varepsilon}\right)}^{2^{*}-1}+\left\|e_{\varepsilon}\right\|_{L^{1}\left(\Omega_{\varepsilon}\right)}\right) .
\end{aligned}
$$

Since

$$
\left\|P^{+} U_{\varepsilon}\right\|_{L^{2^{*}-1}}^{2^{*}-1} \leqslant C \varepsilon^{\frac{N-2}{2}} \quad \text { and } \quad\left\|P^{+} U_{\varepsilon}\right\|_{L^{1}} \leqslant C \varepsilon^{\frac{N-2}{2}}
$$

we deduce from the previous estimate that

$$
\begin{aligned}
J(v) & \leqslant \eta_{2} r^{2}+\frac{s^{2}}{2} S^{N / 2}-\frac{s^{2^{*}}}{2^{*}} Q_{*} S^{N / 2}+C s^{2^{*}} \varepsilon^{(N-2) / 2} \\
& =\eta_{2} r^{2}+\Phi_{\varepsilon}(s)
\end{aligned}
$$

It is easy to check that

$$
\Phi_{\varepsilon}(s) \leqslant \frac{1}{2}\left(\frac{S^{N / 2}}{Q_{*} S^{N / 2}}\right)^{1 / 2}+O\left(\varepsilon^{(N-2) / 2}\right)
$$

Increasing r, if necessary, we get

$$
J(v)<0 \quad \text { for } \quad v \in \Gamma_{2}
$$

If $v \in \Gamma_{3}$, then

$$
\begin{aligned}
J(v) & =\frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k}}\right) \int_{\Omega}|\nabla w|^{2} d x+\frac{R^{2}}{2} \int_{\Omega}\left|\nabla e_{\varepsilon}\right|^{2} d x \\
& -\frac{R^{2^{*}}}{2^{*}} \int_{\Omega}\left(e_{\varepsilon}+\frac{w+u_{t}}{R}\right)_{+}^{2^{*}} d x
\end{aligned}
$$

Let $K>0$ be such that $\left\|w+u_{t}\right\|_{L^{\infty}} \leqslant K$. Then there exists an $\varepsilon_{0}>0$ (small enough) such that $P^{+} e_{\varepsilon}(0)>2 K$ for every $0<\varepsilon \leqslant \varepsilon_{0}$. Then for
every $0<\varepsilon \leqslant \varepsilon_{0}$ we can find $R_{0}=R_{0}(\varepsilon)$ and $\eta=\eta(\varepsilon)>0$ such that

$$
\left|\left\{x \in \Omega ; e_{\varepsilon}+\frac{w+e_{\varepsilon}}{R}>1\right\}\right| \geqslant \eta
$$

for $R \geqslant R_{0}$. Hence $J(v) \leqslant 0$ for $v \in \Gamma_{3}$ for $\varepsilon \leqslant \varepsilon_{0}$ and $R \geqslant R_{0}$.

4. Case $Q_{M}<2^{2 /(N-2)} Q_{m}$.

Let $H(y)$ denote the mean curvature of the boundary $\partial \Omega$ at $y \in \partial \Omega$. Throughout this section we assume that:
(A) the coefficient Q satisfies the following conditions:

$$
Q_{M}<2^{2 /(N-2)} Q_{m}
$$

and $|Q(x)-Q(y)|=o(|x-y|)$ for some $y \in \partial \Omega$ with $Q(y)=Q_{m}, H(y)>$ >0 and x close to y.

Obviously in this case we have $S_{\infty}=\frac{S^{N / 2}}{2 N Q_{m}^{(N-2) / 2}}$.
Proposition 4.1. Let $N \geqslant 5$ and suppose that (A) holds. Then

$$
\begin{equation*}
\max _{v \in D} J(v)<\frac{S^{N / 2}}{2 N Q_{m}^{(N-2) / 2}} \tag{4.1}
\end{equation*}
$$

Proof. Without loss of generality we may assume that $y=0$. Let $v \in D$. Then $v=w+s e_{\varepsilon}$ and

$$
\begin{aligned}
J\left(w+s e_{\varepsilon}\right) & =\frac{1}{2} \int_{\Omega}\left(|\nabla w|^{2}-\lambda w^{2}\right) d x+\frac{s^{2}}{2} \int_{\Omega}\left(\left|\nabla e_{\varepsilon}\right|^{2}-\lambda e_{\varepsilon}^{2}\right) d x \\
& -\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(w+s e_{\varepsilon}+u_{t}\right)_{+}^{2^{*}} d x
\end{aligned}
$$

For $0<s \leqslant s_{0}$, with s_{0} sufficiently small, we have

$$
J\left(w+s e_{\varepsilon}\right) \leqslant \frac{s^{2}}{2} \int_{\Omega}\left|\nabla e_{\varepsilon}\right|^{2} d x \leqslant \frac{S^{N / 2}}{2 N Q_{m}^{(N-2) / 2}}
$$

If $s \geqslant s_{0}$, then repeating the estimates from Lemma 3.2 we get

$$
J\left(w+s e_{\varepsilon}\right) \leqslant \frac{s^{2}}{2} \int_{\Omega}\left(\left|\nabla e_{\varepsilon}\right|^{2}-\lambda e_{\varepsilon}^{2}\right) d x-\frac{s^{2^{*}}}{2^{*}} \int_{\Omega} Q(x) e_{\varepsilon}^{2^{*}} d x+C s^{2^{*}} \varepsilon^{(N-2) / 2}
$$

for some constant $C>0$. Hence

$$
J\left(w+s e_{\varepsilon}\right) \leqslant \frac{1}{N} \frac{\left(\int_{\Omega}\left(\left|\nabla e_{\varepsilon}\right|^{2}-\lambda e_{\varepsilon}^{2}\right) d x\right)^{N / 2}}{\left(\int_{\Omega} Q(x)\left|e_{\varepsilon}\right|^{2^{*}} d x\right)^{(N-2) / 2}}+O\left(\varepsilon^{(N-2) / 2}\right)
$$

Since

$$
\int_{\Omega}\left|P^{+} U_{\varepsilon}\right|^{2^{*}} d x=\int_{\Omega} U_{\varepsilon}^{2^{*}} d x+O\left(\varepsilon^{N-2}\right)
$$

and

$$
\int_{\Omega}\left|\nabla P^{+} U_{\varepsilon}\right|^{2} d x=\int_{\Omega}\left|\nabla U_{\varepsilon}\right|^{2} d x+O\left(\varepsilon^{N-2}\right)
$$

we obtain

$$
J\left(w+s e_{\varepsilon}\right) \leqslant \frac{1}{N} \frac{\left(\int_{\Omega}\left(\left|\nabla U_{\varepsilon}\right|^{2}-\lambda U_{\varepsilon}^{2}\right) d x\right)^{N / 2}}{\left(\int_{\Omega} Q(x) U_{\varepsilon}^{2^{*}} d x\right)^{(N-2) / 2}}+O\left(\varepsilon^{(N-2) / 2}\right)
$$

We need the following asymptotic formulas (see [17])

$$
\begin{gathered}
\int_{\Omega}\left|\nabla U_{\varepsilon}\right|^{2} d x=\frac{K_{1}}{2}-I(\varepsilon)+o(\varepsilon) \\
\int_{\Omega} U_{\varepsilon}^{2^{*}} d x=\frac{K_{2}}{2}-\Pi(\varepsilon)+o(\varepsilon)
\end{gathered}
$$

where $K_{1}=\int_{\mathbb{R}^{N}}|\nabla U|^{2} d x, K_{2}=\int_{\mathbb{R}^{N}} U^{2^{*}} d x, S=K_{1} / K_{2}^{(N-2) / N}, I(\varepsilon)=O(\varepsilon)$ and $\Pi(\varepsilon)=O(\varepsilon)$. Moreover, we have (see (3.17) in [17])

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{I(\varepsilon)}{\Pi(\varepsilon)}>\frac{N-2}{N} \frac{K_{2}}{K_{1}} \tag{4.2}
\end{equation*}
$$

By assumption (A) we have

$$
\int_{\Omega} Q(x) U_{\varepsilon}^{2^{*}} d x=\frac{Q_{m} K_{2}}{2}+o(\varepsilon)
$$

Thus

$$
\begin{equation*}
J\left(w+s e_{\varepsilon}\right) \leqslant \frac{1}{N} \frac{\left(\frac{K_{1}}{2}-I(\varepsilon)+o(\varepsilon)\right)^{N / 2}}{\left(\frac{Q_{m} K_{2}}{2}-\Pi(\varepsilon) Q_{m}+o(\varepsilon)\right)^{(N-2) / 2}}+O\left(\varepsilon^{(N-2) / 2}\right) \tag{4.3}
\end{equation*}
$$

According to (4.2) we can find an $\varepsilon_{0}>0$ and a $\varrho>0$ such that

$$
\begin{equation*}
I(\varepsilon)>\frac{N-2}{N} \frac{K_{1}}{K_{2}} \Pi(\varepsilon)+\varrho \tag{4.4}
\end{equation*}
$$

for $0<\varepsilon \leqslant \varepsilon_{0}$. It then folllows from (4.3) and (4.4) that

$$
\begin{aligned}
J\left(w+s e_{\varepsilon}\right) & \leqslant\left(\left(\frac{K_{1}}{2}\right)^{N / 2}-\frac{N}{2}\left(\frac{K_{1}}{2}\right)^{(N-2) / 2} I(\varepsilon)+o(\varepsilon)\right) \\
& \times\left(\left(\frac{1}{2} K_{2} Q_{m}\right)^{-(N-2) / 2}+\frac{N-2}{2} Q_{m} \Pi(\varepsilon)\left(\frac{1}{2} K_{2} Q_{m}\right)^{-N / 2}+o(\varepsilon)\right) \\
& <\frac{S^{N / 2}}{2 N Q_{m}^{(N-2) / 2}}-C \varrho
\end{aligned}
$$

for some constant $C>0$ and the result follows.
We are now in a position to formulate the following result
Theorem 4.2. Suppose that the assumptions of Proposition 4.1 hold. Then problem (4.1) has at least two solutions.
5. Case $Q_{M} \geqslant 2^{2 /(N-2)} Q_{m}$.

If $Q_{M} \geqslant 2^{(2 / N)-2} Q_{m}$, then $S_{\infty}=\frac{S^{N / 2}}{N Q_{M}^{(N-2) / 2}}$. We assume that

$$
\begin{equation*}
|Q(x)-Q(y)|=o\left(|x-y|^{2}\right) \tag{5.1}
\end{equation*}
$$

for some $y \in \Omega$ with $Q(y)=Q_{M}$ and x close to y.
Assuming that $y=0$, we have

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla U_{\varepsilon}\right|^{2} d x=K_{1}+O\left(\varepsilon^{N-2}\right) \\
& \int_{\Omega} Q(x) U_{\varepsilon}^{2^{*}} d x=K_{2} Q_{M}+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

and

$$
\int_{\Omega} U_{\varepsilon}^{2} d x \geqslant c_{1} \varepsilon^{2}
$$

for some constant $c_{1}>0$ independent of ε. As in the proof of Proposition 4.1 we have

$$
\begin{aligned}
J\left(w+s e_{\varepsilon}\right) & \leqslant \frac{\left(\int_{\Omega}\left(\left|\nabla U_{\varepsilon}\right|^{2}-\lambda U_{\varepsilon}^{2}\right) d x\right)^{N / 2}}{N\left(\int_{\Omega} Q(x) U_{\varepsilon}^{2^{*}} d x\right)^{(N-2) / 2}}+O\left(\varepsilon^{(N-2) / 2}\right) \\
& \leqslant \frac{\left(K_{1}+O\left(\varepsilon^{N-2}\right)-c_{1} \varepsilon^{2}\right)^{N / 2}}{N\left(K_{2} Q_{M}+o\left(\varepsilon^{2}\right)\right)^{(N-2) / 2}}+O\left(\varepsilon^{(N-2) / 2}\right) .
\end{aligned}
$$

If $N \geqslant 7$, taking $\varepsilon>0$ sufficiently small, we can check that

$$
\max _{v \in D} J(v) S^{N / 2} / Q_{M}^{(N-2) / 2}
$$

THEOREM 5.1. Let $N \geqslant 7$. Suppose that $Q_{M} \geqslant 2^{2 /(N-2)} Q_{m}$ and that (5.1) holds. Then problem (1.1) has two solutions.
6. Existence of solutions in the case $\lambda=0$.

In this case problem (1.1) takes the form

$$
\left\{\begin{array}{l}
-\Delta u \quad=Q(x) u_{+}^{2^{*}-1}+f(x) \quad \text { in } \Omega \tag{6.1}\\
\frac{\partial}{\partial v} u(x)=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

Obviously a necessary condition for the existence of a solution of problem (6.1) is the condition

$$
\begin{equation*}
\int_{\Omega} f(x) d x<0 \tag{6.2}
\end{equation*}
$$

Since the eigenfunctions corresponding to $\lambda=0$ are constant, we decompose $H^{1}(\Omega)$ as $H^{1}(\Omega)=\operatorname{span}\{1\} \oplus E^{+}$, where

$$
E^{+}=\left\{v \in H^{1}(\Omega) ; \int_{\Omega} v d x=0\right\}
$$

Thus for every function $u \in H^{1}(\Omega)$ we have $u=t+v$, where $t \in \mathbb{R}$ and
$\int_{\Omega} v d x=0$. The variational functional J for (6.1) is given by

$$
J(u)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)(t+v)_{+}^{2^{*}} d x-\int_{\Omega} f(x)(t+v) d x
$$

It is easy to show that the function $t \rightarrow J(t+v)$ is bounded above. Let $v \in E^{+}$and set

$$
g(t)=J(t+v)
$$

It is clear that for every $v \in E^{+}$there exists $t(v)>0$ such that

$$
g(t(v))=\max _{t \in \mathbb{R}} g(t),
$$

that is, $J(t+v) \leqslant J(t(v)+v)$ for every $t \in \mathbb{R}$. Thus by the implicit function theorem we can define a continuously differentiable mapping

$$
v \in E^{+} \Rightarrow t(v) \in \mathbb{R}
$$

such that $J(t+v) \leqslant J(t(v)+v)$ for every $t \neq t(v)$. Since

$$
0=g^{\prime}(t(v))=-\int_{\Omega} Q(x)(t(v)+v)^{2^{*}-1} d x-\int_{\Omega} f d x
$$

we see that

$$
\begin{equation*}
\int_{\Omega} Q(x)(t(v)+v)_{+}^{2_{+}^{*}-1} d x+\int_{\Omega} f(x) d x=0 \tag{6.3}
\end{equation*}
$$

for every $v \in E^{+}$. In particular, if $v=0$, then

$$
\int_{\Omega} Q(x)(t(0))_{+}^{2^{*}-1} d x=-\int_{\Omega} f(x) d x .
$$

This combined with (6.2) yields $t(0)>0$ and we have

$$
\begin{equation*}
t(0)^{2^{*}-1} \int_{\Omega} Q(x) d x=-\int_{\Omega} f(x) d x \tag{6.4}
\end{equation*}
$$

We now claim that the functional

$$
F(v)=J(v+t(v))
$$

attains its minimum on some ball $B_{\varrho}(0)$. We set

$$
A=-\int_{\Omega} f(x) d x \quad \text { and } \quad B=\int_{\Omega} Q(x) d x
$$

By easy computations using (6.4), we verify that

$$
F(0)=\frac{N+2}{2 N} \frac{A^{2 N /(N+2)}}{B^{(N-2) /(N+2)}} .
$$

We now estimate $F(v)$ from below:

$$
\begin{aligned}
F(v) & \geqslant J(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\frac{1}{2^{*}} \int_{\Omega} Q v_{+}^{2^{*}} d x-\int_{\Omega} f v d x \\
& \geqslant \frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\frac{1}{2^{*}} \int_{\Omega} Q v_{+}^{2^{*}} d x-\|f\|_{2}\|v\|_{2} .
\end{aligned}
$$

We now observe that

$$
\int_{\Omega}|\nabla v|^{2} d x \geqslant \lambda_{2} \int_{\Omega} v^{2} d x
$$

for every $v \in E^{+}$. Since $\int_{\Omega} v d x=0$, we can use the Sobolev inequality to obtain

$$
\begin{aligned}
F(v) & \geqslant \frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\frac{Q_{M}}{2^{*}} S^{-N /(N-2)}\left(\int_{\Omega}|\nabla v|^{2} d x\right)^{2^{* / 2}} \\
& -\|f\|_{2} \lambda_{2}^{-1}\left(\int_{\Omega}|\nabla v|^{2} d x\right)^{1 / 2} .
\end{aligned}
$$

Letting $\varrho=\|\nabla v\|_{2}$ we derive from the above estimate

$$
\begin{aligned}
F(v) & \geqslant \frac{\varrho^{2}}{2}-\frac{Q_{M}}{2^{*}} S^{-N / N_{2}} \varrho^{2^{*}}-\|f\|_{2} \lambda_{2}^{-1 / 2} \varrho \\
& =\varrho z\left(\frac{\varrho}{2}-\frac{Q_{M}}{2^{*}} S^{-N / N-2} \varrho^{\varrho^{*}-1}-\|f\|_{2} \lambda_{2}^{-1 / 2}\right)=\varrho j(\varrho) .
\end{aligned}
$$

Since $j(\varrho)$ achieves its maximum at

$$
\varrho_{0}=\left(\frac{N}{(N+2) Q_{M}}\right)^{(N-2) / 4} S^{N / 4}
$$

we see that

$$
\begin{align*}
F(v) & \geqslant \varrho_{0}\left(\varrho_{0}\left(\frac{1}{2}-\frac{N-2}{2(N+2)}\right)-\|f\|_{2} \lambda_{2}^{-1 / 2}\right) \tag{6.6}\\
& =\varrho_{0}\left(\frac{2 \varrho_{0}}{N+2}-\|f\|_{2} \lambda_{2}^{-1 / 2}\right)
\end{align*}
$$

We now assume that

$$
\begin{equation*}
\|f\|_{2} \leqslant \frac{\lambda_{2}^{1 / 2}}{N+2}\left(\frac{N}{(N+2) Q_{M}}\right)^{(N-2) / 4} S^{N / 4} \tag{6.7}
\end{equation*}
$$

and
(6.8) $\quad-\int_{\Omega} f(x) d x \leqslant$

$$
\leqslant\left(\frac{2 N}{N+2}\right)^{(N+2) / 2 N} N^{-(N+2) / 2 N} Q_{M}^{-\left(N^{2}-4\right) / 4 N} S^{(N+2) / 4}\left(\int_{\Omega} Q(x) d x\right)^{1 / 2^{*}}
$$

As an immediate consequence of (6.5), (6.6), (6.7) and (6.8) we can state the following lemma:

Lemma 6.1. Suppose that (6.7) and (6.8) hold. Then $F(v)>F(0)$ for all $v \in E^{+}$such that $\|v\|=\varrho_{0}$, and moreover

$$
F(0)<\frac{S^{N / 2}}{N Q_{M}^{(N-2) / 2}}
$$

We can now formulate the existence result in the case $\lambda=0$.
THEOREM 6.2. Suppose that (6.7) and (6.8) hold. Then problem (6.1) has a solution.

Proof. It follows from Lemma 6.1 that

$$
\begin{equation*}
m=\inf _{v \in B_{e_{0}(0)}} F(v)<\frac{S^{N / 2}}{N Q_{M}^{(N-2) / 2}} \tag{6.9}
\end{equation*}
$$

Let $\left\{v_{n}\right\}$ be a minimizing sequence for (6.9). Since $\left\{v_{n}\right\}$ is bounded in $H^{1}(\Omega)$, we may assume that $v_{n} \rightharpoonup v_{0}$ in $H^{1}(\Omega)$ and $v_{n} \rightharpoonup v_{0}$ in $L^{q}(\Omega)$ for every $2 \leqslant q<2^{*}$. By the low semicontinuity of norm with respect to
weak convergence we have

$$
\left\|v_{0}\right\| \leqslant \liminf _{n \rightarrow \infty}\left\|v_{n}\right\| \leqslant \varrho_{0}
$$

Estimate (6.6) shows that F is bounded away from 0 near the boundary of $B_{\varrho_{0}}(0)$ for f small enough. On the other hand $m \leqslant F(0)$ and $F(0)$ is close to 0 for small f. Therefore we can always assume that the minimizing sequence $\left\{v_{n}\right\}$ is contained in the interior of the ball $B_{\varrho_{0}}(0)$, say $\left\{v_{n}\right\} \subset$ $\subset B_{\varrho_{0} / 2}(0)$. It then follows from the Ekeland variational principle that

$$
F\left(v_{n}\right) \rightarrow m \quad \text { and } \quad F^{\prime}\left(v_{n}\right) \rightarrow 0
$$

Since $F^{\prime}\left(v_{n}\right) \rightarrow 0$ means that $J^{\prime}\left(v_{n}+t\left(v_{n}\right)\right) \rightarrow 0$ we obtain

$$
\frac{1}{2} \int_{\Omega}\left|\nabla v_{n}\right|^{2} d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(v_{n}+t\left(v_{n}\right)\right)_{+}^{2^{*}} d x-\int_{\Omega} f\left(v_{n}+t\left(v_{n}\right)\right) d x=m+o(1)
$$

and also by (6.3) we have

$$
\int_{\Omega}\left|\nabla v_{n}\right|^{2} d x-\int_{\Omega} Q(x)\left(v_{n}+t\left(v_{n}\right)\right)_{+}^{2^{*}-1} v_{n} d x-\int_{\Omega} f v_{n} d x=o(1)
$$

Since v_{0} is a weak solution of (6.1) we have

$$
\begin{equation*}
\int_{\Omega}\left(\left|\nabla v_{0}\right|^{2}-Q(x)\left(v_{0}+t\left(v_{0}\right)\right)_{+}^{2^{*}-1} v_{0}-f v_{0}\right) d x=0 \tag{6.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}\left(Q(x)\left(v_{0}+t\left(v_{0}\right)\right)_{+}^{2^{*}-1}+f\right) d x=0 \tag{6.11}
\end{equation*}
$$

We need to show that $v_{n} \rightarrow v_{0}$ in $H^{1}(\Omega)$. As in [12] we show that $\lim _{n \rightarrow \infty} t\left(v_{n}\right)=t\left(v_{0}\right)$. We set $w_{n}=v_{n}-v_{0}$. By the Brézis-Lieb Lemma, we have

$$
\begin{equation*}
F\left(v_{0}\right)+\frac{1}{2} \int_{\Omega}\left|\nabla w_{n}\right|^{2} d x-\frac{1}{2^{*}} \int_{\Omega} Q(x)\left(w_{n}\right)_{+}^{2^{*}} d x=m+o(1) \tag{6.12}
\end{equation*}
$$

and

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla w_{n}\right|^{2} d x-\int_{\Omega} Q(x)\left(w_{n}\right)_{+}^{2^{*}} d x-\int_{\Omega} Q(x)\left(v_{0}+t\left(v_{0}\right)\right)_{+}^{2^{*}} d x \\
&+\int_{\Omega}\left|\nabla v_{0}\right|^{2} d x-\int_{\Omega} f\left(v_{0}+t\left(v_{0}\right)\right) d x=o(1)
\end{aligned}
$$

It then follows from (6.10) and (6.11) that

$$
\int_{\Omega}\left|\nabla w_{n}\right|^{2} d x-\int_{\Omega} Q(x)\left(w_{n}\right)_{+}^{2^{*}} d x=o(1)
$$

Hence by (6.12) we get

$$
F\left(v_{0}\right)+\frac{1}{N} \int_{\Omega}\left|\nabla w_{n}\right|^{2} d x=m+o(1)
$$

Since $F\left(v_{0}\right) \geqslant m$, this implies that $\int_{\Omega}\left|\nabla w_{n}\right|^{2} d x=o(1)$ and consequently $v_{n} \rightarrow v_{0}$ in $H^{1}(\Omega)$.

Acknowledgment. The second author was supported by the Chinese Natural Science Foundation. The authors thank to the referee whose comments helped to improve the presentation of this paper.

REFERENCES

[1] Adimurthi - G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honor of G. Prodi, Scuola Norm. Sup. Pisa (1991), pp. 9-25.
[2] Adimurthi - G. Mancini, Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), pp. 1-18.
[3] Adimurthi - G. Mancini - S. L. Yadava, The role of the mean curvature in a semilinear Neumann problem involving critical exponent, Comm. in P.D.E., 20, No. 3 and 4 (1995), pp. 591-631.
[4] Adimurthi - F. Pacella - S. L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), pp. 318-350.
[5] Adimurthi - F. Pacella - S. L. Yadava, Characterization of concentration points and L^{∞}-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Diff. Int. Eq., 8 (1995), pp. 3168.
[6] Adimurthi - S. L. Yadava, Critical Sobolev exponent problem in $\mathbb{R}^{N}(N \geqslant 4)$ with Neumann boundary condition, Proc. Indian Acad. Sci., 100 (1990), pp. 275-284.
[7] H. Brézis - L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), pp. 437-477.
[8] J. Chabrowski, On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity, Bull. Pol. Acad. Sc., 50 (3) (2002), pp. 323-333.
[9] J. Chabrowski, Mean curvature and least energy solutions for the critical Neumann problem with weight, B.U.M.I. B, 5 (8) (2002), pp. 715-733.
[10] J. Chabrowski - M. Willem, Least energy solutions of a critical Neumann problem with weight, Calc. Var., 15 (2002), pp. 121-131.
[11] J. F. Escobar, Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Commun. Pure Appl. Math., 40 (1987), pp. 623657.
[12] G. Djairo De Figueiredo - Jianfu Yang, Critical superlinear AmbrosettiProdi problems, TMNA, 14 (1999), pp. 50-80.
[13] D. Gilbarg - N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin (1983) (second edition).
[14] P. L. Lions, The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana, 1, No. 1 and No. 2 (1985), pp. 145-201 and pp. 45-120.
[15] W. M. Ni - X. B. Pan - L. Takagi, Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent, Duke Math. J., 67 (1992), pp. 1-20.
[16] W. M. Ni - L. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), pp. 819-851.
[17] X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Eq., 93 (1991), 283-310.
[18] Z. Q. Wang, Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math., 20, No. 4 (1994), pp. 671-694.
[19] Z. Q. Wang, The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents, Diff. Int. Eq., 8, No. 6 (1995), pp. 1533-1554.
[20] M. Willem, Min-max Theorems, Boston 1996, Birkhäuser.
Manoscritto pervenuto in redazione il 26 agosto 2002.

