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Remarks on a Nonlocal Problem Involving
the Dirichlet Energy.

M. CHIPOT (*) - V. VALENTE (**) - G. VERGARA CAFFARELLI (***)

ABSTRACT - We introduce a class of nonlinear parabolic problems of nonlocal type
depending on the Dirichlet integral and study the questions of existence,
uniqueness and asymptotic behaviour for the solution.

1. Introduction.

Let V be a bounded, smooth open subset of Rn , nF1. For

f4 f (x) �L 2 (V) ,(1.1)

u0 �H 1
0 (V) ,(1.2)

we would like to consider the problem of finding u4u(x, t) solution to

.
/
´

ut 2a u �
V

N˜uN2 dxv Du4 f

u(x , 0 ) 4u0 (x) in V , u40

in V3R1 ,

on ¯V3R1 .

(1.3)

Here a4a(s) is a continuous function such that

0 EmGa(s) GM .(1.4)
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for some positive constants m and M and ¯V denotes the boundary of V .
Nonlinear nonlocal problems present several interesting features,

see for instance [9], [6], [7], [8], [2], [3], [4], [10], [16] for various issues
and applications. In particular several equilibria (up to a continuum) can
appear. This makes the study of the asymptotic behaviour of these prob-
lems interesting and challenging. In addition to the usual properties of
nonlocal problems, as we will see, (1.3) admits a Lyapunov function. This
will allow us to describe some of its asymptotic behaviour.

The paper is divided as follow. In the next section we prove existence
and uniqueness of a solution to (1.3). In section 3 we study the corre-
sponding stationary problem. Finally in the last section we give some re-
sults regarding the asymptotic behaviour of (1.3).

2. Existence and uniqueness.

We will need the following Lemma.

LEMMA 2.1. Let T be a positive number and suppose that an is a
uniformly bounded sequence of functions such that

a n (t) Ka Q (t) a.e. t� (0 , T).(2.1)

Suppose also that

u n
0 Ku0

Q , f n K f Q in L 2 (V) .(2.2)

If u n is the solution of the problem

u n�L 2 (0, T; H 1
0 (V))OC([0, T]; L 2 (V)), u n

t �L 2 (0, T; H 21 (V)),

d

dt
(u n, v)1a n (t)�

V

˜u n˜v(x) dx4( f n, v), in D8(0, T) (v�H 1
0 (V),

u n (Q, 0)4u n
0 ,

(2.3)

then

u n Ku Q in L 2 (0 , T ; H 1
0 (V) )(2.4)



Remarks on a nonlocal problem involving etc. 201

where u Q is the solution to

u Q�L 2 (0, T; H 1
0 (V))OC([0, T]; L 2 (V)), u Q

t �L 2 (0, T; H 21 (V)),

d

dt
(u Q, v)1a Q (t)�

V

˜u Q˜v(x) dx4( f Q, v), in D8(0, T) (v�H 1
0 (V),

u Q (Q , 0)4u Q
0 .

(2.5)

PROOF. The existence and uniqueness of a solution to (2.3), (2.5) fol-
lows by a well known result of J. L. Lions (see [11], [5]). We have denot-
ed by ( , ) the usual scalar product in L 2 (V). We refer to [11], [5] for no-
tation. By difference from (2.3), (2.5) we get

d

dt
(u n 2u Q , v)1a n (t)�

V

˜(u n 2u Q ) ˜v(x) dx4 ( f n 2 f Q , v)1

1(a Q (t)2a n (t) )�
V

˜u Q ˜v(x) dx , in D8 (0 , T) (v�H 1
0 (V).

Taking v4 (u n 2u Q ) it comes by the Poincaré inequality for some con-
stant c

1

2

d

dt
Nu n 2u QN2

2 1a n NN˜(u n 2u Q )NN2
2 4

4( f n2f Q , u n2u Q )1(a Q2a n )�
V

˜u Q ˜(u n 2u Q )(x) dxG

GcNf n 2 f QN2 NN˜(u n 2u Q )NN21Na n 2a Q NNN˜u QNN2 NN˜(u n2u Q )NN2

(NN2 denotes the usual L 2 (V)-norm, NN the Euclidean norm). Using the
Young inequality we get

1

2

d

dt
Nu n 2u QN2

2 1mNN˜(u n 2u Q )NN2
2 G

GeNN˜(u n 2u Q )NN2
2 1C(e)]Nf n 2 f QN2

2 1Na n 2a QN2 NN˜u QNN2
2 (

for some constant C(e). Choosing e4
m

2
this leads to

d

dt
Nu n 2u QN2

2 1mNN˜(u n 2u Q )NN2
2 G

GC]Nf n 2 f QN2
2 1Na n 2a QN2 NN˜u QNN2

2 ( .
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Integrating between 0 , T we derive easily

m�
0

T

NN˜(u n 2u Q )NN2
2 dtG

GNu n
0 2u0

QN2
2 1CTNf n 2 f QN2

2 1C�
0

T

Na n 2a QN2 NN˜u QNN2
2 dt .

The result follows by the Lebesgue theorem (to pass to the limit in the
last integral). r

THEOREM 2.1. For any TD0 there exists a weak solution to (1.3),
i.e. there exists u such that

(2.6)

u�L 2 (0, T; H 1
0 (V))OC([0, T]; L 2 (V)), ut�L 2 (0, T; H 21 (V)),

d

dt
(u, v)1a u �

V

N˜uN2 dxv�
V

˜u ˜v(x) dx4( f, v), in D8(0, T) (v�H 1
0 (V),

u(Q , 0)4u0 .

PROOF. Let us set

B4 ]v�L 2 (0 , T ; H 1
0 (V) ); NwNL 2 (0 , T ; H 1

0 (V) ) GC(

where C is a constant that we will fix later on. Let w be fixed in B . There
exists a unique u solution to

(2.7)

u�L 2 (0, T; H 1
0 (V))OC([0, T]; L 2 (V)), ut�L 2 (0, T; H 21 (V)),

d

dt
(u, v)1a u �

V

N˜wN2 dxv�
V

˜u ˜v(x) dx4( f, v), in D8(0, T) (v�H 1
0 (V),

u(Q, 0)4u0.

We want show that the mapping

wKu4R(w)

admits a fixed point. For that, taking v4u in (2.7), we get

1

2

d

dt
NuN2

2 1a(NN˜wNN2
2 )NN˜uNN2

2 4 ( f , u) GNfN2 NuN2 GcNfN2 NN˜uNN2
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by the Poincaré inequality for some constant c. Using (1.4) we get

1

2

d

dt
NuN2

2 1mNN˜uNN2
2 G

c 2

2m
NfN2

2 1
m

2
NN˜uNN2

2

and hence

d

dt
NuN2

2 1mNN˜uNN2
2 G

c 2

m
NfN2

2 .

Integrating between 0 and T we have

(2.8) NuN2
2 1m�

0

T

NN˜uNN2
2 dtGT

c 2

m
NfN2

2 1Nu0N2
2 ¨

¨ NuN2
L 2 (0 , T ; H 1

0 (V) ) GT
c 2

m 2
NfN2

2 1
1

m
Nu0N2

2
uC 2 .

We have defined C by the above inequality. Note that we choose
also

NuNL 2 (0 , T ; H 1
0 (V) ) 4 {�

0

T

NN˜uNN2
2 dt}1/2

.

With C defined in (2.8) we see that wKu4R(w) maps B into B . We
claim now that R is continuous from B into B . Indeed, consider a se-
quence w n �B such that

w n Kw Q in B

Denote by u n the solution to (2.7) where w is replaced by w n and by u Q

the solution to (2.7) where w is replaced by w Q . We have, for a
subsequence,

NN˜(w nk 2w Q )NN2
2 K0 a.e. t� (0 , T)

which implies

NN˜w nkNN2
2 KNN˜w Q NN2

2 a.e. t� (0 , T)

and

a(NN˜w nk NN2
2 ) Ka(NN˜w QNN2

2 ) a.e. t� (0 , T).
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Applying the Lemma 2.1 we conclude that

u nk Ku Q in L 2 (0 , T ; H 1
0 (V) )

and the continuity of the map R follows since u Q is the only possible lim-
it of u n . In order to apply the Schauder fixed point theorem we now just
need to prove that R(B) is relatively compact in B . For that we select
a n �C Q ( [0 , T] ), f n � D(V), u0

n � D(V) such that

m

2
Ga n G2M , a n Ka(NN˜w)NN2

2 ) a.e. t

f n K f in L 2 (V), u0
n Ku0 in H 1

0 (V)

and we denote by u n the solution to (2.3). u n is very smooth and in partic-
ular since u n (x , t)N¯V40 for any t , we have

u n
t �H 1

0 (V) (t .

This implies also, by the second equation of (2.3) that it holds

Du n �H 1
0 (V) (t .

Thus taking v4Du n in (2.3) we get

1

2

d

dt
NN˜u nNN2

2 1an NDu nN2
2 4 ( f n , Du n ) GNf nN2 NDu nN2 ¨

¨
1

2

d

dt
NN˜u nNN2

2 1
m

2
NDu nN2

2 G
Nf nN2

2

m
1

m

4
NDu nN2

2 .

It follows easily by integration that

1

2
NN˜u nNN2

2 1
m

4
�

0

T

NDu nN2
2 dtGT

Nf nN2
2

m
1

1

2
NN˜u n

0 NN2
2 GC

where C is independent of n . It follows that

�
0

T

NDu nN2
2 dtGC
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for some other constant independent of n and w . Using the Lemma we
obtain

�
0

T

NDuN2
2 dtGC(2.9)

From (1.3) we derive also

NutN2
2 GC(NDuN2

2 1NfN2
2 ) ,

and

NutNL 2 (0 , T ; L 2 (V) ) GC .(2.10)

The estimates (2.9)-(2.10) insure that R(B) is relatively compact in B (see
[15]) and this concludes the proof. r

To establish uniqueness, we suppose now that a is a Lipschitz conti-
nuous function that is to say for some K it holds that

Na(z)2a(z 8 )NGKNz2z 8N (z , z 8�R .(2.11)

THEOREM 2.2. Under the assumptions of Theorem 2.1 and if (2.11)
holds there is a unique weak solution to the problem (1.3) i.e. to
(2.6).

PROOF. If u is solution to (2.6) we set

a(t) 4�
0

t

a u �
V

N˜u(x , s)N2 dxv ds4�
0

t

a(NN˜u(. , s)NN2
2 ) ds .(2.12)

It is clear that a is a one-to-one mapping from (0 , 1Q) into itself.
Set

w(x , a(t) ) 4u(x , t).(2.13)

Due to (1.4), both a and a21 are Lipschitz continuous so that

w(x , t) 4u(x , a21 (t) ) �H 1 (0 , T ; H 1
0 (V), H 21 (V) ).(2.14)

(See [11], [5] for a definition of this space). If u is solution to (2.6) and
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W� D(0 , T), v�H 1
0 (V), we have

(2.15) 2�
0

T

�
V

u(x , t) v(x) W 8 (t) dx dt1�
0

T

a(t)�
V

˜u(x , t) ˜v(x) W(t) dx dt4

4�
0

T

�
V

f (x) v(x) W(t) dx dt ,

where we have set

a(t) 4a(NN˜u(. , t)NN2
2 ).(2.16)

This equality holds true for any W�H 1 (0 , T). If W� D(0 , a(T) ), then
W(a(t) ) �H 1 (0 , T) and using this function in (2.14) we obtain

(2.17) 2�
0

T

�
V

]w(x , a(t) ) v(x)W 8 (a(t) )1

1˜w(x , a(t) ) ˜v(x) W(a(t) )( a(t) dx dt4�
0

T

�
V

f (x) v(x) W(a(t) ) a(t)

a(NN˜w(. , a(t) )NN2
2 )

dx dt .

Then, we use the following lemma of change of variables in the
integrals:

LEMMA 2.2. Let

f�L 1
loc (R) , a�L Q (R) , 0 EmGaGM , a(t) 4�

0

t

a(s) ds ,(2.18)

then it holds that

�
0

T

f (a(t) ) a(t) dt4 �
0

a(T)

f (t) dt .(2.19)

Assuming this Lemma proved we get for W� D(0 , a(T) ), v�H 1
0 (V):

(2.20) 2 �
0

a(T)

�
V

]w(x , t) v(x) W 8 (t)1˜w(x , t) ˜v(x) W(t)( dx dt4

4 �
0

a(T)

�
V

f (x) v(x) W(t)

a(NN˜w(. , t)NN2
2 )

dx dt ,
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i.e w(x , t) is solution to

w�L 2 (0, a(T); H 1
0 (V))OC([0, a(T)]; L 2 (V)), wt�L 2 (0, a(T); H 21 (V)),

(2.21)
d

dt
(w , v)1�

V

˜w ˜v(x) dx4
( f , v)

a(NN˜w(. , t)NN2
2 )

,

in D8 (0 , a(T) ) (v�H 1
0 (V), w(Q , 0 ) 4u0 .

Consider then u1 and u2 two solutions of (2.6). Then w1 and w2 defined by

wi (x , a(t) ) 4ui (x , t), i41, 2 ,(2.22)

are solution to (2.21). Taking v4w1 2w2 in (2.21) written for w1 and w2

we get easily by subtraction

1

2

d

dt
Nw1 2w2N2

2 1NN˜(w1 2w2 )NN2
2 4

4 ( f , w1 2w2 ) { 1

a(NN˜w1 NN2
2 )

2
1

a(NN˜w2 NN2
2 )

} .

Note that a i (T) are not necessarily the same, but they can be taken arbi-
trarily like T . Recalling (1.4) we get

1

2

d

dt
Nw1 2w2N2

2 1NN˜(w1 2w2 )NN2
2 G

GNfN2 Nw1 2w2N2{ a(NN˜w2NN2
2 )2a(NN˜w1 NN2

2 )

m 2
} .

From (2.11) we deduce

Na(NN˜w2NN2
2 )2a(NN˜w1NN2

2 )NGKN�
V

˜(w1 2w2 ) ˜(w1 1w2 ) dxN G

GKNN˜(w1 2w2 )NN2 NN˜w1N1N˜w2NN2 .

Thus we obtain

1

2

d

dt
Nw1 2w2N2

2 1NN˜(w1 2w2 )NN2
2 G

G
NfN2

m 2
Nw1 2w2N2 KNN˜(w1 2w2 )NN2 NN˜w1N1N˜w2NN2 .
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Using the Young inequality we get

1

2

d

dt
Nw1 2w2N2

2 1NN˜(w1 2w2 )NN2
2 G

G
1

2
NN˜(w1 2w2 )NN2

2 1
NfN2

2

2m 4
K 2 NN˜w1N1N˜w2NN2

2 Nw1 2w2N2
2 .

It follows that

d

dt
Nw1 2w2N2

2 GC(t)Nw1 2w2N2
2

where C(t) �L 1 (0 , T). From the Gronwall inequality we obtain that
w1 4w2 and the uniqueness of u follows. r

Let us now turn to the proof of the Lemma which is more or less clas-
sical but that we establish for the reader convenience.

PROOF OF THE LEMMA 2.2. Let f�C(R), an �C(R) such that

m

2
Gan G2M an Ka a.e. on (0 , T).

One has clearly with a n 4 s
0

t

an (s) ds

�
0

T

f (a n (t) ) an (t) dt4 �
0

a n (T)

f (t) dt .(2.23)

Passing to the limit in n we see that (2.19) holds for f�C(R). Let fn �
�C(R) such that fn K f in L 1

loc (R). We have

�
0

T

fn (a(t) ) a(t) dt4 �
0

a(T)

fn (t) dt .(2.24)

We claim that fn (a(t) ) a(t) is a Cauchy sequence in L 1 (0 , T). This follows
indeed from

�
0

T

Nfn (a(t) ) a(t)2 fm (a(t) )a(t)Ndt4 �
0

a(T)

Nfn 2 fmNdsGe
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for n , m large enough. Thus, there exists a function g�L 1 (0 , T) such
that

fn (a(t) ) a(t) Kg(t)

in L 1 (0 , T). Up to a subsequence one can assume that

fn (s) K f (s) on [0 , a(T) ] 0N

where N is a set of measure 0. Since a21 is Lipschitz continuous, a21 (N)
is also of measure 0 and

fn (a(t) ) K f (a(t) ) on [0 , T] 0a21 (N).

Thus g(t) 4 f (a(t) ) a(t) a . e . and passing to the limit in (2.24) the proof of
the lemma is complete. r

3. Steady states.

In this section we study the stationary solutions to (1.3). These
steady states can be obtained as minimizers of some energy or as critical
points. Let E(u) be the energy defined by

E(u) 4
1

2
A u �

V

N˜uN2 dxv2 ( f , u) ,(3.1)

where

A(s) 4�
0

s

a(z) dz .(3.2)

We have:

THEOREM 3.1. The functional E(u) admits a global minimizer in
H 1

0 (V).

PROOF. First, we see that E is coercive and bounded from below. In-
deed, from the Poincaré inequality we have

N( f , u)NGNfN2 NuN2 GcNfN2 NN˜uNN2
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and hence

E(u)4
1

2
A u �

V

N˜uN2 dxv2 ( f , u)F
m

2
NN˜uNN2

2 2cNfN2 NN˜uNN2 .(3.3)

This shows the coerciveness of E . E is also bounded from below
since

m

2
NN˜uNN2

2 2cNfN2 NN˜uNN2 F2
c 2

2m
NfN2

2 .(3.4)

Let un �H 1
0 (V) be a minimizing sequence of E . Due to (3.3) un is bound-

ed in H 1
0 (V) and we can assume that for some uQ�H 1

0 (V) we have

un � uQ in H 1
0 (V), un KuQ in L 2 (V).

Due to the weak lower semicontinuity of the norm we deduce

limNN˜unNN2
2 FNN˜uQNN2

2 .

Consider a subsequence unk
such that

limNN˜unNN2
2 4 lim

k
NN˜unk

NN2
2 .

Since unk
is a minimizing sequence we have

inf
H 1

0 (V)
E(u) 4 lim

k
E(unk

) 4
1

2
�

0

limNN˜unNN2
2

a(s) ds2 ( f , uQ ) F

F
1

2
�

0

NN˜uQNN2
2

a(s) ds2 ( f , uQ ) 4E(uQ ).

Thus uQ is a minimizer of E on H 1
0 (V). Note that for any sequence un

satisfying

un � uQ in H 1
0 (V),

we have shown that it holds that

lim E(un ) 4
1

2
�

0

limNN˜unNN2
2

a(s) ds2 ( f , uQ ) FE(uQ ),
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i.e. E is weakly lower semicontinuous on H 1
0 (V). This completes the

proof of the theorem. r

As we will see below E might have several minimizers. First note that
if uQ is a (local) minimizer of E on H 1

0 (V) then uQ is a solution of

.
/
´

2a u �
V

N˜uN2 dxv Du4 f

u40

in V ,

on ¯V .

(3.5)

Indeed if uQ is a (local) minimizer it holds that (Euler equation)

d

dl
E(uQ1lv)Nl40 40 (v�H 1

0 (V).

This leads to

d

dl
{ 1

2
�

0

NN˜(uQ1lv)NN2
2

a(s) ds2 ( f , uQ1lv)}N
l40

40,

¨
1

2
a(NN˜uQNN2

2 ) 2 �
V

˜uQ ˜v(x) dx2 ( f , v) 40, (v�H 1
0 (V),

i.e. uQ is a solution to (3.5) and a stationary point.
Regarding stationary points we have:

THEOREM 3.2. The mapping uK l(u) 4 s
V

N˜uN2 dx is a one-to-one

mapping from the set of weak solution to (3.5) onto the set of solutions to

a(m)2 m4 l(W) 4�
V

N˜WN2 dx(3.6)

where W is the weak solution to

.
/
´

2DW4 f

W40

in V ,

on ¯V .
(3.7)

PROOF. Let u be a solution of (3.5), we have

a(l(u) ) u4W ¨ l(a(l(u) ) u) 4 l(W) ¨ a 2 (l(u) ) l(u) 4 l(W)
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and l(u) is a solution to (3.6). This shows that l goes from the set of sol-
utions to (3.5) into the set of solutions to (3.6). Let now m be a solution to
(3.6), denoting by u the solution to

2a(m) Du4 f in V , u40 on ¯V ,

one has

a(m)u4W ¨ l(a(m) u) 4 l(W)

¨ a(m)2 l(u) 4 l(W) 4a(m)2 m ¨ l(u) 4m

and u is a solution to (3.5). Now if we have l(u1 ) 4 l(u2 ) then a(l(u1 ) ) 4

4a(l(u2 ) ) and u1 4u2 . This completes the proof of the theorem. r

REMARK 3.1. The stationary points are determined (through (3.6))
by the solutions to

a(m) 4o l(W)

m
(3.8)

Of course we can select a so that this equation admits 1 , 2 , R a continu-
um of solutions. The critical points of E are not all global minimizers. In-
deed we have:

THEOREM 3.3 (comparison of energies). Let u1, u2 be two solutions
of (3.5) corresponding to the solutions m 1 , m 2 of (3.8). Assume that

a(m)Do l(W)

m
( resp. a(m)Eo l(W)

m
, a(m)4o l(W)

m
(m� (m 1 , m 2 )(3.9)

then it holds that

E(u2 ) DE(u1 ) (resp. E(u2 ) EE(u1 ), E(u2 ) 4E(u1 ) )

PROOF. Recall that ui is solution to

2a(m i )Dui 4 f in V , u40 on ¯V ,

i.e. we have

m i 4NN˜uiNN2
2 , ui 4

W

a(m i )
.



Remarks on a nonlocal problem involving etc. 213

Thus it comes

E(ui ) 4
1

2
�

0

m i

a(s) ds2 ( f , ui ) 4

4
1

2
�

0

m i

a(s) ds2 gf ,
W

a(m i )
h4

1

2
�

0

m i

a(s) ds2
l(W)

a(m i )
,

since ( f , W) 4 (2DW , W) 4 l(W). By subtraction we obtain in the first
case above

E(u2 )2E(u1 ) 4
1

2
�

m 1

m 2

a(s) ds1
l(W)

a(m 1 )
2

l(W)

a(m 2 )
4

1

2
�

m 1

m 2

a(s) ds1

1kl(W) m 1 2kl(W) m 2 D
1

2
�

m 1

m 2

o l(W)

s
ds1kl(W) m 1 2kl(W) m 2 4

4kl(W) m 2 2kl(W) m 1 1kl(W) m 1 2kl(W) m 2 40 .

The other cases could be treated the same way. This completes the proof
of the theorem. r

REMARK 3.2. The functional E(u) is not convex and might have as
shown by the above theorem several global minimizers.

4. Asymptotic behaviour.

Let us denote by H 1 (0 , T ; L 2 (V) ) the space

H 1 (0 , T ; L 2 (V) )4]v�L 2 (0 , T ; L 2 (V) ); vt �L 2 (0 , T ; L 2 (V) )(.(4.1)

LEMMA 4.1. For u�H 1 (0 , T ; L 2 (V) )OC( (0 , T); H 1
0 (V)OH 2 (V) )

it holds that

�
s

t

�
V

]2a(NN˜u(. , t)NN2
2 ) Du2 f ( ut dx dt4E(u(t) )2E(u(s) ).(4.2)
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PROOF. By density (see [11], [5]) we can assume that u�
�C 1 ( (0 , T); L 2 (V) ) and then that u�C 1 ( (0 , T); H 1

0 (V)OH 2 (V) ) (see
[1] p. 74 for a similar argument). Then for such a u we have

�
V

]2a(NN˜u(. , t)NN2
2 ) Du2 f ( ut 4�

V

a(NN˜u(. , t)NN2
2 ) ˜u˜ut 2 fut dx4

4
d

dt

1

2
�

V

A(NN˜u(x , t)NN2
2 ) dx2�

V

fudx4
d

dt
E(u(t) )

where E is defined by (3.1). The result follows by integrating between s
and t . r

LEMMA 4.2. Let u(Q , t) be the unique solution to the problem (1.3)
or (2.6) then when tKQ there exists a subsequence tk such that

u(Q , tk ) � uQ in H 1
0 (V)

where uQ is a stationary point.

PROOF. Using the equation (1.3) and the Lemma 4.1 we have (recall
also (2.10))

2�
s

t

�
V

ut
2 dx dt4E(u(t) )2E(u(s) ).(4.3)

It follows that E(u(t) ) is nonincreasing and there exists EQ such that

lim
tKQ

E(u(t) ) 4EQ .(4.4)

Passing to the limit in (4.3) we have

�
0

Q

NutN2
2 dt4E(u(s) )2EQ ,(4.5)

and from (3.4)

NN˜u(. , t)NN2
2 4�

V

N˜u(x , t)N2 dxGconst . 4C1 (tFs .(4.6)

From (4.5) we have

lim NutN2
2 40 as tKQ
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so there is a subsequence which we denote by tk such that

Nut (Q , tk )N2
2 K0 as tk KQ .(4.7)

We also have from (4.6) that

NN˜u(Q , tk )NN2
2 GC1

hence passing eventually to a subsequence if uk 4u(Q , tk ) we have

uk � uQ weakly in H 1
0 (V),

uk KuQ strongly in L 2 (V).

Now, we want to prove that uQ is a stationary point i.e. is a solution to
(3.5). Since E is nonincreasing

E(u(Q , tk ) ) 4
1

2
A u �

V

N˜ukN2 dxv2 ( f , uk ) KEQ

¨
1

2
A u �

V

N˜ukN2 dxvKEQ1 ( f , uQ )

and recalling that A is invertible

�
V

N˜ukN2 dxK lQ4A 21 (2EQ12( f , uQ ) ).(4.8)

Taking v4u and W solution of (3.7) in (2.6) we get

1

2

d

dt
NuN2

2 1a(NN˜uNN2
2 )NN˜uNN2

2 4 ( f , u),

d

dt
(u , W)1a(NN˜uNN2

2 )( f , u) 4 ( f , W) 4 (2DW , W) 4 l(W).

From (4.8) we deduce that

1

2

d

dt
Nu(tk )N2

2 4 (ut (Q , tk ), uk ) 4

42a(NN˜ukNN2
2 )N˜ukN2 1 ( f , uk ) K ( f , uQ )2a(lQ ) lQ ,

(ut (Q , tk ), W) 4 l(W)2a(NN˜ukNN2
2 )( f , uk ) K l(W)2a(lQ )( f , uQ ).
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Since u is bounded in L 2 (V) and (4.7) holds we get

( f , uQ ) 4a(lQ ) lQ , l(W) 4a(lQ )( f , uQ )

¨ l(W) 4a 2 (lQ ) lQ

i.e. lQ is a solution to (3.6). For any v belonging to H 1
0 (V) it holds that

(ut (Q , tk ), v)1a u �
V

N˜ukN2 dxv (˜uk , ˜v) 4 ( f , v).

From (4.7), (4.8) passing to the limit we get

a(lQ )(˜uQ , ˜v) 4 ( f , v) (v�H 1
0 (V)

and we obtain that uQ is a stationary point – see Theorem 3.2. r

REMARK 4.1. The convergence is in fact strong in H 1
0 (V) since

�
V

N˜ukN2 dxK lQ4�
V

N˜uQN2 dx kKQ ,

see (4.8).
We can then show:

THEOREM 4.1. Let u be the unique solution to the problem (1.3)
then, if E admits a unique stationary point uQ , it holds that

u(Q , t) KuQ in H0
1 (V)

when tKQ.

PROOF. Since u(t) is uniformly bounded in H0
1 (V) for some subse-

quence it holds that

u(Q , tk ) � vQ in H0
1 (V)2weak.

By Lemma 4.2 – see also Remark 4.1 – we have

E(u(t) ) KE(uQ )

where uQ is the global minimizer of E . By the weak lower semicontinuity
of E (see Theorem 3.1) we have

E(uQ ) 4 lim
tkKQ

E(u(tk ) ) FE(vQ ).
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Since vQ is a minimizer we have necessarily vQ4uQ . Since this holds for
any subsequence the result follows – see also the Remark 4.1.

REMARK 4.2. If E admits a unique global minimizer uQ and if

E(u0 ) EE(ui )

for any stationary point ui cuQ , then with the same proof as above we
have

u(Q , t) KuQ in H0
1 (V)

when tKQ .
We would like to end this section by a result of asymptotic stability.

Let c be the constant defined by the Poincaré inequality

NN˜uNN2 GcNDuN2 , (u�H 1
0 (V)OH 2 (V).

We introduce the function A(s) 4a(s 2 ) which, from (1.4), verifies

0 EmG A(s) GM .

Then we have

THEOREM 4.2. Assume A is a C 1 function and uQ is a stationary
solution to the problem (3.5) which verifies

m2N A8 (NN˜uQ NN2 )N
c

m
NfN2 DmD0,(4.9)

then uQ is a locally asymptotically stable stationary solution in the
sense of Lyapunov. That is to say, there exits r4r(m) such that if
NN˜(u0 2uQ )NN2 Gr the solution u(t) of the problem (1.3) verifies

NN˜(u(t)2uQ )NN2 GNN˜(u0 2uQ )NN2 e
2

m

c 2
t

(tF0.

PROOF. Let uQ be the solution of the stationary problem that veri-
fies (4.9). From (1.3), (3.5), (see also (2.9)-(2.10)), we have:

(4.10) (u2uQ )t 2a u �
V

N˜uN2 dxv D(u2uQ ) 4

ya u �
V

N˜uN2 dxv2a u �
V

N˜uQN2 dxvz DuQ .
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Putting h4u2uQ and multiplying the above equation by Dh we
get

2
1

2

d

dt
�

V

N˜hN2 dx2a u �
V

N˜uN2 dxv�
V

NDhN2 dx4

4 ya u �
V

N˜uN2 dxv2a u �
V

N˜uQN2 dxvz�
V

DuQ Dh dx .

Applying the mean value theorem we deduce

(4.11)
1

2

d

dt
�

V

N˜hN2 dx1a u �
V

N˜uN2 dxv�
V

NDhN2 dxG

GNA8 (NN˜uQ NN2 1u(NN˜uNN2 2NN˜uQNN2 ) )NNNN˜uNN2 2NN˜uQNN2 N Q

QN�
V

DuQ Dh dxNGNA8 (NN˜uQNN21u(NN˜uNN2 2NN˜uQ NN2 ))NNN˜hNN2 Q

QN�
V

DuQDh dxNGcNA8(NN˜uQNN21u(NN˜uNN22NN˜uQNN2))NNDuQN2NDhN2
2 .

We have thus (see (3.5))

(4.12)
1

2

d

dt
NN˜hNN2

2 1

1gm2NA8(NN˜uQNN21u(NN˜h1˜uQNN22NN˜uQNN2))N
c

m
NfN2hNDhN2

2G0.

Now, if NN˜hNN2 Gr it holds that

m2NA8 (NN˜uQNN2 1u(NN˜h1˜uQNN2 2NN˜uQNN2 ))N
c

m
NfN2 DmD0

and we have

d

dt
gNN˜hNN2

2 e
2 m

c 2
thG0 .(4.13)

This completes the proof. r
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REMARK 4.3. If A is a Lipschitz continuous function with Lipschitz
constant K and

m2K
c

m
NfN2 DmD0(4.14)

then the stationary problem has a unique solution and hence for this sol-
ution we have global asymptotic stability. Indeed, if u 1

Q and u 2
Q are two

solutions of the problem (3.5), repeating the steps of the proof of Theo-
rem 4.2 we get (see (4.12))

gm2K
c

m
NfN2h ND(u 1

Q2u 2
Q )N2

2 G0(4.15)

which leads to u 1
Q4u 2

Q .
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