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Multiple Solutions of a Nonlinear Elliptic
Equation Involving Neumann Conditions

and a Critical Sobolev Exponent.

J. CHABROWSKI (*) - JIANFU YANG (**)

ABSTRACT - In this paper we prove the existence of two solutions of the nonhomo-
geneous Neumann problem (1.1) involving a critical Sobolev exponent. It is
assumed that the coefficient Q is positive and smooth on V and lD0 is a par-
ameter which does not belong to the spectrum of 2D . We examine the com-
mon effect of the mean curvature of the boundary ¯V and the shape of the
graph of the coefficient Q on the existence of a second solution.

1. Introduction.

In this paper, we study the existence of multiple solutions of
the superlinear problem

.
/
´

2Du

¯

¯n
u(x)

4lu1Q(x) u1
2*21 1 f (x) in V

40 on ¯V ,
(1.1)

where 2*4
2N

N22
, NF3 is the critical Sobolev exponent, lF0 is

a parameter and V%RN is a bounded domain with a smooth boundary
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¯V . We assume that the coefficient Q is smooth and positive on
V and f�L r (V) with rDN . We use the notation u14 max (u , 0 ).

This problem belongs to a class of problems referred to as the Ambro-
setti-Prodi type. More precisely, in the case of the Dirichlet problem

.
/
´

2Du

u

4g(u)1 f (x) in V ,

40 on ¯V
the limits

g24 lim
sK2Q

g(s)

s
and g14 lim

sKQ

g(s)

s

play an important role. We can basically distinguish three types of pro-
blems using the location of g2 and g1 with respect to the spectrum of the
operator 2D with the Dirichlet boundary conditions. Denoting by ]l k (

the sequence of the eigenvalues of 2D with the Dirichlet boundary con-
ditions, the following types of problems have been considered:

(I) 2QGg2El 1 Eg1G1Q ,

(II) g2 and g1 are both finite and the interval (g2 , g1 ) contains
an eigenvalue. In this case the problem is asymptotically linear,

(III) g2 lies between two consecutive eigenvalues and g141Q.

We refer to the paper [12] where the extensive bibliography concer-
ning these problems can be found. We point out here that conditions (I)
and (III) cover the cases of subcritical, critical and supercritical growth
for g . In the case of the Neumann problem the literature is rather scar-
ce. In this paper we consider the nonlinear Neumann problem of type
(III) with the nonlinearity of one-sided critical growth. We follow some
ideas from [12], which considered a similar problem with the Dirichlet
boundary conditions. First we consider the case lD0. The case l40
will be treated separately.

Problem (1.1) may have constant solutions in contrast to the Dirichlet
problem. We now discuss a number of conditions guaranteeing that a po-
sitive solution of (1.1) is not constant. If for some lD0 and a constant
cD0, the functions Q and f satisfy the equation

lc1Q(x) c 2*21 1 f (x) 40(̃ )

for every x�V , then u4c is a solution of (1.1). If f and Q are differentia-
ble on some open subset of V then the following condition

(a) ˜f (x) is not parallel to ˜Q(x) for some x �V
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ensures that a positive solution of (1.1) is not constant. If f and Q are not
differentiable we can proceed as follows. Integrating the equation (˜)
we get

lcNVN1c 2*21�
V

Q(x) dx1�
V

f (x) dx40,(̃ )̃

where NVN denotes the Lebesgue measure of V . From (˜) and (˜˜)
we derive the equation

c 2*21uQ(x)NVN2�
V

Q(x) dxv1 uf (x)NVN2�
V

f (x) dxv40.

We immediately obtain a contradiction if

(b) either Q(x) 4const and f (x) cconst , or Q(x) cconst and
f (x) 4const .

If both functions Q(x) and f (x) are not constant we define a set

V 0 4 {x ;
1

NVN
�

V

Q(x) dx4Q(x)} ,

which is nonempty. Then a positive solution cannot be constant if

(c) either f (x) 4
1

NVN
s

V
f (x) dx for all x�V2V 0 , or f (x) c

c

1

NVN
s

V
f (x) dx for some x�V 0 .

Finally, if (c) does not hold we require

(d) the ratio

f (x)NVN2s
V

f (x) dx

s
V

Q(x) dx2Q(x)NVN

is either not constant on V2V 0 , or it is constant and nonpositive on
V2V 0 .

Therefore one of these conditions will be assumed throughout this
work.

We assume that f (x) 4 t1h(x), where t is a constant and h�L r (V)
with rDN . We start by finding a negative solution of (1.1). We denote by
l 1 40 El 2 ER the sequence of eigenvalues for 2D with the Neumann
boundary conditions. The first eigenvalue is simple and has constant
eigenfunctions.
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Let lcl k for every k . Then there exists a unique solution u0 �
�H 1 (V)OL Q (V) of the problem

.
/
´

2Du

¯u

¯n

4lu1h(x) in V ,

40 on ¯V .

The function ut 42
t

l
1u0 , with tDl sup

V
Nu0 (x)N is negative and sati-

sfies (1.1). We look for a second solution of the form u4v1ut , where v
satisfies

.
/
´

2Dv

¯v

¯n

4lv1Q(x)(v1ut )1
2*21 in V ,

40 on ¯V .
(1.2)

Problem (1.2) will be solved through the min-max based on a topological
linking. To this end, we define a variational functional

J(v) 4
1

2
�

V

(N˜vN2 2lv 2) dx2
1

2*
�

V

Q(x)(v1ut )1
2* dx

for v�H 1 (V). In the next section we examine Palais-Smale sequences
for J . In particular, we find the energy level of the functional J below
which the Palais-Smale condition holds. In Section 3 we verify that the
functional J has the geometry of a topological linking. Conditions gua-
ranteeing the existence of critical points of J will be given in Sections 4
and 5. The existence results of this section depend on a relation between
Qm 4 max

x�¯V
Q(x) and QM 4 max

x� V
Q(x). Section 6 is devoted to the case l40.

The existence of a critical point in this case is obtained through the im-
plicit function theorem. The distinction of two cases involving the quanti-
ties QM and Qm envisaged in Section 4 disappears in the case l40.

2. The Palais-Smale condition.

We need two quantities:

Qm 4 max
x�¯V

Q(x) and QM 4 max
x� V

Q(x).
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We set

SQ4 min g S N/2

NQM
(N22) /2

,
S N/2

2NQm
(N22) /2 h ,

where S denotes the best Sobolev constant, that is,

S4 inf
u�D 1, 2 (RN )2 ]0(

s
RN

N˜uN2 dx

( s
RN

Nu(x)N2* dx)2/2*
.

Here D 1, 2 (RN ) denotes a Sobolev space obtained as the completion of
C0

Q (RN ) with respect to the norm

VuVD 1, 2 (RN )
2 4 �

RN

N˜uN2 dx .

In what follows, V QV denotes the norm in H 1 (V), which is given by

VuV

2 4�
V

(N˜uN2 1u 2) dx .

In this paper we frequently use the Sobolev inequality:

u �
V

NuN2* dxv2/2*

GCs�
V

(N˜uN2 1u 2) dx

for all u�H 1 (V), where Cs D0 is a constant.

PROPOSITION 2.1. Let l k ElEl k11 . If

J(un ) KcESQ and J 8 (un ) K0 in H 21 (V)

then ]un ( is relatively compact in H 1 (V).

PROOF. We commence by showing that ]um ( is bounded in H 1 (V).
We write

un 4un
21un

1 , un
2�E 2 and un

1�E 1 ,

where

E 24span of all eigenfunctions corresponding to l 1 , R , l k ,
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and E 14 (E 2 )» . If f�H 1 (V), then

�
V

˜un ˜f dx2l�
V

un f dx4�
V

Q(x)(un 1ut )1
2*21 f dx1e n VfV(2.1)

with e n K0. Taking f4un
1 , we get

�
V

N˜un
1N2 2l�

V

(un
1 )2 4�

V

Q(x)(un 1ut )1
2*21 un

1 dx1e n Vun
1

V .

Let dD0 be such that l1dEl k11 . Then

(2.2) g12
l1d

l k11
h �

V

N˜un
1N2 dx1d�

V

(un
1 )2 dxG

G�
V

Q(x)(un 1ut )1
2*21 un

1 dx1e n Vun
1

V .

We now use (2.1) with f4un
2 and let d 1 D0 be such that l2d 1 Dl k .

Then

(2.3) g l2d 1

l k

21h �
V

N˜un
2N2 dx1d 1�

V

(un
2 )2 dxG

G2�
V

Q(x)(un 1ut )1
2*21 un

2 dx1e n Vun
2

V .

On the other hand for nFn0 , we can write

c1e n VunV11 FJ(un )2
1

2
aJ 8 (un ), un b

4
1

2
�

V

Q(x)(un 1ut )1
2*21 un dx2

1

2*
�

V

Q(x)(un 1ut )1
2* dx

4
1

N
�

V

Q(x)(un 1ut )1
2* dx2

1

2
�

V

Q(x)(un 1ut )1
2*21 ut dx

F
1

N
�

V

Q(x)(un 1ut )1
2* dx .

Applying the Young inequality, we deduce from (2.2) and the above
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estimate that for hD0 we have

(2.4) g12
l1d

l k11
h �

V

N˜un
1N2 dx1d�

V

(un
1 )2 dxG

G�
V

Q(x)(un 1ut )1
2*21 un

1 dx1e n Vun
1

VG

Gh u�
V

Q(x)Nun
1N2* dxv2/2*

1Chu�
V

Q(x)(un1ut )1
2* dxv2(2*21)/2*

dx1e n Vun
1

V

GCs QM
2/2* hVun

1
V

2 1C1u�
V

(un 1ut )1
2* dxv(N12) /N

1e n Vun
1

V

GCs QM
2/2* hVun

1
V

2 1C1 VunV

(N12) /N 1C2 Vun
1

V1C3

for some constants C1 D0, C2 D0 and C3 D0. In a similar way, we
obtain

(2.5) g l2d 1

l k

21h �
V

N˜un
2N2 dx1d 1�

V

(un
2 )2 dxG

GCs QM
2/2* hVun

2
V

2 1C4 (Vun V

(N12) /N 1Vun
2

V11)

for some constant C4 D0. Estimates (2.4) and (2.5) imply that ]un ( is
bounded in H 1 (V). We may therefore assume that un � u in H 1 (V). By
the concentration-compactness principle there exist sequences of points
]xj ( %RN , sequences of numbers ]n j ( and ]m j ( such that

NunN2* �˜ NuN2* 1!
j

n j d xj

and

N˜unN2 �˜ N˜uN2 1!
j

m j d xj

in the sense of measures, where

Sn j
2/2* Gm j if xj �V
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and

Sn j
2/2*

22/N
Gm j if xj �¯V .

Fix xj . Let ]f d( be a family of smooth and positive functions concen-
trating at xj as dK0. Then using the Brézis-Lieb Lemma, we ob-
tain

�
V

N˜unN2 f d dx1�
V

˜un un ˜f d dx1l�
V

un
2 f d dx

4�
V

Q(x)(un 1ut )1
2*21 un f d dx1o(1)

4�
V

Q(x)(un1ut )1
2* f d dx2�

V

Q(x)(un1ut )1
2*21 ut f d dx1o(1)

G�
V

Q(x)Nun1utN
2*f ddx2�

V

Q(x)(un1ut)1
2*21utf ddx1o(1)

4�
V

Q(x)NunN2*f ddx2�
V

Q(x)NuN2*f ddx1�
V

Q(x)Nu1utN
2*f ddx

2�
V

Q(x)(un 1ut )1
2*21 ut f d dx1o(1).

Letting nKQ and then dK0 we deduce that in both cases xj �¯V and
xj �V ,

m j GQ(xj ) n j .

If m j D0 for some xj , then

m j F
S N/2

Q(xj )(N22) /2
if xj �V and m j F

S N/2

2Q(xj )(N22) /2
if xj �¯V .
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We now write

J(un )2
1

2*
aJ 8 (un ), un b

4
1

N
�

V

(N˜unN2 2lun
2) dx2

1

2*
�

V

Q(x)(un 1ut )1
2* dx

1
1

2*
�

V

Q(x)(un 1ut )1
2*21 un 1o(1)

4
1

N
�

V

(N˜unN2 2lun
2) dx2

1

2*
�

V

Q(x)(un 1ut )1
2*21 ut dx1o(1)

F
1

N
�

V

(N˜unN2 2lun
2) dx1o(1).

Since u is a solution of (1.1) we also have

�
V

(N˜uN2 2lu 2) dx4�
V

Q(x)(u1ut )1
2*21 u dx4

4�
V

Q(x)(u1ut )1
2*21 u1 dxF0.

We aim to show that m j 40 for every j . If not, the concentration-com-
pactness principle implies that

cF
1

N
�

V

(N˜uN2 2lu 2) dx1
1

N
!

j
m j F

1

N
!

j
m j .

If m j D0 for some j with xj �¯V , then

cF
1

2N

S N/2

Q(xj )(N22) /2
F

1

2N

S N/2

Qm
(N22) /2

.

This is obviously impossible. Similarly if m j D0 for some j with xj �V .
Thus

�
V

Q(x)(un 1ut )1
2* dxK�

V

Q(x)(u1ut )1
2* dx
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and also

�
V

N˜unN2 dxK�
V

N˜uN2 dx

and the result follows. r

3. Topological linking.

We assume that l� (l k , l k11 ). Let

E 24span ]e1 , R , el ( ,

where e1 , R , el are eigenfunctions corresponding to l 1 , R , l k . We set
E 14 (E 2 )» . Let

Sr4¯BrOE 1 and D4 [0 , Re]5 (Br OE 2 ), e�E 1 ,

where Br denotes the ball of radius r with centre at 0 . To apply a topolo-
gical linking we need to verify that

JNSr
FaD0, rER ,

JN¯D Ea and max
u�D

J(u) ESQ .

LEMMA 3.1. There exist r 0 D0 and a : (0 , r 0 ] K (0 , Q) such that

J(u) Fa(r) for every v�Sr .

PROOF. We choose hD0 so that l k El1hEl k11 . Then

�
V

N˜uN2 dxFl k11�
V

u 2 dx

for every u�E 1 . Since ut E0 on V , we have

J(u)F�
V

g12
l1h

l k11
hN˜uN2dx1h�

V

u 2dx2Cs
22*/2QMu�

V

(N˜uN21u 2) dxv2*/2

Fb�
V

(N˜uN2 1u 2) dx2Cs
22* /2 QMu�

V

(N˜uN2 1u 2) dxv2* /2
,
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where

b4 min g12
l1h

l k11

, hh .

Letting r4VuV we obtain the following estimate

J(u) Fbr 2 2Cs
22* /2 QM r 2* .

To complete the proof we set

a(r) 4br 2 2Cs
22* /2 QM r 2* ,

with r 0 D0 such that r 0
2 2Cs

22* /2 QM r 0
2* D0. r

From now on, we use the instanton

Ue (x) 4
cN e (N22) /2

(e 2 1NxN2)N22/2
,

in the definition of the set D , where cN D0 is a constant and we set
ee4P 1 Ue . It is well-known that U4U1 satisfies the equation

2DU4U 2*21 in RN

and moreover

�
RN

N˜UN2 dx4 �
RN

U 2* dx4S N/2 .

With the choice of e4ee we verify the remaining conditions of the to-
pological linking. Without loss of generality we may assume in Lemma
3.2 below that 0 �V .

LEMMA 3.2. There exist r0 D0, R0 D0 and e 0 D0 such that for
rFr0 , RFR0 and 0 EeGe 0 we have

J(u) Ea for every u�¯D .

PROOF. We set

¯D4G 1 NG 2 NG 3 ,
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where

G 1 4 Br OE 2 ,

G 2 4 ]v�H 1 (V); v4w1see , w�E 2 , VwV4r , 0 GsGR(,

G 3 4 ]v�H 1 (V); v4w1Ree , w�E 2OBr (.

For v�E 2 we have

�
V

N˜vN2 dxGl k�
V

v 2 dx

and

J(v) G
1

2
g12

l

l k
h�
V

N˜vN2 dx2
1

2*
�

V

Q(x)(v1ut )2* dxG0.

We now consider G 2 . Let v�G 2 and define

d 2 4 sup
0 EeG1

�
V

N˜eeN
2 dx .

Let r 2 4V˜wV

2 and choose h 1 D0 so that l k El2h 1 . Then for v4w1

1see we have

J(v)G
1

2
�

V

N˜vN2 dx2
l

2
�

V

v 2 dx

G
1

2
�

V

N˜wN2 dx2
l

2
�

V

w 2 dx1
s 2

2
�

V

N˜eeN
2 dx

G
1

2
g12

l2h 1

l k
h �

V

N˜wN2 dx2
h 1

2
�

V

w 2 dx1
s 2

2
�

V

N˜eeN
2 dx .

Let h 2 4 max g12
l2h 1

l k

, 2
h 1

2
hE0. We then have

J(v) Gh 2 r 2 1
s 2

2
�

V

N˜eeN
2 dx .

We set s0 4
k2a

d
. Then J(v) Ga for 0 GsGs0 . We now consider the
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case sDs0 . Put

K4 sup m
V

w1ut

s V

Q

; s0 GsGR , VwV4r , w�E 2n.

We now estimate P 2 Ue . Let

P 2 Ue4 !
j41

l

a j ej , a j 4�
V

Ue ej (x) dx .

Since the first eigenfunction corresponding to l40 is constant, we see
that P 2 Ueg0. Hence

VP 2 Ue V2
2 4 !

j41

l

a j
2 4 !

j41

l u �
V

Ue ej dxv2

G !
j41

l

Vej VQ
2

VUe V1
2 GCe N22 .

Therefore

P 1 Ue (0)4Ue (0)2P 2 Ue (0)

FCe
2(N22) /2

2VP 2 Ue VQFCe
2(N22) /2

.

By the continuity of P 1 Ue there exists a d4d(K) such that

Bd (0) % ]x�V ; P 1 Ue (x) DK(.

We also need the following inequality: if v%V and u1vD0 on v ,
then

N�
v

(u1v)p dx2�
v

NuNp dx2�
v

NvNp dxNGC�
v

(NuNp21 NvN1NuNNvNp21 ) dx ,

where C4C(p). We apply this estimate with v4V e , where

V e4 ]x�V ; P 1 Ue (x) DK(.



J. Chabrowski - Jianfu Yang14

Letting Q*4 min
x�V

Q(x) we get

�
V

Q(x) g w1ut

s
1eeh

1

2*

dxFQ*�
V e

gee1
w1ut

s
h

1

2*

dx

FQ*u �
V e

NeeN
2* dx1�

V e

N w1ut

s N2* dx

2C�
V e

gNeeN
2*21N w1ut

s N1NeeNN w1ut

s N
2*21h dxh

FQ*u�
V

NeeN
2* dx1�

V e

N w1ut

s N
2*

dxv
2C1(Vee VL 2*21 (V e )

2*21 1Vee VL 1 (V e )) .

Since

VP 1 Ue VL 2*21
2*21 GCe

N22

2 and VP 1 Ue VL 1 GCe
N22

2

we deduce from the previous estimate that

J(v) Gh 2 r 2 1
s 2

2
S N/2 2

s 2*

2*
Q* S N/2 1Cs 2* e (N22) /2

4h 2 r 2 1F e (s).

It is easy to check that

F e (s) G
1

2
g S N/2

Q* S N/2 h1/2

1O(e (N22) /2) .

Increasing r , if necessary, we get

J(v) E0 for v�G 2 .

If v�G 3 , then

J(v) 4
1

2
g12

l

l k
h �

V

N˜wN2 dx1
R 2

2
�

V

N˜eeN
2 dx

2
R 2*

2*
�

V

gee1
w1ut

R
h

1

2*

dx .

Let KD0 be such that Vw1ut VL Q GK . Then there exists an e 0 D0
(small enough) such that P 1 ee (0) D2K for every 0 EeGe 0 . Then for
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every 0 EeGe 0 we can find R0 4R0 (e) and h4h(e) D0 such that

Nmx�V ; ee1
w1ee

R
D1nN Fh

for RFR0 . Hence J(v) G0 for v�G 3 for eGe 0 and RFR0 . r

4. Case QM E2
2/(N22)

Qm .

Let H(y) denote the mean curvature of the boundary ¯V at y�¯V .
Throughout this section we assume that:

(A) the coefficient Q satisfies the following conditions:

QM E22/(N22) Qm ,

and NQ(x)2Q(y)N4o(Nx2yN) for some y�¯V with Q(y) 4Qm , H(y) D

D0 and x close to y.

Obviously in this case we have SQ4
S N/2

2NQm
(N22) /2

.

PROPOSITION 4.1. Let NF5 and suppose that (A) holds. Then

max
v�D

J(v) E
S N/2

2NQm
(N22) /2

.(4.1)

PROOF. Without loss of generality we may assume that y40. Let
v�D . Then v4w1see and

J(w1see ) 4
1

2
�

V

(N˜wN2 2lw 2) dx1
s 2

2
�

V

(N˜eeN
2 2lee

2) dx

2
1

2*
�

V

Q(x)(w1see1ut )1
2* dx .

For 0 EsGs0 , with s0 sufficiently small, we have

J(w1see ) G
s 2

2
�

V

N˜eeN
2 dxG

S N/2

2NQm
(N22) /2

.

If sFs0 , then repeating the estimates from Lemma 3.2 we get

J(w1see ) G
s 2

2
�

V

(N˜eeN
2 2lee

2) dx2
s 2*

2*
�

V

Q(x) ee
2* dx1Cs 2* e (N22) /2
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for some constant CD0. Hence

J(w1see ) G
1

N

(s
V

(N˜eeN
2 2lee

2 ) dx)N/2

(s
V

Q(x)NeeN
2* dx)(N22) /2

1O(e (N22) /2 ) .

Since

�
V

NP 1 UeN
2* dx4�

V

Ue
2* dx1O(e N22 )

and

�
V

N˜P 1 UeN
2 dx4�

V

N˜UeN
2 dx1O(e N22 ) ,

we obtain

J(w1see ) G
1

N

(s
V

(N˜UeN
2 2lUe

2 ) dx)N/2

(s
V

Q(x) Ue
2* dx)(N22) /2

1O(e (N22) /2 ) .

We need the following asymptotic formulas (see [17])

�
V

N˜UeN
2 dx4

K1

2
2I(e)1o(e) ,

�
V

Ue
2* dx4

K2

2
2P(e)1o(e) ,

where K1 4 s
RN

N˜UN2 dx , K2 4 s
RN

U 2* dx , S4K1 /K2
(N22) /N , I(e) 4O(e) and

P(e) 4O(e). Moreover, we have (see (3.17) in [17])

lim
eK0

I(e)

P(e)
D

N22

N

K2

K1

.(4.2)

By assumption (A) we have

�
V

Q(x) Ue
2* dx4

Qm K2

2
1o(e) .



Multiple solutions of a nonlinear elliptic etc. 17

Thus

J(w1see ) G
1

N

g K1

2
2I(e)1o(e)hN/2

g Qm K2

2
2P(e) Qm 1o(e)h(N22) /2

1O(e (N22) /2 ) .(4.3)

According to (4.2) we can find an e 0 D0 and a rD0 such that

I(e) D
N22

N

K1

K2

P(e)1r(4.4)

for 0 EeGe 0 . It then folllows from (4.3) and (4.4) that

J(w1see )G gg K1

2
hN/2

2
N

2
g K1

2
h(N22) /2

I(e)1o(e)h
3gg 1

2
K2 Qmh2(N22) /2

1
N22

2
Qm P(e) g 1

2
K2 Qmh2N/2

1o(e)h
E

S N/2

2NQm
(N22) /2

2Cr

for some constant CD0 and the result follows. r

We are now in a position to formulate the following result

THEOREM 4.2. Suppose that the assumptions of Proposition 4.1
hold. Then problem (4.1) has at least two solutions.

5. Case QM F22/(N22) Qm .

If QM F2(2/N)22 Qm , then SQ4
S N/2

NQM
(N22) /2 . We assume that

NQ(x)2Q(y)N4o(Nx2yN2 )(5.1)

for some y�V with Q(y) 4QM and x close to y .
Assuming that y40, we have

�
V

N˜UeN
2 dx4K1 1O(e N22 ) ,

�
V

Q(x) Ue
2* dx4K2 QM 1o(e 2 )
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and

�
V

Ue
2 dxFc1 e 2

for some constant c1 D0 independent of e . As in the proof of Proposition
4.1 we have

J(w1see ) G
(s
V

(N˜UeN
2 2lUe

2 ) dx)N/2

N(s
V

Q(x) Ue
2* dx)(N22) /2

1O(e (N22) /2 )

G
(K1 1O(e N22 )2c1 e 2 )N/2

N(K2 QM 1o(e 2 ) )(N22) /2
1O(e (N22) /2 ).

If NF7, taking eD0 sufficiently small, we can check that

max
v�D

J(v)S N/2 /QM
(N22) /2 .

THEOREM 5.1. Let NF7. Suppose that QM F22/(N22) Qm and that
(5.1) holds. Then problem (1.1) has two solutions.

6. Existence of solutions in the case l40.

In this case problem (1.1) takes the form

.
/
´

2Du

¯

¯n
u(x)

4Q(x) u1
2*21 1 f (x) in V

40 on ¯V ,
(6.1)

Obviously a necessary condition for the existence of a solution of pro-
blem (6.1) is the condition

�
V

f (x) dxE0.(6.2)

Since the eigenfunctions corresponding to l40 are constant, we decom-
pose H 1 (V) as H 1 (V) 4span ]1(5E 1 , where

E 14 {v�H 1 (V); �
V

v dx40} .

Thus for every function u�H 1 (V) we have u4 t1v , where t�R and
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s
V

v dx40. The variational functional J for (6.1) is given by

J(u) 4
1

2
�

V

N˜vN2 dx2
1

2*
�

V

Q(x)(t1v)1
2* dx2�

V

f (x)(t1v) dx .

It is easy to show that the function tKJ(t1v) is bounded above. Let
v�E 1 and set

g(t) 4J(t1v).

It is clear that for every v�E 1 there exists t(v) D0 such that

g(t(v) ) 4 max
t�R

g(t) ,

that is, J(t1v) GJ(t(v)1v) for every t�R . Thus by the implicit fun-
ction theorem we can define a continuously differentiable mapping

v�E 1 ¨ t(v) �R ,

such that J(t1v) GJ(t(v)1v) for every tc t(v). Since

0 4g 8 (t(v) ) 42�
V

Q(x)(t(v)1v)2*21 dx2�
V

f dx ,

we see that

�
V

Q(x)(t(v)1v)1
2*21 dx1�

V

f (x) dx40(6.3)

for every v�E 1 . In particular, if v40, then

�
V

Q(x) (t(0) )1
2*21 dx42�

V

f (x) dx .

This combined with (6.2) yields t(0) D0 and we have

t(0)2*21�
V

Q(x) dx42�
V

f (x) dx .(6.4)

We now claim that the functional

F(v) 4J(v1 t(v) )

attains its minimum on some ball Br (0). We set

A42�
V

f (x) dx and B4�
V

Q(x) dx .
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By easy computations using (6.4), we verify that

F(0) 4
N12

2N

A 2N/(N12)

B (N22) /(N12)
.

We now estimate F(v) from below:

F(v) FJ(v) 4
1

2
�

V

N˜vN2 dx2
1

2*
�

V

Qv1
2* dx2�

V

fv dx

F
1

2
�

V

N˜vN2 dx2
1

2*
�

V

Qv1
2* dx2V f V2 VvV2 .

We now observe that

�
V

N˜vN2 dxFl 2�
V

v 2 dx

for every v�E 1 . Since s
V

v dx40, we can use the Sobolev inequality to
obtain

F(v) F
1

2
�

V

N˜vN2 dx2
QM

2*
S 2N/(N22)u�

V

N˜vN2 dxv2* /2

2V f V2 l 2
21u�

V

N˜vN2 dxv1/2

.

Letting r4V˜vV2 we derive from the above estimate

F(v) F
r 2

2
2

QM

2*
S 2N/N2 r 2* 2V f V2 l 2

21/2 r

4rz g r

2
2

QM

2*
S 2N/N22 r 2*21 2V f V2 l 2

21/2h4rj(r).

Since j(r) achieves its maximum at

r 0 4 g N

(N12) QM
h(N22) /4

S N/4
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we see that

F(v) Fr 0gr 0g 1

2
2

N22

2(N12)
h2V f V2 l 2

21/2h(6.6)

4r 0g 2r 0

N12
2V f V2 l 2

21/2h .

We now assume that

V f V2 G
l 2

1/2

N12
g N

(N12) QM
h(N22) /4

S N/4(6.7)

and

(6.8) 2�
V

f (x) dxG

G g 2N

N12
h(N12) /2N

N 2(N12) /2N QM
2(N 224) /4N S (N12) /4u�

V

Q(x) dxv1/2*
.

As an immediate consequence of (6.5), (6.6), (6.7) and (6.8) we can sta-
te the following lemma:

LEMMA 6.1. Suppose that (6.7) and (6.8) hold. Then F(v) DF(0) for
all v�E 1 such that VvV4r 0 , and moreover

F(0) E
S N/2

NQM
(N22) /2

.

We can now formulate the existence result in the case l40.

THEOREM 6.2. Suppose that (6.7) and (6.8) hold. Then problem (6.1)
has a solution.

PROOF. It follows from Lemma 6.1 that

m4 inf
v�Br 0 (0)

F(v) E
S N/2

NQM
(N22) /2

.(6.9)

Let ]vn ( be a minimizing sequence for (6.9). Since ]vn ( is bounded in
H 1 (V), we may assume that vn � v0 in H 1 (V) and vn � v0 in L q (V) for
every 2 GqE2*. By the low semicontinuity of norm with respect to
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weak convergence we have

Vv0 VG lim inf
nKQ

Vvn VGr 0 .

Estimate (6.6) shows that F is bounded away from 0 near the boundary
of Br 0

(0 ) for f small enough. On the other hand mGF(0) and F(0) is clo-
se to 0 for small f . Therefore we can always assume that the minimizing
sequence ]vn ( is contained in the interior of the ball Br 0

(0 ), say ]vn ( %
%Br 0 /2 (0 ). It then follows from the Ekeland variational principle that

F(vn ) Km and F 8 (vn ) K0.

Since F 8 (vn ) K0 means that J 8 (vn 1 t(vn ) ) K0 we obtain

1

2
�

V

N˜vnN2 dx2
1

2*
�

V

Q(x) (vn1t(vn ) )1
2* dx2�

V

f (vn1t(vn ) ) dx4m1o(1)

and also by (6.3) we have

�
V

N˜vnN2 dx2�
V

Q(x) (vn 1 t(vn ) )1
2*21 vn dx2�

V

fvn dx4o(1) .

Since v0 is a weak solution of (6.1) we have

�
V

(N˜v0N
2 2Q(x) (v0 1 t(v0 ) )1

2*21 v0 2 fv0) dx40(6.10)

and

�
V

(Q(x) (v0 1 t(v0 ) )1
2*21 1 f) dx40.(6.11)

We need to show that vn Kv0 in H 1 (V). As in [12] we show that
lim

nKQ
t(vn ) 4 t(v0 ). We set wn 4vn 2v0 . By the Brézis-Lieb Lemma, we

have

F(v0 )1
1

2
�

V

N˜wnN2 dx2
1

2*
�

V

Q(x)(wn )1
2* dx4m1o(1)(6.12)

and

�
V

N˜wnN2 dx2�
V

Q(x)(wn )1
2* dx2�

V

Q(x) (v0 1 t(v0 ) )1
2* dx

1�
V

N˜v0N
2 dx2�

V

f (v0 1 t(v0 ) ) dx4o(1).
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It then follows from (6.10) and (6.11) that

�
V

N˜wnN2 dx2�
V

Q(x)(wn )1
2* dx4o(1) .

Hence by (6.12) we get

F(v0 )1
1

N
�

V

N˜wnN2 dx4m1o(1) .

Since F(v0 ) Fm , this implies that s
V

N˜wnN2 dx4o(1) and consequently
vn Kv0 in H 1 (V). r
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